期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
MB-HGCN:基于层次图卷积网络的多行为推荐方法
1
作者 严明时 陈慧临 +1 位作者 程志勇 韩亚洪 《计算机研究与发展》 北大核心 2025年第11期2752-2766,共15页
基于协同过滤(collaborative filtering,CF)的单行为推荐系统在实际应用中经常面临严重的数据稀疏性问题,从而导致性能不理想.多行为推荐(multi-behavior recommendation,MBR)旨在利用辅助行为数据来帮助学习用户偏好,以缓解数据稀疏性... 基于协同过滤(collaborative filtering,CF)的单行为推荐系统在实际应用中经常面临严重的数据稀疏性问题,从而导致性能不理想.多行为推荐(multi-behavior recommendation,MBR)旨在利用辅助行为数据来帮助学习用户偏好,以缓解数据稀疏性问题并提高推荐精度.MBR的核心在于如何从辅助行为中学习用户偏好(表示为向量表征),并将这些信息用于目标行为推荐.介绍了一种旨在利用多行为数据的新型推荐方法MB-HGCN(hierarchical graph convolutional network for multi-behavior recommendation).该方法通过从全局层面的粗粒度(即全局向量表征)到局部层面的细粒度(即行为特定向量表征)来学习用户和物品的向量表征.全局向量表征是从所有行为交互构建的统一同构图中学习得到的,并作为每个行为图中行为特定向量表征学习的初始化向量表征.此外,MB-HGCN还强调了用户和物品在行为特定表征上的差异,并设计了2种简单但有效的策略来分别聚合用户和物品的行为特定表征.最后,采用多任务学习进行优化.在3个真实数据集上的实验结果表明,所提方法显著优于基准方法,尤其是在Tmall数据集上,MB-HGCN在HR@10和NDCG@10指标上分别实现了73.93个百分点和74.21个百分点的性能提升. 展开更多
关键词 分层图卷积 协同过滤 多行为推荐 图卷积网络 多任务学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部