期刊文献+
共找到11,882篇文章
< 1 2 250 >
每页显示 20 50 100
Point Cloud Method for Detecting Suspended Pipelines Using Multi-Beam Water Column Data
1
作者 YAN Zhenyu ZHOU Tian +3 位作者 ZHU Jianjun LI Tie DU Weidong ZHANG Baihan 《Journal of Ocean University of China》 2025年第6期1683-1691,共9页
In the task of inspecting underwater suspended pipelines,multi-beam sonar(MBS)can provide two-dimensional water column images(WCIs).However,systematic interferences(e.g.,sidelobe effects)may induce misdetection in WCI... In the task of inspecting underwater suspended pipelines,multi-beam sonar(MBS)can provide two-dimensional water column images(WCIs).However,systematic interferences(e.g.,sidelobe effects)may induce misdetection in WCIs.To address this issue and improve the accuracy of detection,we developed a density-based clustering method for three-dimensional water column point clouds.During the processing of WCIs,sidelobe effects are mitigated using a bilateral filter and brightness transformation.The cross-sectional point cloud of the pipeline is then extracted by using the Canny operator.In the detection phase,the target is identified by using density-based spatial clustering of applications with noise(DBSCAN).However,the selection of appropriate DBSCAN parameters is obscured by the uneven distribution of the water column point cloud.To overcome this,we propose an improved DBSCAN based on a parameter interval estimation method(PIE-DBSCAN).First,kernel density estimation(KDE)is used to determine the candidate interval of parameters,after which the exact cluster number is determined via density peak clustering(DPC).Finally,the optimal parameters are selected by comparing the mean silhouette coefficients.To validate the performance of PIE-DBSCAN,we collected water column point clouds from an anechoic tank and the South China Sea.PIE-DBSCAN successfully detected both the target points of the suspended pipeline and non-target points on the seafloor surface.Compared to the K-Means and Mean-Shift algorithms,PIE-DBSCAN demonstrates superior clustering performance and shows feasibility in practical applications. 展开更多
关键词 multi-beam sonar water column image water column point cloud density-based noisy application spatial clustering suspended pipeline detection
在线阅读 下载PDF
基于WSS-Pointnet的变电站点云弱监督语义分割方法
2
作者 裴少通 孙海超 +2 位作者 胡晨龙 王玮琦 兰博 《电工技术学报》 北大核心 2026年第1期234-245,共12页
现有的变电站点云语义分割算法均采用完全监督学习,需要大量人工标注点云数据,导致分割任务耗时长且成本高昂。为解决这一问题,该文提出一种基于PointNet改进的弱监督语义分割PointNet(WSS-PointNet)算法。首先,通过构建多层降采样结构... 现有的变电站点云语义分割算法均采用完全监督学习,需要大量人工标注点云数据,导致分割任务耗时长且成本高昂。为解决这一问题,该文提出一种基于PointNet改进的弱监督语义分割PointNet(WSS-PointNet)算法。首先,通过构建多层降采样结构,结合采样层与分组层对输入点云数据进行多尺度特征提取,从而捕捉点云在不同尺度上的几何和拓扑信息。在此基础上,引入PointNet结构以进一步提取区域特征,优化局部特征整合与全局特征表示;针对粗粒度语义特征的优化,提出膨胀式语义信息嵌入与浸染式语义信息嵌入两种模块,分别采用“由内而外”和“由外而内”的信息传递策略对点云语义信息进行细致处理,两种嵌入机制均基于图卷积神经网络,通过捕捉局部连接模式与信息共享实现语义特征的高效传播。其次,构建变电站点云数据集,并对WSS-PointNet算法进行消融实验,同时与主流的完全监督学习算法和弱监督学习算法进行对比。经实验验证,WSS-PointNet相比于改进前将变电站点云分割的总体精度(OA)提高了10.3个百分点,平均交并比(mIoU)提高了10.1个百分点,平均准确率(mAcc)提高了10.5个百分点,同时在标注所需时间方面缩短了90%,接近完全监督算法中最好的分割效果。该模型可显著降低处理变电站点云数据的时间与成本,同时保持点云分割的高精度。 展开更多
关键词 点云语义分割 弱监督方法 膨胀式语义信息嵌入 浸染式语义信息嵌入 变电站
在线阅读 下载PDF
Multi-sensor missile-borne LiDAR point cloud data augmentation based on Monte Carlo distortion simulation 被引量:1
3
作者 Luda Zhao Yihua Hu +4 位作者 Fei Han Zhenglei Dou Shanshan Li Yan Zhang Qilong Wu 《CAAI Transactions on Intelligence Technology》 2025年第1期300-316,共17页
Large-scale point cloud datasets form the basis for training various deep learning networks and achieving high-quality network processing tasks.Due to the diversity and robustness constraints of the data,data augmenta... Large-scale point cloud datasets form the basis for training various deep learning networks and achieving high-quality network processing tasks.Due to the diversity and robustness constraints of the data,data augmentation(DA)methods are utilised to expand dataset diversity and scale.However,due to the complex and distinct characteristics of LiDAR point cloud data from different platforms(such as missile-borne and vehicular LiDAR data),directly applying traditional 2D visual domain DA methods to 3D data can lead to networks trained using this approach not robustly achieving the corresponding tasks.To address this issue,the present study explores DA for missile-borne LiDAR point cloud using a Monte Carlo(MC)simulation method that closely resembles practical application.Firstly,the model of multi-sensor imaging system is established,taking into account the joint errors arising from the platform itself and the relative motion during the imaging process.A distortion simulation method based on MC simulation for augmenting missile-borne LiDAR point cloud data is proposed,underpinned by an analysis of combined errors between different modal sensors,achieving high-quality augmentation of point cloud data.The effectiveness of the proposed method in addressing imaging system errors and distortion simulation is validated using the imaging scene dataset constructed in this paper.Comparative experiments between the proposed point cloud DA algorithm and the current state-of-the-art algorithms in point cloud detection and single object tracking tasks demonstrate that the proposed method can improve the network performance obtained from unaugmented datasets by over 17.3%and 17.9%,surpassing SOTA performance of current point cloud DA algorithms. 展开更多
关键词 data augmentation LIDAR missile-borne imaging Monte Carlo simulation point cloud
在线阅读 下载PDF
Landslide data mosaicking based on an airborne laser point cloud and multi-beam sonar images 被引量:1
4
作者 JI Hao-wei LUO Xian-qi ZHOU Yong-jun 《Journal of Mountain Science》 SCIE CSCD 2020年第9期2068-2080,共13页
Landslides are one of the most disastrous geological hazards in southwestern China.Once a landslide becomes unstable,it threatens the lives and safety of local residents.However,empirical studies on landslides have pr... Landslides are one of the most disastrous geological hazards in southwestern China.Once a landslide becomes unstable,it threatens the lives and safety of local residents.However,empirical studies on landslides have predominantly focused on landslides that occur on land.To this end,we aim to investigate ashore and underwater landslide data synchronously.This study proposes an optimized mosaicking method for ashore and underwater landslide data.This method fuses an airborne laser point cloud with multi-beam depth sounder images.Owing to their relatively high efficiency and large coverage area,airborne laser measurement systems are suitable for emergency investigations of landslides.Based on the airborne laser point cloud,the traversal of the point with the lowest elevation value in the point set can be used to perform rapid extraction of the crude channel boundaries.Further meticulous extraction of the channel boundaries is then implemented using the probability mean value optimization method.In addition,synthesis of the integrated ashore and underwater landslide data angle is realized using the spatial guide line between the channel boundaries and the underwater multibeam sonar images.A landslide located on the right bank of the middle reaches of the Yalong River is selected as a case study to demonstrate that the proposed method has higher precision thantraditional methods.The experimental results show that the mosaicking method in this study can meet the basic needs of landslide modeling and provide a basis for qualitative and quantitative analysis and stability prediction of landslides. 展开更多
关键词 Laser point cloud Airborne laser measurement Mosaicking method multi-beam sonar images SHIPBORNE Channel boundaries
原文传递
基于Pointnet++的花生植株三维模型器官分割研究
5
作者 孟兆凡 程曼 +1 位作者 袁洪波 赵欢 《中国农机化学报》 北大核心 2026年第1期118-127,共10页
基于点云进行三维重构并进行器官分割对植物学研究至关重要,为研究花生植株茎叶器官分割训练样本的数量和类型对分割结果的影响规律,基于Pointnet++构建花生植株三维模型茎叶分割网络模型,并对比分析训练集类型以及数量对分割效果的影... 基于点云进行三维重构并进行器官分割对植物学研究至关重要,为研究花生植株茎叶器官分割训练样本的数量和类型对分割结果的影响规律,基于Pointnet++构建花生植株三维模型茎叶分割网络模型,并对比分析训练集类型以及数量对分割效果的影响。当训练集为10株花生幼苗期数据时,模型分割效果最好,准确率、类平均准确率、类平均交并比、F1分数分别为94.5%、81.9%、76.9%、85.7%。其中,在花生荚果期训练集中加入20株开花期数据,类平均准确率、类平均交并比分别上升19.55%、20.75%。试验结果表明,Pointnet++可以有效分割花生植株茎叶器官,训练集的多样性和数据量的增加有利于模型学习花生植株不同生长阶段的形态特征,在训练集中加入相近生长阶段和生长特征的模型数据,并增加数据量对模型分割效果提高更明显。 展开更多
关键词 花生植株 三维建模 点云 器官分割 训练集
在线阅读 下载PDF
Research on Airborne Point Cloud Data Registration Using Urban Buildings as an Example
6
作者 Yajun Fan Yujun Shi +1 位作者 Chengjie Su Kai Wang 《Journal of World Architecture》 2025年第4期35-42,共8页
Airborne LiDAR(Light Detection and Ranging)is an evolving high-tech active remote sensing technology that has the capability to acquire large-area topographic data and can quickly generate DEM(Digital Elevation Model)... Airborne LiDAR(Light Detection and Ranging)is an evolving high-tech active remote sensing technology that has the capability to acquire large-area topographic data and can quickly generate DEM(Digital Elevation Model)products.Combined with image data,this technology can further enrich and extract spatial geographic information.However,practically,due to the limited operating range of airborne LiDAR and the large area of task,it would be necessary to perform registration and stitching process on point clouds of adjacent flight strips.By eliminating grow errors,the systematic errors in the data need to be effectively reduced.Thus,this paper conducts research on point cloud registration methods in urban building areas,aiming to improve the accuracy and processing efficiency of airborne LiDAR data.Meanwhile,an improved post-ICP(Iterative Closest Point)point cloud registration method was proposed in this study to determine the accurate registration and efficient stitching of point clouds,which capable to provide a potential technical support for applicants in related field. 展开更多
关键词 Airborne LiDAR point cloud registration point cloud data processing Systematic error
在线阅读 下载PDF
Point-MASNet:Masked Autoencoder-Based Sampling Network for 3D Point Cloud
7
作者 Xu Wang Yi Jin +3 位作者 Hui Yu Yigang Cen Tao Wang Yidong Li 《IEEE/CAA Journal of Automatica Sinica》 2025年第11期2300-2313,共14页
Task-oriented point cloud sampling aims to select a representative subset from the input,tailored to specific application scenarios and task requirements.However,existing approaches rarely tackle the problem of redund... Task-oriented point cloud sampling aims to select a representative subset from the input,tailored to specific application scenarios and task requirements.However,existing approaches rarely tackle the problem of redundancy caused by local structural similarities in 3D objects,which limits the performance of sampling.To address this issue,this paper introduces a novel task-oriented point cloud masked autoencoder-based sampling network(Point-MASNet),inspired by the masked autoencoder mechanism.Point-MASNet employs a voxel-based random non-overlapping masking strategy,which allows the model to selectively learn and capture distinctive local structural features from the input data.This approach effectively mitigates redundancy and enhances the representativeness of the sampled subset.In addition,we propose a lightweight,symmetrically structured keypoint reconstruction network,designed as an autoencoder.This network is optimized to efficiently extract latent features while enabling refined reconstructions.Extensive experiments demonstrate that Point-MASNet achieves competitive sampling performance across classification,registration,and reconstruction tasks. 展开更多
关键词 Autoencoder deep learning efficiency-enhanced point cloud task-oriented sampling
在线阅读 下载PDF
Perceptual point cloud quality assessment for immersive metaverse experience
8
作者 Baoping Cheng Lei Luo +2 位作者 Ziyang He Ce Zhu Xiaoming Tao 《Digital Communications and Networks》 2025年第3期806-817,共12页
Perceptual quality assessment for point cloud is critical for immersive metaverse experience and is a challenging task.Firstly,because point cloud is formed by unstructured 3D points that makes the topology more compl... Perceptual quality assessment for point cloud is critical for immersive metaverse experience and is a challenging task.Firstly,because point cloud is formed by unstructured 3D points that makes the topology more complex.Secondly,the quality impairment generally involves both geometric attributes and color properties,where the measurement of the geometric distortion becomes more complex.We propose a perceptual point cloud quality assessment model that follows the perceptual features of Human Visual System(HVS)and the intrinsic characteristics of the point cloud.The point cloud is first pre-processed to extract the geometric skeleton keypoints with graph filtering-based re-sampling,and local neighboring regions around the geometric skeleton keypoints are constructed by K-Nearest Neighbors(KNN)clustering.For geometric distortion,the Point Feature Histogram(PFH)is extracted as the feature descriptor,and the Earth Mover’s Distance(EMD)between the PFHs of the corresponding local neighboring regions in the reference and the distorted point clouds is calculated as the geometric quality measurement.For color distortion,the statistical moments between the corresponding local neighboring regions are computed as the color quality measurement.Finally,the global perceptual quality assessment model is obtained as the linear weighting aggregation of the geometric and color quality measurement.The experimental results on extensive datasets show that the proposed method achieves the leading performance as compared to the state-of-the-art methods with less computing time.Meanwhile,the experimental results also demonstrate the robustness of the proposed method across various distortion types.The source codes are available at https://github.com/llsurreal919/Point Cloud Quality Assessment. 展开更多
关键词 Metaverse point cloud Quality assessment point feature histogram Earth mover’s distance
在线阅读 下载PDF
Identification and automatic recognition of discontinuities from 3D point clouds of rock mass exposure
9
作者 Peitao Wang Boran Huang +1 位作者 Yijun Gao Meifeng Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4982-5000,共19页
Mapping and analyzing rock mass discontinuities based on 3D(three-dimensional)point cloud(3DPC)is one of the most important work in the engineering geomechanical survey.To efficiently analyze the distribution of disco... Mapping and analyzing rock mass discontinuities based on 3D(three-dimensional)point cloud(3DPC)is one of the most important work in the engineering geomechanical survey.To efficiently analyze the distribution of discontinuities,a self-developed code termed as the cloud-group-cluster(CGC)method based on MATLAB for mapping and detecting discontinuities based on the 3DPC was introduced.The identification and optimization of discontinuity groups were performed using three key parameters,i.e.K,θ,and f.A sensitivity analysis approach for identifying the optimal key parameters was introduced.The results show that the comprehensive analysis of the main discontinuity groups,mean orientations,and densities could be achieved automatically.The accuracy of the CGC method was validated using tetrahedral and hexahedral models.The 3D point cloud data were divided into three levels(point cloud,group,and cluster)for analysis,and this three-level distribution recognition was applied to natural rock surfaces.The densities and spacing information of the principal discontinuities were automatically detected using the CGC method.Five engineering case studies were conducted to validate the CGC method,showing the applicability in detecting rock discontinuities based on 3DPC model. 展开更多
关键词 Rock mass point cloud Rock discontinuities Semi-automatic detection
在线阅读 下载PDF
Point-PC:Point cloud completion guided by prior knowledge via causal inference
10
作者 Xuesong Gao Chuanqi Jiao +2 位作者 Ruidong Chen Weijie Wang Weizhi Nie 《CAAI Transactions on Intelligence Technology》 2025年第4期1007-1018,共12页
The goal of point cloud completion is to reconstruct raw scanned point clouds acquired from incomplete observations due to occlusion and restricted viewpoints.Numerous methods use a partial-to-complete framework,direc... The goal of point cloud completion is to reconstruct raw scanned point clouds acquired from incomplete observations due to occlusion and restricted viewpoints.Numerous methods use a partial-to-complete framework,directly predicting missing components via global characteristics extracted from incomplete inputs.However,this makes detail re-covery challenging,as global characteristics fail to provide complete missing component specifics.A new point cloud completion method named Point-PC is proposed.A memory network and a causal inference model are separately designed to introduce shape priors and select absent shape information as supplementary geometric factors for aiding completion.Concretely,a memory mechanism is proposed to store complete shape features and their associated shapes in a key-value format.The authors design a pre-training strategy that uses contrastive learning to map incomplete shape features into the complete shape feature domain,enabling retrieval of analogous shapes from incomplete inputs.In addition,the authors employ backdoor adjustment to eliminate confounders,which are shape prior components sharing identical semantic structures with incomplete inputs.Experiments conducted on three datasets show that our method achieves superior performance compared to state-of-the-art approaches.The code for Point-PC can be accessed by https://github.com/bizbard/Point-PC.git. 展开更多
关键词 causal inference contrastive alignment memory network point cloud completion
在线阅读 下载PDF
Research on Reverse Modeling of Parametric CAD Models from Multi-View RGB-D Point Clouds
11
作者 Yangzhi Zhang 《Journal of Electronic Research and Application》 2025年第6期313-320,共8页
Existing reverse-engineering methods struggle to directly generate editable,parametric CAD models from scanned data.To address this limitation,this paper proposes a reverse-modeling approach that reconstructs parametr... Existing reverse-engineering methods struggle to directly generate editable,parametric CAD models from scanned data.To address this limitation,this paper proposes a reverse-modeling approach that reconstructs parametric CAD models from multi-view RGB-D point clouds.Multi-frame point-cloud registration and fusion are first employed to obtain a complete 3-D point cloud of the target object.A region-growing algorithm that jointly exploits color and geometric information segments the cloud,while RANSAC robustly detects and fits basic geometric primitives.These primitives serve as nodes in a graph whose edge features are inferred by a graph neural network to capture spatial constraints.From the detected primitives and their constraints,a high-accuracy,fully editable parametric CAD model is finally exported.Experiments show an average parameter error of 0.3 mm for key dimensions and an overall geometric reconstruction accuracy of 0.35 mm.The work offers an effective technical route toward automated,intelligent 3-D reverse modeling. 展开更多
关键词 CAD model RGB-D point cloud Reverse modeling Geometric information Region-growing algorithm
在线阅读 下载PDF
Understanding Local Conformation in Cyclic and Linear Polymers Using Molecular Dynamics and Point Cloud Neural Network
12
作者 Wan-Chen Zhao Hai-Yang Huo +1 位作者 Zhong-Yuan Lu Zhao-Yan Sun 《Chinese Journal of Polymer Science》 2025年第5期695-710,共16页
Understanding the conformational characteristics of polymers is key to elucidating their physical properties.Cyclic polymers,defined by their closed-loop structures,inherently differ from linear polymers possessing di... Understanding the conformational characteristics of polymers is key to elucidating their physical properties.Cyclic polymers,defined by their closed-loop structures,inherently differ from linear polymers possessing distinct chain ends.Despite these structural differences,both types of polymers exhibit locally random-walk-like conformations,making it challenging to detect subtle spatial variations using conventional methods.In this study,we address this challenge by integrating molecular dynamics simulations with point cloud neural networks to analyze the spatial conformations of cyclic and linear polymers.By utilizing the Dynamic Graph CNN(DGCNN)model,we classify polymer conformations based on the 3D coordinates of monomers,capturing local and global topological differences without considering chain connectivity sequentiality.Our findings reveal that the optimal local structural feature unit size scales linearly with molecular weight,aligning with theoretical predictions.Additionally,interpretability techniques such as Grad-CAM and SHAP identify significant conformational differences:cyclic polymers tend to form prolate ellipsoid shapes with pronounced elongation along the major axis,while linear polymers show elongated ends with more spherical centers.These findings reveal subtle yet critical differences in local conformations between cyclic and linear polymers that were previously difficult to discern,providing deeper insights into polymer structure-property relationships and offering guidance for future polymer science advancements. 展开更多
关键词 Molecular dynamics simulation point cloud Interpretable deep learning Conformational recognition
原文传递
A Category-Agnostic Hybrid Contrastive Learning Method for Few-Shot Point Cloud Object Detection
13
作者 Xuejing Li 《Computers, Materials & Continua》 2025年第5期1667-1681,共15页
Few-shot point cloud 3D object detection(FS3D)aims to identify and locate objects of novel classes within point clouds using knowledge acquired from annotated base classes and a minimal number of samples from the nove... Few-shot point cloud 3D object detection(FS3D)aims to identify and locate objects of novel classes within point clouds using knowledge acquired from annotated base classes and a minimal number of samples from the novel classes.Due to imbalanced training data,existing FS3D methods based on fully supervised learning can lead to overfitting toward base classes,which impairs the network’s ability to generalize knowledge learned from base classes to novel classes and also prevents the network from extracting distinctive foreground and background representations for novel class objects.To address these issues,this thesis proposes a category-agnostic contrastive learning approach,enhancing the generalization and identification abilities for almost unseen categories through the construction of pseudo-labels and positive-negative sample pairs unrelated to specific classes.Firstly,this thesis designs a proposal-wise context contrastive module(CCM).By reducing the distance between foreground point features and increasing the distance between foreground and background point features within a region proposal,CCM aids the network in extracting more discriminative foreground and background feature representations without reliance on categorical annotations.Secondly,this thesis utilizes a geometric contrastive module(GCM),which enhances the network’s geometric perception capability by employing contrastive learning on the foreground point features associated with various basic geometric components,such as edges,corners,and surfaces,thereby enabling these geometric components to exhibit more distinguishable representations.This thesis also combines category-aware contrastive learning with former modules to maintain categorical distinctiveness.Extensive experimental results on FS-SUNRGBD and FS-ScanNet datasets demonstrate the effectiveness of this method with average precision exceeding the baseline by up to 8%. 展开更多
关键词 Contrastive learning few-shot learning point cloud object detection
在线阅读 下载PDF
A human-machine interaction method for rock discontinuities mapping by three-dimensional point clouds with noises
14
作者 Qian Chen Yunfeng Ge +3 位作者 Changdong Li Huiming Tang Geng Liu Weixiang Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1646-1663,共18页
Rock discontinuities control rock mechanical behaviors and significantly influence the stability of rock masses.However,existing discontinuity mapping algorithms are susceptible to noise,and the calculation results ca... Rock discontinuities control rock mechanical behaviors and significantly influence the stability of rock masses.However,existing discontinuity mapping algorithms are susceptible to noise,and the calculation results cannot be fed back to users timely.To address this issue,we proposed a human-machine interaction(HMI)method for discontinuity mapping.Users can help the algorithm identify the noise and make real-time result judgments and parameter adjustments.For this,a regular cube was selected to illustrate the workflows:(1)point cloud was acquired using remote sensing;(2)the HMI method was employed to select reference points and angle thresholds to detect group discontinuity;(3)individual discontinuities were extracted from the group discontinuity using a density-based cluster algorithm;and(4)the orientation of each discontinuity was measured based on a plane fitting algorithm.The method was applied to a well-studied highway road cut and a complex natural slope.The consistency of the computational results with field measurements demonstrates its good accuracy,and the average error in the dip direction and dip angle for both cases was less than 3.Finally,the computational time of the proposed method was compared with two other popular algorithms,and the reduction in computational time by tens of times proves its high computational efficiency.This method provides geologists and geological engineers with a new idea to map rapidly and accurately rock structures under large amounts of noises or unclear features. 展开更多
关键词 Rock discontinuities Three-dimensional(3D)point clouds Discontinuity identification Orientation measurement Human-machine interaction
在线阅读 下载PDF
Explainable artificial intelligence for rock discontinuity detection from point cloud with ensemble methods
15
作者 Mehmet Akif Günen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第12期7590-7611,共22页
This study presents a framework for the semi-automatic detection of rock discontinuities using a threedimensional(3D)point cloud(PC).The process begins by selecting an appropriate neighborhood size,a critical step for... This study presents a framework for the semi-automatic detection of rock discontinuities using a threedimensional(3D)point cloud(PC).The process begins by selecting an appropriate neighborhood size,a critical step for feature extraction from the PC.The effects of different neighborhood sizes(k=5,10,20,50,and 100)have been evaluated to assess their impact on classification performance.After that,17 geometric and spatial features were extracted from the PC.Next,ensemble methods,AdaBoost.M2,random forest,and decision tree,have been compared with Artificial Neural Networks to classify the main discontinuity sets.The McNemar test indicates that the classifiers are statistically significant.The random forest classifier consistently achieves the highest performance with an accuracy exceeding 95%when using a neighborhood size of k=100,while recall,F-score,and Cohen's Kappa also demonstrate high success.SHapley Additive exPlanations(SHAP),an Explainable AI technique,has been used to evaluate feature importance and improve the explainability of black-box machine learning models in the context of rock discontinuity classification.The analysis reveals that features such as normal vectors,verticality,and Z-values have the greatest influence on identifying main discontinuity sets,while linearity,planarity,and eigenvalues contribute less,making the model more transparent and easier to understand.After classification,individual discontinuity sets were detected using a revised DBSCAN from the main discontinuity sets.Finally,the orientation parameters of the plane fitted to each discontinuity were derived from the plane parameters obtained using the Random Sample Consensus(RANSAC).Two real-world datasets(obtained from SfM and LiDAR)and one synthetic dataset were used to validate the proposed method,which successfully identified rock discontinuities and their orientation parameters(dip angle/direction). 展开更多
关键词 point cloud(PC) Rock discontinuity Explainable AI techniques Machine learning Dip/dip direction
在线阅读 下载PDF
Automatic identification of discontinuities and refined modeling of rock blocks from 3D point cloud data of rock surfaces
16
作者 Yaopeng Ji Shengyuan Song +5 位作者 Jianping Chen Jingyu Xue Jianhua Yan Yansong Zhang Di Sun Qing Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3093-3106,共14页
The spatial distribution of discontinuities and the size of rock blocks are the key indicators for rock mass quality evaluation and rockfall risk assessment.Traditional manual measurement is often dangerous or unreach... The spatial distribution of discontinuities and the size of rock blocks are the key indicators for rock mass quality evaluation and rockfall risk assessment.Traditional manual measurement is often dangerous or unreachable at some high-steep rock slopes.In contrast,unmanned aerial vehicle(UAV)photogrammetry is not limited by terrain conditions,and can efficiently collect high-precision three-dimensional(3D)point clouds of rock masses through all-round and multiangle photography for rock mass characterization.In this paper,a new method based on a 3D point cloud is proposed for discontinuity identification and refined rock block modeling.The method is based on four steps:(1)Establish a point cloud spatial topology,and calculate the point cloud normal vector and average point spacing based on several machine learning algorithms;(2)Extract discontinuities using the density-based spatial clustering of applications with noise(DBSCAN)algorithm and fit the discontinuity plane by combining principal component analysis(PCA)with the natural breaks(NB)method;(3)Propose a method of inserting points in the line segment to generate an embedded discontinuity point cloud;and(4)Adopt a Poisson reconstruction method for refined rock block modeling.The proposed method was applied to an outcrop of an ultrahigh steep rock slope and compared with the results of previous studies and manual surveys.The results show that the method can eliminate the influence of discontinuity undulations on the orientation measurement and describe the local concave-convex characteristics on the modeling of rock blocks.The calculation results are accurate and reliable,which can meet the practical requirements of engineering. 展开更多
关键词 Three-dimensional(3D)point cloud Rock mass Automatic identification Refined modeling Unmanned aerial vehicle(UAV)
在线阅读 下载PDF
Rock discontinuity extraction from 3D point clouds using pointwise clustering algorithm
17
作者 Xiaoyu Yi Wenxuan Wu +2 位作者 Wenkai Feng Yongjian Zhou Jiachen Zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4429-4444,共16页
Recognizing discontinuities within rock masses is a critical aspect of rock engineering.The development of remote sensing technologies has significantly enhanced the quality and quantity of the point clouds collected ... Recognizing discontinuities within rock masses is a critical aspect of rock engineering.The development of remote sensing technologies has significantly enhanced the quality and quantity of the point clouds collected from rock outcrops.In response,we propose a workflow that balances accuracy and efficiency to extract discontinuities from massive point clouds.The proposed method employs voxel filtering to downsample point clouds,constructs a point cloud topology using K-d trees,utilizes principal component analysis to calculate the point cloud normals,and employs the pointwise clustering(PWC)algorithm to extract discontinuities from rock outcrop point clouds.This method provides information on the location and orientation(dip direction and dip angle)of the discontinuities,and the modified whale optimization algorithm(MWOA)is utilized to identify major discontinuity sets and their average orientations.Performance evaluations based on three real cases demonstrate that the proposed method significantly reduces computational time costs without sacrificing accuracy.In particular,the method yields more reasonable extraction results for discontinuities with certain undulations.The presented approach offers a novel tool for efficiently extracting discontinuities from large-scale point clouds. 展开更多
关键词 Rock mass discontinuity 3D point clouds pointwise clustering(PWC)algorithm Modified whale optimization algorithm(MWOA)
在线阅读 下载PDF
Deep reinforcement learning based communication resource allocation driven by radar point cloud for urban air mobility
18
作者 Leyan CHEN Kai LIU +1 位作者 Qiang GAO Zhibo ZHANG 《Chinese Journal of Aeronautics》 2025年第12期404-414,共11页
In the future smart cities,unmanned aerial vehicles(UAVs)or electric vertical take-off and landing aircraft(e VTOL)are widely employed for urban air mobility(UAM).Considering such real-world scenarios,a deep reinforce... In the future smart cities,unmanned aerial vehicles(UAVs)or electric vertical take-off and landing aircraft(e VTOL)are widely employed for urban air mobility(UAM).Considering such real-world scenarios,a deep reinforcement learning based communication resource allocation method is proposed for UAVs to provide communication services for e VTOL swarms to ensure their reliable communication and safe operation.To save energy consumption,UAVs can ride on a moving interaction station(MIS),such as an urban bus.By using UAV trajectory control and communication power allocation,a joint fair optimization problem is formulated to maximize the channel capacity while optimizing radar sensing performance.To address the optimization problem,a Point Cloud based deep Q-network(PCDQN)algorithm is proposed.It contains a point neural network that can determine the action space of the UAV directly originating from the threedimensional(3D)radar point clouds,and a deep reinforcement learning based decision model for deciding the action from action spaces.Simulation results demonstrate that the proposed method exhibits competitive performance compared to the benchmarks. 展开更多
关键词 Urban air mobility(UAM) Unmanned aerial vehicles(UAVs) Electric vertical takeoff and landing aircraft(eVTOL) Radar point cloud Trajectory control Resource allocation Deep reinforcement learning(DRL)
原文传递
PT-MFR:一种基于Point Transformer的CAD模型加工特征识别方法
19
作者 何皓辰 方正 +2 位作者 卢政达 肖俊 王颖 《中国科学院大学学报(中英文)》 北大核心 2026年第1期115-124,共10页
加工特征识别在计算机辅助设计(CAD)和制造(CAM)中至关重要,是连接CAD和CAM系统的重要环节。研究者们提出了基于规则和基于学习的2类加工特征识别方法,其中基于学习的方法表现更出色且备受关注。然而,现有识别方法面临着几何信息利用不... 加工特征识别在计算机辅助设计(CAD)和制造(CAM)中至关重要,是连接CAD和CAM系统的重要环节。研究者们提出了基于规则和基于学习的2类加工特征识别方法,其中基于学习的方法表现更出色且备受关注。然而,现有识别方法面临着几何信息利用不足、加工特征定位不精准、实例分割过程复杂等挑战。针对这些问题,提出PT-MFR,一种基于Point Transformer的CAD模型加工特征识别方法,它执行语义分割和实例分割2个任务,分别预测模型每个面的加工特征语义类别并计算面相似度以分割加工特征实例,综合2个任务得到加工特征识别结果。实验结果表明,提出的方法性能优于现有的其他方法。 展开更多
关键词 加工特征识别 点云 神经网络 point Transformer
在线阅读 下载PDF
基于SwinPoinTr的视角受限下杏鲍菇表型参数测量方法 被引量:2
20
作者 谢立敏 黄轶 +2 位作者 吴昊宇 叶大鹏 方兵 《农业机械学报》 北大核心 2025年第3期148-157,共10页
针对菇房内杏鲍菇表型参数测量任务中,由于扫描设备视角受限,扫描的杏鲍菇点云出现残缺问题,基于AdaPoinTr(Adaptive geometry-aware point transformers)提出了改进的SwinPoinTr模型,实现了对残缺杏鲍菇点云的准确补全和杏鲍菇表型参... 针对菇房内杏鲍菇表型参数测量任务中,由于扫描设备视角受限,扫描的杏鲍菇点云出现残缺问题,基于AdaPoinTr(Adaptive geometry-aware point transformers)提出了改进的SwinPoinTr模型,实现了对残缺杏鲍菇点云的准确补全和杏鲍菇表型参数的测量。该方法在使用提出的特征重塑模块的基础上,构建具有几何感知能力的层次化Transformer编码模块,提高了模型对输入点云的利用率和模型捕捉点云细节特征的能力。然后基于泊松重建方法完成了补全点云表面重建,并测量到杏鲍菇表型参数。实验结果表明,本文所提算法在残缺杏鲍菇点云补全任务中,模型倒角距离为1.316×10^(-4),地球移动距离为21.3282,F1分数为87.87%。在表型参数估测任务中,模型对杏鲍菇菌高、体积、表面积估测结果的决定系数分别为0.9582、0.9596、0.9605,均方根误差分别为4.4213 mm、10.8185 cm^(3)、7.5778 cm^(2)。结果证实了该研究方法可以有效地补全残缺的杏鲍菇点云,可以为菇房内杏鲍菇表型参数测量提供基础。 展开更多
关键词 杏鲍菇 智慧菇房 表型参数 点云补全 泊松重建 Swinpointr
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部