Electric vehicles(EVs)are gradually being deployed in the transportation sector.Although they have a high impact on reducing greenhouse gas emissions,their penetration is challenged by their random energy demand and d...Electric vehicles(EVs)are gradually being deployed in the transportation sector.Although they have a high impact on reducing greenhouse gas emissions,their penetration is challenged by their random energy demand and difficult scheduling of their optimal charging.To cope with these problems,this paper presents a novel approach for photovoltaic grid-connected microgrid EV charging station energy demand forecasting.The present study is part of a comprehensive framework involving emerging technologies such as drones and artificial intelligence designed to support the EVs’charging scheduling task.By using predictive algorithms for solar generation and load demand estimation,this approach aimed at ensuring dynamic and efficient energy flow between the solar energy source,the grid and the electric vehicles.The main contribution of this paper lies in developing an intelligent approach based on deep recurrent neural networks to forecast the energy demand using only its previous records.Therefore,various forecasters based on Long Short-term Memory,Gated Recurrent Unit,and their bi-directional and stacked variants were investigated using a real dataset collected from an EV charging station located at Trieste University(Italy).The developed forecasters have been evaluated and compared according to different metrics,including R,RMSE,MAE,and MAPE.We found that the obtained R values for both PV power generation and energy demand ranged between 97%and 98%.These study findings can be used for reliable and efficient decision-making on the management side of the optimal scheduling of the charging operations.展开更多
Aiming at the problem of mobile data traffic surge in 5G networks,this paper proposes an effective solution combining massive multiple-input multiple-output techniques with Ultra-Dense Network(UDN)and focuses on solvi...Aiming at the problem of mobile data traffic surge in 5G networks,this paper proposes an effective solution combining massive multiple-input multiple-output techniques with Ultra-Dense Network(UDN)and focuses on solving the resulting challenge of increased energy consumption.A base station control algorithm based on Multi-Agent Proximity Policy Optimization(MAPPO)is designed.In the constructed 5G UDN model,each base station is considered as an agent,and the MAPPO algorithm enables inter-base station collaboration and interference management to optimize the network performance.To reduce the extra power consumption due to frequent sleep mode switching of base stations,a sleep mode switching decision algorithm is proposed.The algorithm reduces unnecessary power consumption by evaluating the network state similarity and intelligently adjusting the agent’s action strategy.Simulation results show that the proposed algorithm reduces the power consumption by 24.61% compared to the no-sleep strategy and further reduces the power consumption by 5.36% compared to the traditional MAPPO algorithm under the premise of guaranteeing the quality of service of users.展开更多
This paper highlights the crucial role of Indonesia’s GNSS receiver network in advancing Equatorial Plasma Bubble(EPB)studies in Southeast and East Asia,as ionospheric irregularities within EPB can disrupt GNSS signa...This paper highlights the crucial role of Indonesia’s GNSS receiver network in advancing Equatorial Plasma Bubble(EPB)studies in Southeast and East Asia,as ionospheric irregularities within EPB can disrupt GNSS signals and degrade positioning accuracy.Managed by the Indonesian Geospatial Information Agency(BIG),the Indonesia Continuously Operating Reference Station(Ina-CORS)network comprises over 300 GNSS receivers spanning equatorial to southern low-latitude regions.Ina-CORS is uniquely situated to monitor EPB generation,zonal drift,and dissipation across Southeast Asia.We provide a practical tool for EPB research,by sharing two-dimensional rate of Total Electron Content(TEC)change index(ROTI)derived from this network.We generate ROTI maps with a 10-minute resolution,and samples from May 2024 are publicly available for further scientific research.Two preliminary findings from the ROTI maps of Ina-CORS are noteworthy.First,the Ina-CORS ROTI maps reveal that the irregularities within a broader EPB structure persist longer,increasing the potential for these irregularities to migrate farther eastward.Second,we demonstrate that combined ROTI maps from Ina-CORS and GNSS receivers in East Asia and Australia can be used to monitor the development of ionospheric irregularities in Southeast and East Asia.We have demonstrated the combined ROTI maps to capture the development of ionospheric irregularities in the Southeast/East Asian sector during the G5 Geomagnetic Storm on May 11,2024.We observed simultaneous ionospheric irregularities in Japan and Australia,respectively propagating northwestward and southwestward,before midnight,whereas Southeast Asia’s equatorial and low-latitude regions exhibited irregularities post-midnight.By sharing ROTI maps from Indonesia and integrating them with regional GNSS networks,researchers can conduct comprehensive EPB studies,enhancing the understanding of EPB behavior across Southeast and East Asia and contributing significantly to ionospheric research.展开更多
With the rapid development of electric vehicles,the requirements for charging stations are getting higher and higher.In this study,we constructed a charging station topology network inNanjing through the Space-L metho...With the rapid development of electric vehicles,the requirements for charging stations are getting higher and higher.In this study,we constructed a charging station topology network inNanjing through the Space-L method,mapping charging stations as network nodes and constructing edges through road relationships.The experiment introduced five EV charging recommendation strategies(based on distance,number of fast charging piles,user preference,price,and overall rating)used to simulate disordered charging caused by different user preferences,and the impact of the networkdynamic robustness in case of node failure is exploredby simulating the load-capacity cascade failure model.In this paper,two important metrics for evaluating network robustness are selected:the relative size of the maximum connected subgraph and the network efficiency.The experimental results point out that in the price recommendation strategy,the network stability significantly decreases when the node failure ratio reaches 75.4%,while the fast charging quantity recommendation strategy significantly decreases when the node failure ratio is 62.3%.Therefore,the robustness of the charging station network is best under the price recommendation,while the network robustness is poor under the fast charging quantity recommendation.While the network robustness is poor under preference recommendation.Based on this finding,this study particularly emphasizes that in the process of improving the robustness of the charging station network,it is necessary to comprehensively consider the market demand and guide users to charge in an orderly manner by reasonably adjusting the price strategy.This strategy not only effectively prevents network stability problems that may result fromdisorderly charging behavior,but also enhances the ability of the charging network to resist node failure and improves the overall dynamic robustness of the network.展开更多
Electric Vehicles(EVs)have emerged as a cleaner,low-carbon,and environmentally friendly alternative to traditional internal combustion engine(ICE)vehicles.With the increasing adoption of EVs,they are expected to event...Electric Vehicles(EVs)have emerged as a cleaner,low-carbon,and environmentally friendly alternative to traditional internal combustion engine(ICE)vehicles.With the increasing adoption of EVs,they are expected to eventually replace ICE vehicles entirely.However,the rapid growth of EVs has significantly increased energy demand,posing challenges for power grids and infrastructure.This surge in energy demand has driven advancements in developing efficient charging infrastructure and energy management solutions to mitigate the risks of power outages and disruptions caused by the rising number of EVs on the road.To address these challenges,various deep learning(DL)models,such as Recurrent Neural Networks(RNNs)and Long Short-Term Memory(LSTM)networks,have been employed for predicting energy demand at EV charging stations(EVCS).However,these models face certain limitations.They often lack interpretability,treating all input steps equally without assigning greater importance to critical patterns that are more relevant for prediction.Additionally,these models process data sequentially,which makes them computationally slower and less efficient when dealing with large datasets.In the context of these limitations,this paper introduces a novel Attention-Augmented Long Short-Term Memory(AA-LSTM)model.The proposed model integrates an attention mechanism to focus on the most relevant time steps,thereby enhancing its ability to capture long-term dependencies and improve prediction accuracy.By combining the strengths of LSTM networks in handling sequential data with the interpretability and efficiency of the attention mechanism,the AA-LSTM model delivers superior performance.The attention mechanism selectively prioritizes critical parts of the input sequence,reducing the computational burden and making the model faster and more effective.The AA-LSTM model achieves impressive results,demonstrating a Mean Absolute Percentage Error(MAPE)of 3.90%and a Mean Squared Error(MSE)of 0.40,highlighting its accuracy and reliability.These results suggest that the AA-LSTM model is a highly promising solution for predicting energy demand at EVCS,offering improved performance and efficiency compared to contemporary approaches.展开更多
This study proposes a method for analyzing the security distance of an Active Distribution Network(ADN)by incorporating the demand response of an Energy Hub(EH).Taking into account the impact of stochastic wind-solar ...This study proposes a method for analyzing the security distance of an Active Distribution Network(ADN)by incorporating the demand response of an Energy Hub(EH).Taking into account the impact of stochastic wind-solar power and flexible loads on the EH,an interactive power model was developed to represent the EH’s operation under these influences.Additionally,an ADN security distance model,integrating an EH with flexible loads,was constructed to evaluate the effect of flexible load variations on the ADN’s security distance.By considering scenarios such as air conditioning(AC)load reduction and base station(BS)load transfer,the security distances of phases A,B,and C increased by 17.1%,17.2%,and 17.7%,respectively.Furthermore,a multi-objective optimal power flow model was formulated and solved using the Forward-Backward Power Flow Algorithm,the NSGA-II multi-objective optimization algo-rithm,and the maximum satisfaction method.The simulation results of the IEEE33 node system example demonstrate that after opti-mization,the total energy cost for one day is reduced by 0.026%,and the total security distance limit of the ADN’s three phases is improved by 0.1 MVA.This method effectively enhances the security distance,facilitates BS load transfer and AC load reduction,and contributes to the energy-saving,economical,and safe operation of the power system.展开更多
The optimization of network performance in a movement-assisted data gathering scheme was studied by analyzing the energy consumption of wireless sensor network with node uniform distribution. A theoretically analytica...The optimization of network performance in a movement-assisted data gathering scheme was studied by analyzing the energy consumption of wireless sensor network with node uniform distribution. A theoretically analytical method for avoiding energy hole was proposed. It is proved that if the densities of sensor nodes working at the same time are alternate between dormancy and work with non-uniform node distribution. The efficiency of network can increase by several times and the residual energy of network is nearly zero when the network lifetime ends.展开更多
Current urban rail transit has become a major mode of transportation, and passenger is an important factor of urban rail transport, so this article is based on passenger and the degree of the road network structure, c...Current urban rail transit has become a major mode of transportation, and passenger is an important factor of urban rail transport, so this article is based on passenger and the degree of the road network structure, calculating the point intensity of stations of urban rail transit, and then reaching a station importance by integrating many point intensities in a survey cycle time, and getting the station importance of urban rail transit network through concrete examples.展开更多
The construction of charging service facilities is a very important factor in the popularization of electric vehicles. Therefore, the planning problems of electric vehicle charging station are urgent to be solved. Con...The construction of charging service facilities is a very important factor in the popularization of electric vehicles. Therefore, the planning problems of electric vehicle charging station are urgent to be solved. Considering the standard of natural environment, society, traffic, power grid and economy, an evaluation system is created for electric vehicle charging station project through 15 sub-standards. Planning model of charging station is constructed based on BP neural network adopted in the analysis. It is used for location and capacity prediction of charging station planning. By analyzing the model with data samples, a stable network structure is established and the feasibility of the model is verified in the charging station planning.展开更多
A dense heterogeneous cellular network can effectively increase the system capacity and enhance the network coverage.It is a key technology for the new generation of the mobile communication system.The dense deploymen...A dense heterogeneous cellular network can effectively increase the system capacity and enhance the network coverage.It is a key technology for the new generation of the mobile communication system.The dense deployment of small base stations not only improves the quality of network service,but also brings about a significant increase in network energy consumption.This paper mainly studies the energy efficiency optimization of the Macro-Femto heterogeneous cellular network.Considering the dynamic random changes of the access users in the network,the sleep process of the Femto Base Stations(FBSs)is modeled as a Semi-Markov Decision Process(SMDP)model in order to save the network energy consumption.And further,this paper gives the dynamic sleep algorithm of the FBS based on the value iteration.The simulation results show that the proposed SMDP-based adaptive sleep strategy of the FBS can effectively reduce the network energy consumption.展开更多
There are fundamentally two different communication media in wireless underground sensor networks. The first of these is a solid medium where the sensor nodes are buried underground and wirelessly transmit data from u...There are fundamentally two different communication media in wireless underground sensor networks. The first of these is a solid medium where the sensor nodes are buried underground and wirelessly transmit data from underground to aboveground. The second is an underground medium such as tunnel, cave etc. and the data is transmitted from underground to the aboveground through partially solid medium. The quality of communication is greatly influenced by the humidity of the soil in both environments. The placement of wireless underground sensor nodes at hard-to-reach locations makes energy efficient work compulsory. In this paper, rule based collector station selection scheme is proposed for lossless data transmission in underground sensor networks. In order for sensor nodes to transmit energy-efficient lossless data, rulebased selection operations are carried out with the help of fuzzy logic. The proposed wireless underground sensor network is simulated using Riverbed software, and fuzzy logic-based selection scheme is implemented utilizing Matlab software. In order to evaluate the performance of the sensor network;the parameters of delay, throughput and energy consumption are investigated. Examining performance evaluation results, it is seen that average delay and maximum throughput are accomplished in the proposed underground sensor network. Under these conditions, it has been shown that the most appropriate collector station selection decision is made with the aim of minimizing energy consumption.展开更多
In this study,we introduce our newly developed measurement-fed-perception self-adaption Low-cost UAV Coordinated Carbon Observation Network(LUCCN)prototype.The LUCCN primarily consists of two categories of instruments...In this study,we introduce our newly developed measurement-fed-perception self-adaption Low-cost UAV Coordinated Carbon Observation Network(LUCCN)prototype.The LUCCN primarily consists of two categories of instruments,including ground-based and UAV-based in-situ measurement.We use the GMP343,a low-cost non-dispersive infrared sensor,in both ground-based and UAV-based instruments.The first integrated measurement campaign took place in Shenzhen,China,4 May 2023.During the campaign,we found that LUCCN’s UAV component presented significant data-collecting advantages over its ground-based counterpart owing to the relatively high altitudes of the point emission sources,which was especially obvious at a gas power plant in Shenzhen.The emission flux was calculated by a crosssectional flux(CSF)method,the results of which differed from the Open-Data Inventory for Anthropogenic Carbon dioxide(ODIAC).The CSF result was slightly larger than others because of the low sampling rate of the whole emission cross section.The LUCCN system will be applied in future carbon monitoring campaigns to increase the spatiotemporal coverage of carbon emission information,especially in scenarios involving the detection of smaller-scale,rapidly varying sources and sinks.展开更多
Network RTK (Real-Time Kinematic) is a technology that is based on GPS (Global Positioning System) or more gener-ally on GNSS (Global Navigation Satellite System) measurements to achieve centimeter-level accuracy posi...Network RTK (Real-Time Kinematic) is a technology that is based on GPS (Global Positioning System) or more gener-ally on GNSS (Global Navigation Satellite System) measurements to achieve centimeter-level accuracy positioning in real-time. Reference station placement is an important problem in the design and deployment of network RTK systems as it directly affects the quality of the positioning service and the cost of the network RTK systems. This paper identifies a new reference station placement for network RTK, namely QoS-aware regional network RTK reference station placement problem, and proposes an algorithm for the new reference station placement problem. The algorithm can always produce a reference station placement solution that completely covers the region of network RTK.展开更多
This paper is concerned with the design of expressway toll station problem based on neural network and traffic flow. Firstly, the design of the toll plaza is mainly through analyzing the daily traffic flow, different ...This paper is concerned with the design of expressway toll station problem based on neural network and traffic flow. Firstly, the design of the toll plaza is mainly through analyzing the daily traffic flow, different charging mode of construction cost and waiting time of the United States. Secondly, exploring traffic conditions is divided into two kinds, based on the traffic flow speed-density flow model. Then, a fuzzy-BP neural network model is constructed, with capacity, cost, and safety factor as the input layers and performance as the output layer. It is concluded that this scheme will reduce the occurrence of traffic accidents, so it is desirable. Considering that the increase in unmanned vehicles will lead to an increase in safety performance, we increase the number of electronic toll stations to improve security performance and reduce the occurrence of traffic accidents.展开更多
The factual data on error of positioning in VRS GPS networks have been analyzed, where the mobile receiver is provided with VRS. The method of highly informative zone is suggested for removal of initial vagueness in s...The factual data on error of positioning in VRS GPS networks have been analyzed, where the mobile receiver is provided with VRS. The method of highly informative zone is suggested for removal of initial vagueness in selection of reference stations for purposes of development of VRS on the basis of minimum GPS network, composed of three reference stations. The recommendations on use of suggested method are given.展开更多
This paper select the escalator with large flow in the station as the object, analysing the correlation of the AFC data of the in and out gates and the passenger flow parameters by passenger flow density and the passi...This paper select the escalator with large flow in the station as the object, analysing the correlation of the AFC data of the in and out gates and the passenger flow parameters by passenger flow density and the passing time acquired and calculated in the waiting area of the prediction escalator to select the gates related to the predicted the escalator. NARX neural network is used to predict the model of the passenger flow parameters of the escalator waiting area based on the related gates' AFC data, then a probabilistic neural network model was established by using the AFC data and predicted passenger flow parameters as input and the passenger flow status in the escalator waiting area of subway station as output.The result shows the predicting model can predict the passenger flow status of the escalator waiting area better by the AFC data in the subway station. Research result can provide decision basis for the operation management of the subway station.展开更多
This article presents an analysis of wireless personal area networks with low transmission rate, utilized more and more often in industrial or alarm systems, as well as in sensor networks. The structure of these syste...This article presents an analysis of wireless personal area networks with low transmission rate, utilized more and more often in industrial or alarm systems, as well as in sensor networks. The structure of these systems and available ways of transmission are defined by the IEEE 802.15.4 standard. The main characteristics of this standard are given in the first part of this article. The second part contains the description of simulation tests that have been realized. Their results make available an evaluation of the effective transmission rate of a transmission channel, the resistance to the phenomenon of hidden station as well as sensibility to the problem of the exposed station.展开更多
Seasonal rainfall plays a vital role in both environmental dynamics and decision-making for rainfed agriculture in Ethiopia, a country often impacted by extreme climate events such as drought and flooding. Predicting ...Seasonal rainfall plays a vital role in both environmental dynamics and decision-making for rainfed agriculture in Ethiopia, a country often impacted by extreme climate events such as drought and flooding. Predicting the onset of the rainy season and providing localized rainfall forecasts for Ethiopia is challenging due to the changing spatiotemporal patterns and the country's rugged topography. The Climate Hazards Group Infra Red Precipitation with Station Data(CHIRPS), ERA5-Land total precipitation and temperature data are used from 1981–2022 to predict spatial rainfall by applying an artificial neural network(ANN). The recurrent neural network(RNN) is a nonlinear autoregressive network with exogenous input(NARX), which includes feed-forward connections and multiple network layers, employing the Levenberg Marquart algorithm. This method is applied to downscale data from the European Centre for Medium-range Weather Forecasts fifth-generation seasonal forecast system(ECMWF-SEAS5) and the Euro-Mediterranean Centre for Climate Change(CMCC) to the specific locations of rainfall stations in Ethiopia for the period 1980–2020. Across the stations, the results of NARX exhibit strong associations and reduced errors. The statistical results indicate that, except for the southwestern Ethiopian highlands, the downscaled monthly precipitation data exhibits high skill scores compared to the station records, demonstrating the effectiveness of the NARX approach for predicting local seasonal rainfall in Ethiopia's complex terrain. In addition to this spatial ANN of the summer season precipitation, temperature, as well as the combination of these two variables, show promising results.展开更多
"Network MIMO" is implemented to eliminate intercell interference and improve spectral efficiency.Several system models are introduced here and synchronous and asynchronous interference are considered.This p..."Network MIMO" is implemented to eliminate intercell interference and improve spectral efficiency.Several system models are introduced here and synchronous and asynchronous interference are considered.This paper also has a look on the algorithms on the uplink decoding and downlink precoding in network MIMO with base station coordination.Two levels of base station coordination and cellular backhaul are presented,too.展开更多
基金University of Jeddah,Jeddah,Saudi Arabia,grant No.(UJ-23-SRP-10).
文摘Electric vehicles(EVs)are gradually being deployed in the transportation sector.Although they have a high impact on reducing greenhouse gas emissions,their penetration is challenged by their random energy demand and difficult scheduling of their optimal charging.To cope with these problems,this paper presents a novel approach for photovoltaic grid-connected microgrid EV charging station energy demand forecasting.The present study is part of a comprehensive framework involving emerging technologies such as drones and artificial intelligence designed to support the EVs’charging scheduling task.By using predictive algorithms for solar generation and load demand estimation,this approach aimed at ensuring dynamic and efficient energy flow between the solar energy source,the grid and the electric vehicles.The main contribution of this paper lies in developing an intelligent approach based on deep recurrent neural networks to forecast the energy demand using only its previous records.Therefore,various forecasters based on Long Short-term Memory,Gated Recurrent Unit,and their bi-directional and stacked variants were investigated using a real dataset collected from an EV charging station located at Trieste University(Italy).The developed forecasters have been evaluated and compared according to different metrics,including R,RMSE,MAE,and MAPE.We found that the obtained R values for both PV power generation and energy demand ranged between 97%and 98%.These study findings can be used for reliable and efficient decision-making on the management side of the optimal scheduling of the charging operations.
基金supported by National Natural Science Foundation of China(62271096,U20A20157)Natural Science Foundation of Chongqing,China(CSTB2023NSCQ-LZX0134)+3 种基金University Innovation Research Group of Chongqing(CXQT20017)Youth Innovation Group Support Program of ICE Discipline of CQUPT(SCIE-QN-2022-04)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300632)the Chongqing Postdoctoral Special Funding Project(2022CQBSHTB2057).
文摘Aiming at the problem of mobile data traffic surge in 5G networks,this paper proposes an effective solution combining massive multiple-input multiple-output techniques with Ultra-Dense Network(UDN)and focuses on solving the resulting challenge of increased energy consumption.A base station control algorithm based on Multi-Agent Proximity Policy Optimization(MAPPO)is designed.In the constructed 5G UDN model,each base station is considered as an agent,and the MAPPO algorithm enables inter-base station collaboration and interference management to optimize the network performance.To reduce the extra power consumption due to frequent sleep mode switching of base stations,a sleep mode switching decision algorithm is proposed.The algorithm reduces unnecessary power consumption by evaluating the network state similarity and intelligently adjusting the agent’s action strategy.Simulation results show that the proposed algorithm reduces the power consumption by 24.61% compared to the no-sleep strategy and further reduces the power consumption by 5.36% compared to the traditional MAPPO algorithm under the premise of guaranteeing the quality of service of users.
基金JSPS KAKENHI Grant Number16H06286 supports global GNSS ionospheric maps (TEC,ROTI,and detrended TEC maps) developed by the Institute for SpaceEarth Environmental Research (ISEE) of Nagoya Universitysupport of the 2024 JASSO Follow-up Research Fellowship Program for a 90-day visiting research at the Institute for Space-Earth Environmental Research (ISEE),Nagoya University+3 种基金the support received from Telkom University under the“Skema Penelitian Terapan Periode I Tahun Anggaran 2024”the Memorandum of Understanding for Research Collaboration on Regional Ionospheric Observation (No:092/SAM3/TE-DEK/2021)the National Institute of Information and Communications Technology (NICT) International Exchange Program 2024-2025(No.2024-007)support for a one-year visiting research at Hokkaido University
文摘This paper highlights the crucial role of Indonesia’s GNSS receiver network in advancing Equatorial Plasma Bubble(EPB)studies in Southeast and East Asia,as ionospheric irregularities within EPB can disrupt GNSS signals and degrade positioning accuracy.Managed by the Indonesian Geospatial Information Agency(BIG),the Indonesia Continuously Operating Reference Station(Ina-CORS)network comprises over 300 GNSS receivers spanning equatorial to southern low-latitude regions.Ina-CORS is uniquely situated to monitor EPB generation,zonal drift,and dissipation across Southeast Asia.We provide a practical tool for EPB research,by sharing two-dimensional rate of Total Electron Content(TEC)change index(ROTI)derived from this network.We generate ROTI maps with a 10-minute resolution,and samples from May 2024 are publicly available for further scientific research.Two preliminary findings from the ROTI maps of Ina-CORS are noteworthy.First,the Ina-CORS ROTI maps reveal that the irregularities within a broader EPB structure persist longer,increasing the potential for these irregularities to migrate farther eastward.Second,we demonstrate that combined ROTI maps from Ina-CORS and GNSS receivers in East Asia and Australia can be used to monitor the development of ionospheric irregularities in Southeast and East Asia.We have demonstrated the combined ROTI maps to capture the development of ionospheric irregularities in the Southeast/East Asian sector during the G5 Geomagnetic Storm on May 11,2024.We observed simultaneous ionospheric irregularities in Japan and Australia,respectively propagating northwestward and southwestward,before midnight,whereas Southeast Asia’s equatorial and low-latitude regions exhibited irregularities post-midnight.By sharing ROTI maps from Indonesia and integrating them with regional GNSS networks,researchers can conduct comprehensive EPB studies,enhancing the understanding of EPB behavior across Southeast and East Asia and contributing significantly to ionospheric research.
基金supported by the Jiangsu Science and Technology Think Tank Program(Youth)Project(JSKX24085)the Jiangsu Provincial College Students Innovation and Entrepreneurship Training Plan Project(202311276097Y).
文摘With the rapid development of electric vehicles,the requirements for charging stations are getting higher and higher.In this study,we constructed a charging station topology network inNanjing through the Space-L method,mapping charging stations as network nodes and constructing edges through road relationships.The experiment introduced five EV charging recommendation strategies(based on distance,number of fast charging piles,user preference,price,and overall rating)used to simulate disordered charging caused by different user preferences,and the impact of the networkdynamic robustness in case of node failure is exploredby simulating the load-capacity cascade failure model.In this paper,two important metrics for evaluating network robustness are selected:the relative size of the maximum connected subgraph and the network efficiency.The experimental results point out that in the price recommendation strategy,the network stability significantly decreases when the node failure ratio reaches 75.4%,while the fast charging quantity recommendation strategy significantly decreases when the node failure ratio is 62.3%.Therefore,the robustness of the charging station network is best under the price recommendation,while the network robustness is poor under the fast charging quantity recommendation.While the network robustness is poor under preference recommendation.Based on this finding,this study particularly emphasizes that in the process of improving the robustness of the charging station network,it is necessary to comprehensively consider the market demand and guide users to charge in an orderly manner by reasonably adjusting the price strategy.This strategy not only effectively prevents network stability problems that may result fromdisorderly charging behavior,but also enhances the ability of the charging network to resist node failure and improves the overall dynamic robustness of the network.
基金supported by the SC&SS,Jawaharlal Nehru University,New Delhi,India.
文摘Electric Vehicles(EVs)have emerged as a cleaner,low-carbon,and environmentally friendly alternative to traditional internal combustion engine(ICE)vehicles.With the increasing adoption of EVs,they are expected to eventually replace ICE vehicles entirely.However,the rapid growth of EVs has significantly increased energy demand,posing challenges for power grids and infrastructure.This surge in energy demand has driven advancements in developing efficient charging infrastructure and energy management solutions to mitigate the risks of power outages and disruptions caused by the rising number of EVs on the road.To address these challenges,various deep learning(DL)models,such as Recurrent Neural Networks(RNNs)and Long Short-Term Memory(LSTM)networks,have been employed for predicting energy demand at EV charging stations(EVCS).However,these models face certain limitations.They often lack interpretability,treating all input steps equally without assigning greater importance to critical patterns that are more relevant for prediction.Additionally,these models process data sequentially,which makes them computationally slower and less efficient when dealing with large datasets.In the context of these limitations,this paper introduces a novel Attention-Augmented Long Short-Term Memory(AA-LSTM)model.The proposed model integrates an attention mechanism to focus on the most relevant time steps,thereby enhancing its ability to capture long-term dependencies and improve prediction accuracy.By combining the strengths of LSTM networks in handling sequential data with the interpretability and efficiency of the attention mechanism,the AA-LSTM model delivers superior performance.The attention mechanism selectively prioritizes critical parts of the input sequence,reducing the computational burden and making the model faster and more effective.The AA-LSTM model achieves impressive results,demonstrating a Mean Absolute Percentage Error(MAPE)of 3.90%and a Mean Squared Error(MSE)of 0.40,highlighting its accuracy and reliability.These results suggest that the AA-LSTM model is a highly promising solution for predicting energy demand at EVCS,offering improved performance and efficiency compared to contemporary approaches.
基金supported in part by the National Nat-ural Science Foundation of China(No.51977012,No.52307080).
文摘This study proposes a method for analyzing the security distance of an Active Distribution Network(ADN)by incorporating the demand response of an Energy Hub(EH).Taking into account the impact of stochastic wind-solar power and flexible loads on the EH,an interactive power model was developed to represent the EH’s operation under these influences.Additionally,an ADN security distance model,integrating an EH with flexible loads,was constructed to evaluate the effect of flexible load variations on the ADN’s security distance.By considering scenarios such as air conditioning(AC)load reduction and base station(BS)load transfer,the security distances of phases A,B,and C increased by 17.1%,17.2%,and 17.7%,respectively.Furthermore,a multi-objective optimal power flow model was formulated and solved using the Forward-Backward Power Flow Algorithm,the NSGA-II multi-objective optimization algo-rithm,and the maximum satisfaction method.The simulation results of the IEEE33 node system example demonstrate that after opti-mization,the total energy cost for one day is reduced by 0.026%,and the total security distance limit of the ADN’s three phases is improved by 0.1 MVA.This method effectively enhances the security distance,facilitates BS load transfer and AC load reduction,and contributes to the energy-saving,economical,and safe operation of the power system.
基金Project(60873081)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0787)supported by Program for New Century Excellent Talents in UniversityProject(11JJ1012)supported by the Natural Science Foundation of Hunan Province,China
文摘The optimization of network performance in a movement-assisted data gathering scheme was studied by analyzing the energy consumption of wireless sensor network with node uniform distribution. A theoretically analytical method for avoiding energy hole was proposed. It is proved that if the densities of sensor nodes working at the same time are alternate between dormancy and work with non-uniform node distribution. The efficiency of network can increase by several times and the residual energy of network is nearly zero when the network lifetime ends.
文摘Current urban rail transit has become a major mode of transportation, and passenger is an important factor of urban rail transport, so this article is based on passenger and the degree of the road network structure, calculating the point intensity of stations of urban rail transit, and then reaching a station importance by integrating many point intensities in a survey cycle time, and getting the station importance of urban rail transit network through concrete examples.
文摘The construction of charging service facilities is a very important factor in the popularization of electric vehicles. Therefore, the planning problems of electric vehicle charging station are urgent to be solved. Considering the standard of natural environment, society, traffic, power grid and economy, an evaluation system is created for electric vehicle charging station project through 15 sub-standards. Planning model of charging station is constructed based on BP neural network adopted in the analysis. It is used for location and capacity prediction of charging station planning. By analyzing the model with data samples, a stable network structure is established and the feasibility of the model is verified in the charging station planning.
基金This work was supported by the Program for the National Science Foundation of China(61671096)the Chongqing Research Program of Basic Science and Frontier Technology(cstc2017jcyjBX0005)+1 种基金Chongqing Science and Technology Innovation Leading Talent Support Program(CSTCCXLJRC201710)Venture and Innovation Support Program for Chongqing Overseas Returnee.
文摘A dense heterogeneous cellular network can effectively increase the system capacity and enhance the network coverage.It is a key technology for the new generation of the mobile communication system.The dense deployment of small base stations not only improves the quality of network service,but also brings about a significant increase in network energy consumption.This paper mainly studies the energy efficiency optimization of the Macro-Femto heterogeneous cellular network.Considering the dynamic random changes of the access users in the network,the sleep process of the Femto Base Stations(FBSs)is modeled as a Semi-Markov Decision Process(SMDP)model in order to save the network energy consumption.And further,this paper gives the dynamic sleep algorithm of the FBS based on the value iteration.The simulation results show that the proposed SMDP-based adaptive sleep strategy of the FBS can effectively reduce the network energy consumption.
文摘There are fundamentally two different communication media in wireless underground sensor networks. The first of these is a solid medium where the sensor nodes are buried underground and wirelessly transmit data from underground to aboveground. The second is an underground medium such as tunnel, cave etc. and the data is transmitted from underground to the aboveground through partially solid medium. The quality of communication is greatly influenced by the humidity of the soil in both environments. The placement of wireless underground sensor nodes at hard-to-reach locations makes energy efficient work compulsory. In this paper, rule based collector station selection scheme is proposed for lossless data transmission in underground sensor networks. In order for sensor nodes to transmit energy-efficient lossless data, rulebased selection operations are carried out with the help of fuzzy logic. The proposed wireless underground sensor network is simulated using Riverbed software, and fuzzy logic-based selection scheme is implemented utilizing Matlab software. In order to evaluate the performance of the sensor network;the parameters of delay, throughput and energy consumption are investigated. Examining performance evaluation results, it is seen that average delay and maximum throughput are accomplished in the proposed underground sensor network. Under these conditions, it has been shown that the most appropriate collector station selection decision is made with the aim of minimizing energy consumption.
基金supported by the National Key Research and Development Plan(Grant No.2021YFB3901000)the Chinese Academy of Sciences Project for Young Scientists in Basic Research(YSBR-037)+2 种基金the International Partnership Program of the Chinese Academy of Sciences(060GJHZ2022070MI)the MOST-ESA Dragon-5 Programme for Monitoring Greenhouse Gases from Space(ID.59355)the Finland–China Mobility Cooperation Project funded by the Academy of Finland(No.348596)。
文摘In this study,we introduce our newly developed measurement-fed-perception self-adaption Low-cost UAV Coordinated Carbon Observation Network(LUCCN)prototype.The LUCCN primarily consists of two categories of instruments,including ground-based and UAV-based in-situ measurement.We use the GMP343,a low-cost non-dispersive infrared sensor,in both ground-based and UAV-based instruments.The first integrated measurement campaign took place in Shenzhen,China,4 May 2023.During the campaign,we found that LUCCN’s UAV component presented significant data-collecting advantages over its ground-based counterpart owing to the relatively high altitudes of the point emission sources,which was especially obvious at a gas power plant in Shenzhen.The emission flux was calculated by a crosssectional flux(CSF)method,the results of which differed from the Open-Data Inventory for Anthropogenic Carbon dioxide(ODIAC).The CSF result was slightly larger than others because of the low sampling rate of the whole emission cross section.The LUCCN system will be applied in future carbon monitoring campaigns to increase the spatiotemporal coverage of carbon emission information,especially in scenarios involving the detection of smaller-scale,rapidly varying sources and sinks.
文摘Network RTK (Real-Time Kinematic) is a technology that is based on GPS (Global Positioning System) or more gener-ally on GNSS (Global Navigation Satellite System) measurements to achieve centimeter-level accuracy positioning in real-time. Reference station placement is an important problem in the design and deployment of network RTK systems as it directly affects the quality of the positioning service and the cost of the network RTK systems. This paper identifies a new reference station placement for network RTK, namely QoS-aware regional network RTK reference station placement problem, and proposes an algorithm for the new reference station placement problem. The algorithm can always produce a reference station placement solution that completely covers the region of network RTK.
文摘This paper is concerned with the design of expressway toll station problem based on neural network and traffic flow. Firstly, the design of the toll plaza is mainly through analyzing the daily traffic flow, different charging mode of construction cost and waiting time of the United States. Secondly, exploring traffic conditions is divided into two kinds, based on the traffic flow speed-density flow model. Then, a fuzzy-BP neural network model is constructed, with capacity, cost, and safety factor as the input layers and performance as the output layer. It is concluded that this scheme will reduce the occurrence of traffic accidents, so it is desirable. Considering that the increase in unmanned vehicles will lead to an increase in safety performance, we increase the number of electronic toll stations to improve security performance and reduce the occurrence of traffic accidents.
文摘The factual data on error of positioning in VRS GPS networks have been analyzed, where the mobile receiver is provided with VRS. The method of highly informative zone is suggested for removal of initial vagueness in selection of reference stations for purposes of development of VRS on the basis of minimum GPS network, composed of three reference stations. The recommendations on use of suggested method are given.
文摘This paper select the escalator with large flow in the station as the object, analysing the correlation of the AFC data of the in and out gates and the passenger flow parameters by passenger flow density and the passing time acquired and calculated in the waiting area of the prediction escalator to select the gates related to the predicted the escalator. NARX neural network is used to predict the model of the passenger flow parameters of the escalator waiting area based on the related gates' AFC data, then a probabilistic neural network model was established by using the AFC data and predicted passenger flow parameters as input and the passenger flow status in the escalator waiting area of subway station as output.The result shows the predicting model can predict the passenger flow status of the escalator waiting area better by the AFC data in the subway station. Research result can provide decision basis for the operation management of the subway station.
文摘This article presents an analysis of wireless personal area networks with low transmission rate, utilized more and more often in industrial or alarm systems, as well as in sensor networks. The structure of these systems and available ways of transmission are defined by the IEEE 802.15.4 standard. The main characteristics of this standard are given in the first part of this article. The second part contains the description of simulation tests that have been realized. Their results make available an evaluation of the effective transmission rate of a transmission channel, the resistance to the phenomenon of hidden station as well as sensibility to the problem of the exposed station.
基金the funding provided by the “German–Ethiopian SDG Graduate School: Climate Change Effects on Food Security (CLIFOOD)”, established by the Food Security Center of the University of Hohenheim (Germany) and Hawassa University (Ethiopia)provided by the German Academic Exchange Service (DAAD) through funds from the Federal Ministry for Economic Cooperation and Development (BMZ)。
文摘Seasonal rainfall plays a vital role in both environmental dynamics and decision-making for rainfed agriculture in Ethiopia, a country often impacted by extreme climate events such as drought and flooding. Predicting the onset of the rainy season and providing localized rainfall forecasts for Ethiopia is challenging due to the changing spatiotemporal patterns and the country's rugged topography. The Climate Hazards Group Infra Red Precipitation with Station Data(CHIRPS), ERA5-Land total precipitation and temperature data are used from 1981–2022 to predict spatial rainfall by applying an artificial neural network(ANN). The recurrent neural network(RNN) is a nonlinear autoregressive network with exogenous input(NARX), which includes feed-forward connections and multiple network layers, employing the Levenberg Marquart algorithm. This method is applied to downscale data from the European Centre for Medium-range Weather Forecasts fifth-generation seasonal forecast system(ECMWF-SEAS5) and the Euro-Mediterranean Centre for Climate Change(CMCC) to the specific locations of rainfall stations in Ethiopia for the period 1980–2020. Across the stations, the results of NARX exhibit strong associations and reduced errors. The statistical results indicate that, except for the southwestern Ethiopian highlands, the downscaled monthly precipitation data exhibits high skill scores compared to the station records, demonstrating the effectiveness of the NARX approach for predicting local seasonal rainfall in Ethiopia's complex terrain. In addition to this spatial ANN of the summer season precipitation, temperature, as well as the combination of these two variables, show promising results.
文摘"Network MIMO" is implemented to eliminate intercell interference and improve spectral efficiency.Several system models are introduced here and synchronous and asynchronous interference are considered.This paper also has a look on the algorithms on the uplink decoding and downlink precoding in network MIMO with base station coordination.Two levels of base station coordination and cellular backhaul are presented,too.