The idea of a network society was introduced by Western sociologists at the end of the 20th century after in-depth research was conducted from perspectives such as informationalism.Influenced by these developments,the...The idea of a network society was introduced by Western sociologists at the end of the 20th century after in-depth research was conducted from perspectives such as informationalism.Influenced by these developments,the concept of constructing a network society also emerged in China.Over the past 30 years,China has made significant progress and achievements in constructing a network society,both in terms of its fundamental construction and social development.It is important that these advancements be summarized and reviewed.China’s network society construction can be divided into two relatively independent yet interconnected components,based on their focal points:its foundational infrastructure and its social development.These two components of China’s network society are managed by different departments.China has integrated the fundamental construction of its network society with the social development of its network society,thereby achieving unified planning,collaborative advancement,and coordinated development.This approach aims to harmonize two aspects:building China’s cyberspace strength and contributing to Chinese informatization,thereby advancing Chinese modernization.展开更多
The sixth-generation(6G)networks will consist of multiple bands such as low-frequency,midfrequency,millimeter wave,terahertz and other bands to meet various business requirements and networking scenarios.The dynamic c...The sixth-generation(6G)networks will consist of multiple bands such as low-frequency,midfrequency,millimeter wave,terahertz and other bands to meet various business requirements and networking scenarios.The dynamic complementarity of multiple bands are crucial for enhancing the spectrum efficiency,reducing network energy consumption,and ensuring a consistent user experience.This paper investigates the present researches and challenges associated with deployment of multi-band integrated networks in existing infrastructures.Then,an evolutionary path for integrated networking is proposed with the consideration of maturity of emerging technologies and practical network deployment.The proposed design principles for 6G multi-band integrated networking aim to achieve on-demand networking objectives,while the architecture supports full spectrum access and collaboration between high and low frequencies.In addition,the potential key air interface technologies and intelligent technologies for integrated networking are comprehensively discussed.It will be a crucial basis for the subsequent standards promotion of 6G multi-band integrated networking technology.展开更多
The construction phase of a project is a critical factor that significantly impacts its overall success.The construction environment is characterized by uncertainty and dynamism,involving nonlinear relationships among...The construction phase of a project is a critical factor that significantly impacts its overall success.The construction environment is characterized by uncertainty and dynamism,involving nonlinear relationships among various factors that affect construction quality.This study utilized 987 construction inspection records from 1993 to 2022,obtained from the Taiwan residents Public Construction Management Information System(PCMIS),to determine the relationships between construction factors and quality.First,fuzzy logic was applied to calculate the weights of 499 defects,and 25 critical construction factors were selected based on these weight values.Next,a deep neural network was used to identify the relationship between the critical construction factors(input variables)and construction quality(output variable).Finally,the prediction model’s performance was evaluated to confirm the impact of these critical construction factors on project outcomes.This study employed an innovative hybrid soft computing technique,com-bining fuzzy logic and an artificial neural network,to effectively predict the relationship between critical construction factors and construction quality,achieving a model accuracy of 96.08%.Project managers can utilize the findings of this study to enhance project management practices and establish effective construction management strategies,thereby improving project construction quality.展开更多
The evaluation of construction safety risks has become a crucial task with the increasing development of bridge construction.This paper aims to provide an overview of the application of backpropagation neural networks...The evaluation of construction safety risks has become a crucial task with the increasing development of bridge construction.This paper aims to provide an overview of the application of backpropagation neural networks in assessing safety risks during bridge construction.It introduces the situation,principles,methods,and advantages,as well as the current status and future development directions of backpropagation-related research.展开更多
The importance and complexity of prioritizing construction projects (PCP) in urban road network planning lead to the necessity to develop an aided decision making program (ADMP). Cost benefit ratio model and stage rol...The importance and complexity of prioritizing construction projects (PCP) in urban road network planning lead to the necessity to develop an aided decision making program (ADMP). Cost benefit ratio model and stage rolled method are chosen as the theoretical foundations of the program, and then benefit model is improved to accord with the actuality of urban traffic in China. Consequently, program flows, module functions and data structures are designed, and particularly an original data structure of road ...展开更多
From the viewpoint of energy saving and improving transmission efficiency, the ZL50E wheel loader is taken as the study object. And the system model is analyzed based on the transmission system of the construction veh...From the viewpoint of energy saving and improving transmission efficiency, the ZL50E wheel loader is taken as the study object. And the system model is analyzed based on the transmission system of the construction vehicle. A new four-parameter shift schedule is presented, which can keep the torque converter working in the high efficiency area. The control algorithm based on the Elman recursive neural network is applied, and four-parameter control system is developed which is based on industrial computer. The system is used to collect data accurately and control 4D180 power-shift gearbox of ZL50E wheel loader shift timely. An experiment is done on automatic transmission test-bed, and the result indicates that the control system could reliably and safely work and improve the efficiency of hydraulic torque converter. Four-parameter shift strategy that takes into account the power consuming of the working pump has important operating significance and reflects the actual working status of construction vehicle.展开更多
With the rapid increase of Unmanned Aircraft Vehicle(UAV) numbers,the contradiction between extensive flight demands and limited low-altitude airspace resources has become increasingly prominent.To ensure the safety a...With the rapid increase of Unmanned Aircraft Vehicle(UAV) numbers,the contradiction between extensive flight demands and limited low-altitude airspace resources has become increasingly prominent.To ensure the safety and efficiency of low-altitude UAV operations,the low-altitude UAV public air route creatively proposed by the Chinese Academy of Sciences(CAS) and supported by the Civil Aviation Administration of China(CAAC) has been gradually recognized.However,present planning research on UAV low-altitude air route is not enough to explore how to use the ground transportation infrastructure,how to closely combine the surface pattern characteristics,and how to form the mechanism of "network".Based on the solution proposed in the early stage and related researches,this paper further deepens the exploration of the low-altitude public air route network and the implementation of key technologies and steps with an actual case study in Tianjin,China.Firstly,a path-planning environment consisting of favorable spaces,obstacle spaces,and mobile communication spaces for UAV flights was pre-constructed.Subsequently,air routes were planned by using the conflict detection and path re-planning algorithm.Our study also assessed the network by computing the population exposure risk index(PERI) and found that the index value was greatly reduced after the construction of the network,indicating that the network can effectively reduce the operational risk.In this study,a low-altitude UAV air route network in an actual region was constructed using multidisciplinary approaches such as remote sensing,geographic information,aviation,and transportation;it indirectly verified the rationality of the outcomes.This can provide practical solutions to low-altitude traffic problems in urban areas.展开更多
The turn-key construction project is implemented in Taiwan not by a single company but by a make-shift group of several companies. Hence,problems to coordinate the professional construction management (PCM) and the su...The turn-key construction project is implemented in Taiwan not by a single company but by a make-shift group of several companies. Hence,problems to coordinate the professional construction management (PCM) and the supervising architectural company often occur for the lack of long-term experience to work together. The various factors that affect the implementation of turn-key projects currently practiced in Taiwan are analyzed using the analytic network process (ANP). The objective is to study how the twelve key factors in the four layers of "Role assignment","Signing contract","Operational procedures" and "Losing capital investment" affect the progress of implementing the turn-key project in Taiwan. The results reveal that "Delay in payment" has the most negative influence with 15.62% weighing factor; "Latent risk" comes next with 11.14% weighing factor,and "Responsibility of construction company for project quality" is the third with 10.79% weighing factor.展开更多
Nowadays,carbon frameworks derived from natural biomaterials have attracted extensive attention for electromagnetic interference(EMI)shielding due to their renewability and affordability.However,it is critical and cha...Nowadays,carbon frameworks derived from natural biomaterials have attracted extensive attention for electromagnetic interference(EMI)shielding due to their renewability and affordability.However,it is critical and challenging to achieve effective regulation of shielding effectiveness(SE)as well as weaken the strong EM reflection of highly conductive biomass-based carbon materials.Herein,commercial cotton pads with oriented structure were selected as carbonaceous precursor to fabricate aligned carbon networks by pyrolysis,and the EMI SE of the samples with increased temperature of 800-1000℃ can be accurately controlled in the effective range of~21.7-29.1,~27.7-37.1 and~32.7-43.3 d B with high reflection coefficient of>0.8 by changing the cross-angle between the electric-field direction of incident EM waves and the fiber-orientation direction due to the occurrence of opposite internal electric field.Moreover,the further construction of Salisbury absorber-liked double-layer structure could result in an ultralow reflection coefficient of only~0.06 but enhanced SE variation range up to~38.7-49.3 d B during the adjustment of cross-angle,possibly due to the destructive interference of EM waves in the double-layer carbon networks.This work would provide a simple and effective way for constructing high-performance biomass carbon materials with adjustable EMI shielding and ultra-low reflectivity.展开更多
Accurate cost estimation at the early stage of a construction project is key factor in a project’s success. But it is difficult to quickly and accurately estimate construction costs at the planning stage, when drawin...Accurate cost estimation at the early stage of a construction project is key factor in a project’s success. But it is difficult to quickly and accurately estimate construction costs at the planning stage, when drawings, documentation and the like are still incomplete. As such, various techniques have been applied to accurately estimate construction costs at an early stage, when project information is limited. While the various techniques have their pros and cons, there has been little effort made to determine the best technique in terms of cost estimating performance. The objective of this research is to compare the accuracy of three estimating techniques (regression analysis (RA), neural network (NN), and support vector machine techniques (SVM)) by performing estimations of construction costs. By comparing the accuracy of these techniques using historical cost data, it was found that NN model showed more accurate estimation results than the RA and SVM models. Consequently, it is determined that NN model is most suitable for estimating the cost of school building projects.展开更多
Osteocytes reside as three-dimensionally(3D) networked cells in the lacunocanalicular structure of bones and regulate bone and mineral homeostasis. Despite of their important regulatory roles, in vitro studies of os...Osteocytes reside as three-dimensionally(3D) networked cells in the lacunocanalicular structure of bones and regulate bone and mineral homeostasis. Despite of their important regulatory roles, in vitro studies of osteocytes have been challenging because:(1) current cell lines do not sufficiently represent the phenotypic features of mature osteocytes and(2) primary cells rapidly differentiate to osteoblasts upon isolation. In this study, we used a 3D perfusion culture approach to:(1) construct the 3D cellular network of primary murine osteocytes by biomimetic assembly with microbeads and(2) reproduce ex vivo the phenotype of primary murine osteocytes, for the first time to our best knowledge. In order to enable 3D construction with a sufficient number of viable cells, we used a proliferated osteoblastic population of healthy cells outgrown from digested bone chips. The diameter of microbeads was controlled to:(1) distribute and entrap cells within the interstitial spaces between the microbeads and(2) maintain average cell-to-cell distance to be about 19 mm. The entrapped cells formed a 3D cellular network by extending and connecting their processes through openings between the microbeads. Also, with increasing culture time, the entrapped cells exhibited the characteristic gene expressions(SOST and FGF23) and nonproliferative behavior of mature osteocytes. In contrast, 2D-cultured cells continued their osteoblastic differentiation and proliferation. This 3D biomimetic approach is expected to provide a new means of:(1) studying flow-induced shear stress on the mechanotransduction function of primary osteocytes,(2) studying physiological functions of 3D-networked osteocytes with in vitro convenience,and(3) developing clinically relevant human bone disease models.展开更多
The intersection of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)has garnered ever-increasing attention and research interest.Nevertheless,the dilemma between the strict resource-constrained n...The intersection of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)has garnered ever-increasing attention and research interest.Nevertheless,the dilemma between the strict resource-constrained nature of IIoT devices and the extensive resource demands of AI has not yet been fully addressed with a comprehensive solution.Taking advantage of the lightweight constructive neural network(LightGCNet)in developing fast learner models for IIoT,a convex geometric constructive neural network with a low-complexity control strategy,namely,ConGCNet,is proposed in this article via convex optimization and matrix theory,which enhances the convergence rate and reduces the computational consumption in comparison with LightGCNet.Firstly,a low-complexity control strategy is proposed to reduce the computational consumption during the hidden parameters training process.Secondly,a novel output weights evaluated method based on convex optimization is proposed to guarantee the convergence rate.Finally,the universal approximation property of ConGCNet is proved by the low-complexity control strategy and convex output weights evaluated method.Simulation results,including four benchmark datasets and the real-world ore grinding process,demonstrate that ConGCNet effectively reduces computational consumption in the modelling process and improves the model’s convergence rate.展开更多
To meet society’s needs for undergraduate students to have engineering skills and to develop students’ability to operate Linux and engage in network software development,this paper proposes the construction of a new...To meet society’s needs for undergraduate students to have engineering skills and to develop students’ability to operate Linux and engage in network software development,this paper proposes the construction of a new specialized course for network engineering major--Linux system and network programming.This paper analyzes the course’s advantages,presents the contents of this course,designs a series of teaching methods aimed at improving students’engineering ability,proposes a course assessment method that will encourage students to practice,lists the development requirements for an examination software designed for this course,and finally,presents the results of our practice in teaching this course.展开更多
A general classification algorithm of neural networks is unable to obtain satisfied results because of the uncertain problems existing among the features in moot classification programs, such as interaction. With new ...A general classification algorithm of neural networks is unable to obtain satisfied results because of the uncertain problems existing among the features in moot classification programs, such as interaction. With new features constructed by optimizing decision trees of examples, the input of neural networks is improved and an optimized classification algorithm based on neural networks is presented. A concept of dispersion of a classification program is also introduced too in this paper. At the end of the paper, an analysis is made with an example.展开更多
This paper develops an extended newsboy model and presents a formula- tion for this model. This new model has solved the budget contained multi-product newsboy problem with the reactive production. This model can be u...This paper develops an extended newsboy model and presents a formula- tion for this model. This new model has solved the budget contained multi-product newsboy problem with the reactive production. This model can be used to describe the status of entrepreneurial network construction. We use the Lagrange multiplier procedure to deal with our problem, but it is too complicated to get the exact solu-tion. So we introduce the homotopy method to deal with it. We give the flow chart to describe how to get the solution via the homotopy method. We also illustrate our model in both the classical procedure and the homotopy method. Comparing the two methods, we can see that the homotopy method is more exact and efficient.展开更多
Offset Shuffle Networks(OSNs) interleave a-posterior probability messages in the Block Row-Layered Decoder(BRLD) of QuasiCyclic Low-Density Parity-Check(QC-LDPC)codes.However,OSNs usually consume a significant amount ...Offset Shuffle Networks(OSNs) interleave a-posterior probability messages in the Block Row-Layered Decoder(BRLD) of QuasiCyclic Low-Density Parity-Check(QC-LDPC)codes.However,OSNs usually consume a significant amount of computational resources and limit the clock frequency,particularly when the size of the Circulant Permutation Matrix(CPM)is large.To simplify the architecture of the OSN,we propose a Simplified Offset Shuffle Network Block Progressive Edge-Growth(SOSNBPEG) algorithm to construct a class of QCLDPC codes.The SOSN-BPEG algorithm constrains the shift values of CPMs and the difference of the shift values in the same column by progressively appending check nodes.Simulation results indicate that the error performance of the SOSN-BPEG codes is the same as that of the codes in WiMAX and DVB-S2.The SOSNBPEG codes can reduce the complexity of the OSNs by up to 54.3%,and can improve the maximum frequency by up to 21.7%for various code lengths and rates.展开更多
Construction 3D printing is changing construction industry, but for its immaturity, there are still many problems to be solved. One of the major problems is to study materials for construction 3D printing. Because pri...Construction 3D printing is changing construction industry, but for its immaturity, there are still many problems to be solved. One of the major problems is to study materials for construction 3D printing. Because printed buildings are very different from traditional buildings, there are special requirements for printing materials. Based on environmental and cost considerations, the recycled concrete as printing material is a perfect choice. In order to study and develop the construction 3D printing materials, it is necessary to predict the properties of them. As one of the most effective artificial intelligence algorithms, artificial neural network can deal with multi-parameter and nonlinear problems, and it can provide useful reference to predict the performance of recycled concrete for 3D printing. However, since there are many types and parameters for neural network, it is difficult to select the optimal neural network with excellent prediction performance. In this paper, by comparing different types of neural networks and statistically analyzing the distribution of the root-mean-square error (RMSE) and the coefficient of determination (R2) of these neural networks, we can determine the best performance among four neural networks and finally select the suitable one to predict the performance of 3D printing concrete.展开更多
The paper proposes a new method of multi-band signal reconstruction based on Orthogonal Matching Pursuit(OMP),which aims to develop a robust Ecological Sounds Recognition(ESR)system.Firstly,the OMP is employed to spar...The paper proposes a new method of multi-band signal reconstruction based on Orthogonal Matching Pursuit(OMP),which aims to develop a robust Ecological Sounds Recognition(ESR)system.Firstly,the OMP is employed to sparsely decompose the original signal,thus the high correlation components are retained to reconstruct in the first stage.Then,according to the frequency distribution of both foreground sound and background noise,the signal can be compensated by the residual components in the second stage.Via the two-stage reconstruction,high non-stationary noises are effectively reduced,and the reconstruction precision of foreground sound is improved.At recognition stage,we employ deep belief networks to model the composite feature sets extracted from reconstructed signal.The experimental results show that the proposed approach achieved superior recognition performance on 60 classes of ecological sounds in different environments under different Signal-to-Noise Ratio(SNR),compared with the existing method.展开更多
As an important means for enterprises to promote technological progress,product development and service level,innovation has an absolute role in enhancing enterprises'innovation strength and market strength.In the...As an important means for enterprises to promote technological progress,product development and service level,innovation has an absolute role in enhancing enterprises'innovation strength and market strength.In the context of frequent and rapid product replacement and shortened technological innovation cycle in modern society,through the embedding of social networks,forming platforms for higher education institutions,governments,capital markets,research institutions and intermediary links to promote the integration of innovation and capital development and make the most of every resource has become an important way.From the perspective of social network,the methods and necessary approaches for the establishment of enterprise innovation network are studied in this article.展开更多
The research advances on 3G CDMA standards are outlined and the network architecture and networking characteristics of CD- MA2000 1x EV-DO and CDMA2000 1x EV-DV are described.Em- phasis is put on the key technical iss...The research advances on 3G CDMA standards are outlined and the network architecture and networking characteristics of CD- MA2000 1x EV-DO and CDMA2000 1x EV-DV are described.Em- phasis is put on the key technical issues that may occur when China Unicom upgrades CDMA2000 1x to CDMA2000 1x EV-DO.展开更多
基金“Research on Social Change and Network Society Planning in the Internet of Everything Era”(ID:21BSH005),a project under the National Social Science Fund of China
文摘The idea of a network society was introduced by Western sociologists at the end of the 20th century after in-depth research was conducted from perspectives such as informationalism.Influenced by these developments,the concept of constructing a network society also emerged in China.Over the past 30 years,China has made significant progress and achievements in constructing a network society,both in terms of its fundamental construction and social development.It is important that these advancements be summarized and reviewed.China’s network society construction can be divided into two relatively independent yet interconnected components,based on their focal points:its foundational infrastructure and its social development.These two components of China’s network society are managed by different departments.China has integrated the fundamental construction of its network society with the social development of its network society,thereby achieving unified planning,collaborative advancement,and coordinated development.This approach aims to harmonize two aspects:building China’s cyberspace strength and contributing to Chinese informatization,thereby advancing Chinese modernization.
基金supported by China’s National Key R&D Program(Project Number:2022YFB2902100)。
文摘The sixth-generation(6G)networks will consist of multiple bands such as low-frequency,midfrequency,millimeter wave,terahertz and other bands to meet various business requirements and networking scenarios.The dynamic complementarity of multiple bands are crucial for enhancing the spectrum efficiency,reducing network energy consumption,and ensuring a consistent user experience.This paper investigates the present researches and challenges associated with deployment of multi-band integrated networks in existing infrastructures.Then,an evolutionary path for integrated networking is proposed with the consideration of maturity of emerging technologies and practical network deployment.The proposed design principles for 6G multi-band integrated networking aim to achieve on-demand networking objectives,while the architecture supports full spectrum access and collaboration between high and low frequencies.In addition,the potential key air interface technologies and intelligent technologies for integrated networking are comprehensively discussed.It will be a crucial basis for the subsequent standards promotion of 6G multi-band integrated networking technology.
文摘The construction phase of a project is a critical factor that significantly impacts its overall success.The construction environment is characterized by uncertainty and dynamism,involving nonlinear relationships among various factors that affect construction quality.This study utilized 987 construction inspection records from 1993 to 2022,obtained from the Taiwan residents Public Construction Management Information System(PCMIS),to determine the relationships between construction factors and quality.First,fuzzy logic was applied to calculate the weights of 499 defects,and 25 critical construction factors were selected based on these weight values.Next,a deep neural network was used to identify the relationship between the critical construction factors(input variables)and construction quality(output variable).Finally,the prediction model’s performance was evaluated to confirm the impact of these critical construction factors on project outcomes.This study employed an innovative hybrid soft computing technique,com-bining fuzzy logic and an artificial neural network,to effectively predict the relationship between critical construction factors and construction quality,achieving a model accuracy of 96.08%.Project managers can utilize the findings of this study to enhance project management practices and establish effective construction management strategies,thereby improving project construction quality.
基金Key natural science research project of Anhui Province in 2023 research on risk assessment of bridge engineering project based on BP neural network(2023AH052746)。
文摘The evaluation of construction safety risks has become a crucial task with the increasing development of bridge construction.This paper aims to provide an overview of the application of backpropagation neural networks in assessing safety risks during bridge construction.It introduces the situation,principles,methods,and advantages,as well as the current status and future development directions of backpropagation-related research.
文摘The importance and complexity of prioritizing construction projects (PCP) in urban road network planning lead to the necessity to develop an aided decision making program (ADMP). Cost benefit ratio model and stage rolled method are chosen as the theoretical foundations of the program, and then benefit model is improved to accord with the actuality of urban traffic in China. Consequently, program flows, module functions and data structures are designed, and particularly an original data structure of road ...
基金supported by Research Fund for Doctoral Program of Higher Education of China (No.20020183003)
文摘From the viewpoint of energy saving and improving transmission efficiency, the ZL50E wheel loader is taken as the study object. And the system model is analyzed based on the transmission system of the construction vehicle. A new four-parameter shift schedule is presented, which can keep the torque converter working in the high efficiency area. The control algorithm based on the Elman recursive neural network is applied, and four-parameter control system is developed which is based on industrial computer. The system is used to collect data accurately and control 4D180 power-shift gearbox of ZL50E wheel loader shift timely. An experiment is done on automatic transmission test-bed, and the result indicates that the control system could reliably and safely work and improve the efficiency of hydraulic torque converter. Four-parameter shift strategy that takes into account the power consuming of the working pump has important operating significance and reflects the actual working status of construction vehicle.
基金National Key Research and Development Program of China,No.2017YFB0503005Key Research Program of the Chinese Academy of Sciences,No.ZDRW-KT-2020-2+1 种基金National Natural Science Foundation of China,No.41971359,No.41771388Tianjin Intelligent Manufacturing Project Technology of Intelligent Networking by Autonomous Control UAVs for Observation and Application,No.Tianjin-IMP-2。
文摘With the rapid increase of Unmanned Aircraft Vehicle(UAV) numbers,the contradiction between extensive flight demands and limited low-altitude airspace resources has become increasingly prominent.To ensure the safety and efficiency of low-altitude UAV operations,the low-altitude UAV public air route creatively proposed by the Chinese Academy of Sciences(CAS) and supported by the Civil Aviation Administration of China(CAAC) has been gradually recognized.However,present planning research on UAV low-altitude air route is not enough to explore how to use the ground transportation infrastructure,how to closely combine the surface pattern characteristics,and how to form the mechanism of "network".Based on the solution proposed in the early stage and related researches,this paper further deepens the exploration of the low-altitude public air route network and the implementation of key technologies and steps with an actual case study in Tianjin,China.Firstly,a path-planning environment consisting of favorable spaces,obstacle spaces,and mobile communication spaces for UAV flights was pre-constructed.Subsequently,air routes were planned by using the conflict detection and path re-planning algorithm.Our study also assessed the network by computing the population exposure risk index(PERI) and found that the index value was greatly reduced after the construction of the network,indicating that the network can effectively reduce the operational risk.In this study,a low-altitude UAV air route network in an actual region was constructed using multidisciplinary approaches such as remote sensing,geographic information,aviation,and transportation;it indirectly verified the rationality of the outcomes.This can provide practical solutions to low-altitude traffic problems in urban areas.
文摘The turn-key construction project is implemented in Taiwan not by a single company but by a make-shift group of several companies. Hence,problems to coordinate the professional construction management (PCM) and the supervising architectural company often occur for the lack of long-term experience to work together. The various factors that affect the implementation of turn-key projects currently practiced in Taiwan are analyzed using the analytic network process (ANP). The objective is to study how the twelve key factors in the four layers of "Role assignment","Signing contract","Operational procedures" and "Losing capital investment" affect the progress of implementing the turn-key project in Taiwan. The results reveal that "Delay in payment" has the most negative influence with 15.62% weighing factor; "Latent risk" comes next with 11.14% weighing factor,and "Responsibility of construction company for project quality" is the third with 10.79% weighing factor.
基金financial supports from Natural Science Foundation of Ningbo(202003N4026)S&T Innovation 2025 Major Special Programme of Ningbo(2018B10054)National Natural Science Foundation of China(62001065 and 51603218)。
文摘Nowadays,carbon frameworks derived from natural biomaterials have attracted extensive attention for electromagnetic interference(EMI)shielding due to their renewability and affordability.However,it is critical and challenging to achieve effective regulation of shielding effectiveness(SE)as well as weaken the strong EM reflection of highly conductive biomass-based carbon materials.Herein,commercial cotton pads with oriented structure were selected as carbonaceous precursor to fabricate aligned carbon networks by pyrolysis,and the EMI SE of the samples with increased temperature of 800-1000℃ can be accurately controlled in the effective range of~21.7-29.1,~27.7-37.1 and~32.7-43.3 d B with high reflection coefficient of>0.8 by changing the cross-angle between the electric-field direction of incident EM waves and the fiber-orientation direction due to the occurrence of opposite internal electric field.Moreover,the further construction of Salisbury absorber-liked double-layer structure could result in an ultralow reflection coefficient of only~0.06 but enhanced SE variation range up to~38.7-49.3 d B during the adjustment of cross-angle,possibly due to the destructive interference of EM waves in the double-layer carbon networks.This work would provide a simple and effective way for constructing high-performance biomass carbon materials with adjustable EMI shielding and ultra-low reflectivity.
文摘Accurate cost estimation at the early stage of a construction project is key factor in a project’s success. But it is difficult to quickly and accurately estimate construction costs at the planning stage, when drawings, documentation and the like are still incomplete. As such, various techniques have been applied to accurately estimate construction costs at an early stage, when project information is limited. While the various techniques have their pros and cons, there has been little effort made to determine the best technique in terms of cost estimating performance. The objective of this research is to compare the accuracy of three estimating techniques (regression analysis (RA), neural network (NN), and support vector machine techniques (SVM)) by performing estimations of construction costs. By comparing the accuracy of these techniques using historical cost data, it was found that NN model showed more accurate estimation results than the RA and SVM models. Consequently, it is determined that NN model is most suitable for estimating the cost of school building projects.
基金the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health (1R21AR065032 to W.Y.L and J.Z.)the National Science Foundation (DMR 1409779 to W.Y.L and J.Z.)
文摘Osteocytes reside as three-dimensionally(3D) networked cells in the lacunocanalicular structure of bones and regulate bone and mineral homeostasis. Despite of their important regulatory roles, in vitro studies of osteocytes have been challenging because:(1) current cell lines do not sufficiently represent the phenotypic features of mature osteocytes and(2) primary cells rapidly differentiate to osteoblasts upon isolation. In this study, we used a 3D perfusion culture approach to:(1) construct the 3D cellular network of primary murine osteocytes by biomimetic assembly with microbeads and(2) reproduce ex vivo the phenotype of primary murine osteocytes, for the first time to our best knowledge. In order to enable 3D construction with a sufficient number of viable cells, we used a proliferated osteoblastic population of healthy cells outgrown from digested bone chips. The diameter of microbeads was controlled to:(1) distribute and entrap cells within the interstitial spaces between the microbeads and(2) maintain average cell-to-cell distance to be about 19 mm. The entrapped cells formed a 3D cellular network by extending and connecting their processes through openings between the microbeads. Also, with increasing culture time, the entrapped cells exhibited the characteristic gene expressions(SOST and FGF23) and nonproliferative behavior of mature osteocytes. In contrast, 2D-cultured cells continued their osteoblastic differentiation and proliferation. This 3D biomimetic approach is expected to provide a new means of:(1) studying flow-induced shear stress on the mechanotransduction function of primary osteocytes,(2) studying physiological functions of 3D-networked osteocytes with in vitro convenience,and(3) developing clinically relevant human bone disease models.
文摘The intersection of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)has garnered ever-increasing attention and research interest.Nevertheless,the dilemma between the strict resource-constrained nature of IIoT devices and the extensive resource demands of AI has not yet been fully addressed with a comprehensive solution.Taking advantage of the lightweight constructive neural network(LightGCNet)in developing fast learner models for IIoT,a convex geometric constructive neural network with a low-complexity control strategy,namely,ConGCNet,is proposed in this article via convex optimization and matrix theory,which enhances the convergence rate and reduces the computational consumption in comparison with LightGCNet.Firstly,a low-complexity control strategy is proposed to reduce the computational consumption during the hidden parameters training process.Secondly,a novel output weights evaluated method based on convex optimization is proposed to guarantee the convergence rate.Finally,the universal approximation property of ConGCNet is proved by the low-complexity control strategy and convex output weights evaluated method.Simulation results,including four benchmark datasets and the real-world ore grinding process,demonstrate that ConGCNet effectively reduces computational consumption in the modelling process and improves the model’s convergence rate.
基金supported by the Teaching Research and Reform Project of Qingdao University of Technology under Grant 2024-10335040。
文摘To meet society’s needs for undergraduate students to have engineering skills and to develop students’ability to operate Linux and engage in network software development,this paper proposes the construction of a new specialized course for network engineering major--Linux system and network programming.This paper analyzes the course’s advantages,presents the contents of this course,designs a series of teaching methods aimed at improving students’engineering ability,proposes a course assessment method that will encourage students to practice,lists the development requirements for an examination software designed for this course,and finally,presents the results of our practice in teaching this course.
文摘A general classification algorithm of neural networks is unable to obtain satisfied results because of the uncertain problems existing among the features in moot classification programs, such as interaction. With new features constructed by optimizing decision trees of examples, the input of neural networks is improved and an optimized classification algorithm based on neural networks is presented. A concept of dispersion of a classification program is also introduced too in this paper. At the end of the paper, an analysis is made with an example.
文摘This paper develops an extended newsboy model and presents a formula- tion for this model. This new model has solved the budget contained multi-product newsboy problem with the reactive production. This model can be used to describe the status of entrepreneurial network construction. We use the Lagrange multiplier procedure to deal with our problem, but it is too complicated to get the exact solu-tion. So we introduce the homotopy method to deal with it. We give the flow chart to describe how to get the solution via the homotopy method. We also illustrate our model in both the classical procedure and the homotopy method. Comparing the two methods, we can see that the homotopy method is more exact and efficient.
基金supported by the National Natural Science Foundation of China under Grant No.61071083
文摘Offset Shuffle Networks(OSNs) interleave a-posterior probability messages in the Block Row-Layered Decoder(BRLD) of QuasiCyclic Low-Density Parity-Check(QC-LDPC)codes.However,OSNs usually consume a significant amount of computational resources and limit the clock frequency,particularly when the size of the Circulant Permutation Matrix(CPM)is large.To simplify the architecture of the OSN,we propose a Simplified Offset Shuffle Network Block Progressive Edge-Growth(SOSNBPEG) algorithm to construct a class of QCLDPC codes.The SOSN-BPEG algorithm constrains the shift values of CPMs and the difference of the shift values in the same column by progressively appending check nodes.Simulation results indicate that the error performance of the SOSN-BPEG codes is the same as that of the codes in WiMAX and DVB-S2.The SOSNBPEG codes can reduce the complexity of the OSNs by up to 54.3%,and can improve the maximum frequency by up to 21.7%for various code lengths and rates.
文摘Construction 3D printing is changing construction industry, but for its immaturity, there are still many problems to be solved. One of the major problems is to study materials for construction 3D printing. Because printed buildings are very different from traditional buildings, there are special requirements for printing materials. Based on environmental and cost considerations, the recycled concrete as printing material is a perfect choice. In order to study and develop the construction 3D printing materials, it is necessary to predict the properties of them. As one of the most effective artificial intelligence algorithms, artificial neural network can deal with multi-parameter and nonlinear problems, and it can provide useful reference to predict the performance of recycled concrete for 3D printing. However, since there are many types and parameters for neural network, it is difficult to select the optimal neural network with excellent prediction performance. In this paper, by comparing different types of neural networks and statistically analyzing the distribution of the root-mean-square error (RMSE) and the coefficient of determination (R2) of these neural networks, we can determine the best performance among four neural networks and finally select the suitable one to predict the performance of 3D printing concrete.
基金Supported by the National Natural Science Foundation of China(No.61075022)
文摘The paper proposes a new method of multi-band signal reconstruction based on Orthogonal Matching Pursuit(OMP),which aims to develop a robust Ecological Sounds Recognition(ESR)system.Firstly,the OMP is employed to sparsely decompose the original signal,thus the high correlation components are retained to reconstruct in the first stage.Then,according to the frequency distribution of both foreground sound and background noise,the signal can be compensated by the residual components in the second stage.Via the two-stage reconstruction,high non-stationary noises are effectively reduced,and the reconstruction precision of foreground sound is improved.At recognition stage,we employ deep belief networks to model the composite feature sets extracted from reconstructed signal.The experimental results show that the proposed approach achieved superior recognition performance on 60 classes of ecological sounds in different environments under different Signal-to-Noise Ratio(SNR),compared with the existing method.
基金Natural Science Foundation of Heilongjiang Province(LH2019G019)Philosophy and Social Science General Project of Heilongjiang Province(18JYB153)Scientific Research Foundation for Cultivated and Introduced Talents of Heilongjiang Bayi Agricultural University。
文摘As an important means for enterprises to promote technological progress,product development and service level,innovation has an absolute role in enhancing enterprises'innovation strength and market strength.In the context of frequent and rapid product replacement and shortened technological innovation cycle in modern society,through the embedding of social networks,forming platforms for higher education institutions,governments,capital markets,research institutions and intermediary links to promote the integration of innovation and capital development and make the most of every resource has become an important way.From the perspective of social network,the methods and necessary approaches for the establishment of enterprise innovation network are studied in this article.
文摘The research advances on 3G CDMA standards are outlined and the network architecture and networking characteristics of CD- MA2000 1x EV-DO and CDMA2000 1x EV-DV are described.Em- phasis is put on the key technical issues that may occur when China Unicom upgrades CDMA2000 1x to CDMA2000 1x EV-DO.