Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective to...Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.展开更多
1 General information Journal of Geographical Sciences is an international academic journal that publishes papers of the highest quality in physical geography, natural resources, environmental sciences, geographic inf...1 General information Journal of Geographical Sciences is an international academic journal that publishes papers of the highest quality in physical geography, natural resources, environmental sciences, geographic information sciences, remote sensing and cartography. Manuscripts come from different parts of the world.展开更多
With the growing advancement of wireless communication technologies,WiFi-based human sensing has gained increasing attention as a non-intrusive and device-free solution.Among the available signal types,Channel State I...With the growing advancement of wireless communication technologies,WiFi-based human sensing has gained increasing attention as a non-intrusive and device-free solution.Among the available signal types,Channel State Information(CSI)offers fine-grained temporal,frequency,and spatial insights into multipath propagation,making it a crucial data source for human-centric sensing.Recently,the integration of deep learning has significantly improved the robustness and automation of feature extraction from CSI in complex environments.This paper provides a comprehensive review of deep learning-enhanced human sensing based on CSI.We first outline mainstream CSI acquisition tools and their hardware specifications,then provide a detailed discussion of preprocessing methods such as denoising,time–frequency transformation,data segmentation,and augmentation.Subsequently,we categorize deep learning approaches according to sensing tasks—namely detection,localization,and recognition—and highlight representative models across application scenarios.Finally,we examine key challenges including domain generalization,multi-user interference,and limited data availability,and we propose future research directions involving lightweight model deployment,multimodal data fusion,and semantic-level sensing.展开更多
The uncertain multi-attribute decision-making problems because of the information about attribute weights being known partly, and the decision maker's preference information on alternatives taking the form of interva...The uncertain multi-attribute decision-making problems because of the information about attribute weights being known partly, and the decision maker's preference information on alternatives taking the form of interval numbers complementary to the judgment matrix, are investigated. First, the decision-making information, based on the subjective uncertain complementary preference matrix on alternatives is made uniform by using a translation function, and then an objective programming model is established. The attribute weights are obtained by solving the model, thus the overall values of the alternatives are gained by using the additive weighting method. Second, the alternatives are ranked, by using the continuous ordered weighted averaging (C-OWA) operator. A new approach to the uncertain multi-attribute decision-making problems, with uncertain preference information on alternatives is proposed. It is characterized by simple operations and can be easily implemented on a computer. Finally, a practical example is illustrated to show the feasibility and availability of the developed method.展开更多
An approach is presented to deal with a multi-attribute decision-making problem in which the attribute weights are unknown and the attribute values take the form of uncertain linguistic variables. First, a linguistic ...An approach is presented to deal with a multi-attribute decision-making problem in which the attribute weights are unknown and the attribute values take the form of uncertain linguistic variables. First, a linguistic assessment standard is set up to deal with the uncertain linguistic attributes, and the operation laws of uncertain linguistic variables and the uncertain linguistic weighting average(ULWA)operator are introduced. Then a ranking formula of uncertain linguistic variables based on expectation-variance is proposed. As for the case without weight information, a goal program based on a warp function is constructed to determine the attribute weights, and the ULWA operator is utilized to aggregate the assessment information of uncertain linguistic variables, and the corresponding alternatives are ranked by a formula based on expectation-variance. Finally, a numerical example is given, and the results demonstrate that it is much easier and faster for the ranking method based on expectation-variance when compared to the existing methods.展开更多
A method for solving the winner determination problem (WDP) in multi-attribute procurement auctions is proposed, based on technical and business experts' evaluation information. Firstly, on the background of procur...A method for solving the winner determination problem (WDP) in multi-attribute procurement auctions is proposed, based on technical and business experts' evaluation information. Firstly, on the background of procurements in China, a multi-attribute pro- curement auction mechanism is presented, where technical and business experts participate in the bid evaluation. Then, the concept of TOPSIS is used to determine the positive and negative ideal points of the WDP according to bid prices, the technical and business experts' evaluation information. Further, the closeness coefficient of each bidder (candidate supplier) is obtained by calculating the distances to the positive and negative ideal points. Thus, the winning supplier can be determined according to the closeness coefficients. Finally, a numerical example is used to illustrate the use of the proposed method.展开更多
With the development of smart cities and smart technologies,parks,as functional units of the city,are facing smart transformation.The development of smart parks can help address challenges of technology integration wi...With the development of smart cities and smart technologies,parks,as functional units of the city,are facing smart transformation.The development of smart parks can help address challenges of technology integration within urban spaces and serve as testbeds for exploring smart city planning and governance models.Information models facilitate the effective integration of technology into space.Building Information Modeling(BIM)and City Information Modeling(CIM)have been widely used in urban construction.However,the existing information models have limitations in the application of the park,so it is necessary to develop an information model suitable for the park.This paper first traces the evolution of park smart transformation,reviews the global landscape of smart park development,and identifies key trends and persistent challenges.Addressing the particularities of parks,the concept of Park Information Modeling(PIM)is proposed.PIM leverages smart technologies such as artificial intelligence,digital twins,and collaborative sensing to help form a‘space-technology-system’smart structure,enabling systematic management of diverse park spaces,addressing the deficiency in park-level information models,and aiming to achieve scale articulation between BIM and CIM.Finally,through a detailed top-level design application case study of the Nanjing Smart Education Park in China,this paper illustrates the translation process of the PIM concept into practice,showcasing its potential to provide smart management tools for park managers and enhance services for park stakeholders,although further empirical validation is required.展开更多
Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pP...Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.展开更多
Information extraction(IE)aims to automatically identify and extract information about specific interests from raw texts.Despite the abundance of solutions based on fine-tuning pretrained language models,IE in the con...Information extraction(IE)aims to automatically identify and extract information about specific interests from raw texts.Despite the abundance of solutions based on fine-tuning pretrained language models,IE in the context of fewshot and zero-shot scenarios remains highly challenging due to the scarcity of training data.Large language models(LLMs),on the other hand,can generalize well to unseen tasks with few-shot demonstrations or even zero-shot instructions and have demonstrated impressive ability for a wide range of natural language understanding or generation tasks.Nevertheless,it is unclear,whether such effectiveness can be replicated in the task of IE,where the target tasks involve specialized schema and quite abstractive entity or relation concepts.In this paper,we first examine the validity of LLMs in executing IE tasks with an established prompting strategy and further propose multiple types of augmented prompting methods,including the structured fundamental prompt(SFP),the structured interactive reasoning prompt(SIRP),and the voting-enabled structured interactive reasoning prompt(VESIRP).The experimental results demonstrate that while directly promotes inferior performance,the proposed augmented prompt methods significantly improve the extraction accuracy,achieving comparable or even better performance(e.g.,zero-shot FewNERD,FewNERD-INTRA)than state-of-theart methods that require large-scale training samples.This study represents a systematic exploration of employing instruction-following LLM for the task of IE.It not only establishes a performance benchmark for this novel paradigm but,more importantly,validates a practical technical pathway through the proposed prompt enhancement method,offering a viable solution for efficient IE in low-resource settings.展开更多
Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environ...Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environmental science research,ecological and environmental monitoring projects,disaster response,and emergency management.A key method employed in these vehicles for achieving high-precision positioning is LiDAR(lightlaser detection and ranging)-Visual Simultaneous Localization and Mapping(SLAM).However,maintaining highprecision localization in complex scenarios,such as degraded environments or when dynamic objects are present,remains a significant challenge.To address this issue,we integrate both semantic and texture information from LiDAR and cameras to enhance the robustness and efficiency of data registration.Specifically,semantic information simplifies the modeling of scene elements,reducing the reliance on dense point clouds,which can be less efficient.Meanwhile,visual texture information complements LiDAR-Visual localization by providing additional contextual details.By incorporating semantic and texture details frompaired images and point clouds,we significantly improve the quality of data association,thereby increasing the success rate of localization.This approach not only enhances the operational capabilities of ecological monitoring vehicles in complex environments but also contributes to improving the overall efficiency and effectiveness of ecological monitoring and environmental protection efforts.展开更多
Advanced geological prediction is a crucial means to ensure safety and efficiency in tunnel construction.However,diff erent advanced geological forecasting methods have their own limitations,resulting in poor detectio...Advanced geological prediction is a crucial means to ensure safety and efficiency in tunnel construction.However,diff erent advanced geological forecasting methods have their own limitations,resulting in poor detection accuracy.Using multiple methods to carry out a comprehensive evaluation can eff ectively improve the accuracy of advanced geological prediction results.In this study,geological information is combined with the detection results of geophysical methods,including transient electromagnetic,induced polarization,and tunnel seismic prediction,to establish a comprehensive analysis method of adverse geology.First,the possible main adverse geological problems are determined according to the geological information.Subsequently,various physical parameters of the rock mass in front of the tunnel face can then be derived on the basis of multisource geophysical data.Finally,based on the analysis results of geological information,the multisource data fusion algorithm is used to determine the type,location,and scale of adverse geology.The advanced geological prediction results that can provide eff ective guidance for tunnel construction can then be obtained.展开更多
Objective: This study evaluates the impact of handshake and information support on patients’ outcomes during laparoscopic cholecystectomy. It examines the effects on their physiological and psychological responses an...Objective: This study evaluates the impact of handshake and information support on patients’ outcomes during laparoscopic cholecystectomy. It examines the effects on their physiological and psychological responses and overall satisfaction with nursing care. Methods: A total of 84 patients scheduled for laparoscopic cholecystectomy were selected through convenient sampling and randomly assigned to either the control group or the intervention group using a random number table. Each group consisted of 42 patients. The control group received standard surgical nursing care. In addition to standard care, the intervention group received handshake and information support from the circulating nurse before anesthesia induction. Vital signs were recorded before surgery and before anesthesia induction. Anxiety levels were measured using the State-Trait Anxiety Inventory (STAI) and the State-Anxiety Inventory (S-AI), while nursing satisfaction was assessed using a numerical rating scale. Results: No significant differences were found between the two groups in systolic and diastolic blood pressures before surgery and anesthesia induction (P > 0.05). However, there was a significant difference in heart rate before anesthesia induction (P Conclusion: Providing handshake and information support before anesthesia induction effectively reduces stress, alleviates anxiety, and enhances comfort and satisfaction among patients undergoing laparoscopic cholecystectomy.展开更多
This study analyzes the User Interface(UI)and User Experience(UX)of information systems that provide local government information.The systems analyzed are the Local Administrative Comprehensive Information Disclosure ...This study analyzes the User Interface(UI)and User Experience(UX)of information systems that provide local government information.The systems analyzed are the Local Administrative Comprehensive Information Disclosure System(Zheripan),the Integrated Local Financial Disclosure System(Qinching Online),and the Local Regulations Information System(12348 Zhejiang Legal Network).The Local Administrative Comprehensive Information Disclosure System offers public service and personnel information,while the Integrated Local Financial Disclosure System provides financial information,and the Local Regulations Information System offers legal information as its main content.The analysis framework utilized three elements:objective data,psychological factors,and heuristic evaluation.The results of the first objective data analysis show that approximately 70%of visits to Zheripan and Qinching Online are through search,and the time spent on the homepage is short.In contrast,about 70%of visits to the 12348 Zhejiang Legal Network are direct visits,with users browsing multiple pages with a clear purpose.In terms of data provision methods,Zheripan provides two types of data in three formats,Qinching Online offers 28 types of data in five formats,and 12348 Zhejiang Legal Network provides one type of information in a single format.The second psychological factor analysis found that all three websites had a number of menus suitable for short-term cognitive capacity.However,only one of the sites had a layout that considered the user’s eye movement.Finally,the heuristic evaluation revealed that most of the evaluation criteria were not met.While the design is relatively simple and follows standards,feedback for users,error prevention,and help options were lacking.Moreover,the user-specific usability was low,and the systems remained at the information-providing level.Based on these findings,both short-term and long-term improvement measures for creating an interactive system beyond simple information disclosure are proposed.展开更多
Nowadays,spatiotemporal information,positioning,and navigation services have become critical components of new infrastructure.Precise positioning technology is indispensable for determining spatiotemporal information ...Nowadays,spatiotemporal information,positioning,and navigation services have become critical components of new infrastructure.Precise positioning technology is indispensable for determining spatiotemporal information and providing navigation services.展开更多
Cultural landscape zoning research of traditional villages is the basic premise for carrying out overall protection and regional development.Through the clustering algorithm,cultural area zoning research of traditiona...Cultural landscape zoning research of traditional villages is the basic premise for carrying out overall protection and regional development.Through the clustering algorithm,cultural area zoning research of traditional villages can provide objective basis for its overall protection and development.Based on the field research,drawing on the theory of cultural landscape,southwest Hubei is taken as the research object,and the index system of cultural landscape type division of traditional villages is constructed from three levels of culture,geography and village carrier.Adopting the multi-attribute weighted k-modes clustering algorithm,92 traditional villages in southwest Hubei are divided into three major types,which are the western Tujia cultural characteristic area,the southern Tujia-Miao cultural penetration area,and the northern multi-ethnic cultural mixed area,and the characteristics of each area are summarized.The regional characteristics of traditional villages in southwest Hubei at the cultural landscape level are analysed from a macro point of view,which provides a reference for more objective cognition of the distribution law of traditional villages in southwest Hubei,and carrying out the contiguous protection of traditional villages.展开更多
Background: For nursing students, gathering social information is essential for understanding healthcare and social issues and developing critical thinking and decision-making skills. However, the choice of informatio...Background: For nursing students, gathering social information is essential for understanding healthcare and social issues and developing critical thinking and decision-making skills. However, the choice of information sources varies by age and individual habits. With the widespread use of the internet, there are notable differences between younger and older generations in their reliance on the internet versus traditional media sources like newspapers and television. Given the wide age range and diverse backgrounds of nursing students, understanding generational differences in information-gathering methods is important for implementing effective education. Purpose: The purpose of this study is to identify how nursing students in different age groups obtain social information and to examine media usage trends by age group. Additionally, we aim to use the findings to provide insights into effective information dissemination methods in nursing education. Results: The results showed that nursing students in their teens to forties, regardless of gender, primarily relied on the internet as their main information source, with television playing a secondary role. In contrast, students in their fifties tended to obtain information more often from newspapers and television than from the internet. This highlights an age-related difference in preferred information sources, with older students showing a greater reliance on traditional media. Conclusions: This study demonstrates that nursing students use different information-gathering methods based on their age, suggesting a need to custo-mize information dissemination strategies in nursing education. Digital media may be more effective for younger students, while traditional media or printed materials might better serve older students. Educational institutions should consider these generational differences in media usage and adopt strategies that meet the diverse needs of their student populations.展开更多
Aims and Scope UroPrecision offers rapid exchange on scientific innovation in urology between clinicians and researchers worldwide and provides a globally respected source of cuttingedge information as well as a platf...Aims and Scope UroPrecision offers rapid exchange on scientific innovation in urology between clinicians and researchers worldwide and provides a globally respected source of cuttingedge information as well as a platform for international collaboration.展开更多
Background: The availability of essential medicines and medical supplies is crucial for effectively delivering healthcare services. In Zambia, the Logistics Management Information System (LMIS) is a key tool for manag...Background: The availability of essential medicines and medical supplies is crucial for effectively delivering healthcare services. In Zambia, the Logistics Management Information System (LMIS) is a key tool for managing the supply chain of these commodities. This study aimed to evaluate the effectiveness of LMIS in ensuring the availability of essential medicines and medical supplies in public hospitals in the Copperbelt Province of Zambia. Materials and Methods: From February to April 2022, a cross-sectional study was conducted in 12 public hospitals across the Copperbelt Province. Data were collected using structured questionnaires, checklists, and stock control cards. The study assessed LMIS availability, training, and knowledge among pharmacy personnel, as well as data accuracy, product availability, and order fill rates. Descriptive statistics were used to analyse the data. Results: All surveyed hospitals had LMIS implemented and were using eLMIS as the primary LMIS. Only 47% and 48% of pharmacy personnel received training in eLMIS and Essential Medicines Logistics Improvement Program (EMLIP), respectively. Most personnel demonstrated good knowledge of LMIS, with 77.7% able to log in to eLMIS Facility Edition, 76.6% able to locate stock control cards in the system, and 78.7% able to perform transactions. However, data accuracy from physical and electronic records varied from 0% to 60%, and product availability ranged from 50% to 80%. Order fill rates from Zambia Medicines and Medical Supplies Agency (ZAMMSA) were consistently below 30%. Discrepancies were observed between physical stock counts and eLMIS records. Conclusion: This study found that most hospitals in the Copperbelt Province of Zambia have implemented LMIS use. While LMIS implementation is high in the Copperbelt Province of Zambia, challenges such as low training levels, data inaccuracies, low product availability, and order fill rates persist. Addressing these issues requires a comprehensive approach, including capacity building, data quality improvement, supply chain coordination, and investment in infrastructure and human resources. Strengthening LMIS effectiveness is crucial for improving healthcare delivery and patient outcomes in Zambia.展开更多
文摘Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.
文摘1 General information Journal of Geographical Sciences is an international academic journal that publishes papers of the highest quality in physical geography, natural resources, environmental sciences, geographic information sciences, remote sensing and cartography. Manuscripts come from different parts of the world.
基金supported by National Natural Science Foundation of China(NSFC)under grant U23A20310.
文摘With the growing advancement of wireless communication technologies,WiFi-based human sensing has gained increasing attention as a non-intrusive and device-free solution.Among the available signal types,Channel State Information(CSI)offers fine-grained temporal,frequency,and spatial insights into multipath propagation,making it a crucial data source for human-centric sensing.Recently,the integration of deep learning has significantly improved the robustness and automation of feature extraction from CSI in complex environments.This paper provides a comprehensive review of deep learning-enhanced human sensing based on CSI.We first outline mainstream CSI acquisition tools and their hardware specifications,then provide a detailed discussion of preprocessing methods such as denoising,time–frequency transformation,data segmentation,and augmentation.Subsequently,we categorize deep learning approaches according to sensing tasks—namely detection,localization,and recognition—and highlight representative models across application scenarios.Finally,we examine key challenges including domain generalization,multi-user interference,and limited data availability,and we propose future research directions involving lightweight model deployment,multimodal data fusion,and semantic-level sensing.
文摘The uncertain multi-attribute decision-making problems because of the information about attribute weights being known partly, and the decision maker's preference information on alternatives taking the form of interval numbers complementary to the judgment matrix, are investigated. First, the decision-making information, based on the subjective uncertain complementary preference matrix on alternatives is made uniform by using a translation function, and then an objective programming model is established. The attribute weights are obtained by solving the model, thus the overall values of the alternatives are gained by using the additive weighting method. Second, the alternatives are ranked, by using the continuous ordered weighted averaging (C-OWA) operator. A new approach to the uncertain multi-attribute decision-making problems, with uncertain preference information on alternatives is proposed. It is characterized by simple operations and can be easily implemented on a computer. Finally, a practical example is illustrated to show the feasibility and availability of the developed method.
基金The National Natural Science Foundation of China(No.70671017)
文摘An approach is presented to deal with a multi-attribute decision-making problem in which the attribute weights are unknown and the attribute values take the form of uncertain linguistic variables. First, a linguistic assessment standard is set up to deal with the uncertain linguistic attributes, and the operation laws of uncertain linguistic variables and the uncertain linguistic weighting average(ULWA)operator are introduced. Then a ranking formula of uncertain linguistic variables based on expectation-variance is proposed. As for the case without weight information, a goal program based on a warp function is constructed to determine the attribute weights, and the ULWA operator is utilized to aggregate the assessment information of uncertain linguistic variables, and the corresponding alternatives are ranked by a formula based on expectation-variance. Finally, a numerical example is given, and the results demonstrate that it is much easier and faster for the ranking method based on expectation-variance when compared to the existing methods.
基金supported by the National Natural Science Foundation of China(7127105171371002+1 种基金71471032)the Fundamental Research Funds for the Central Universities,NEU,China(N140607001)
文摘A method for solving the winner determination problem (WDP) in multi-attribute procurement auctions is proposed, based on technical and business experts' evaluation information. Firstly, on the background of procurements in China, a multi-attribute pro- curement auction mechanism is presented, where technical and business experts participate in the bid evaluation. Then, the concept of TOPSIS is used to determine the positive and negative ideal points of the WDP according to bid prices, the technical and business experts' evaluation information. Further, the closeness coefficient of each bidder (candidate supplier) is obtained by calculating the distances to the positive and negative ideal points. Thus, the winning supplier can be determined according to the closeness coefficients. Finally, a numerical example is used to illustrate the use of the proposed method.
基金Under the auspices of National Natural Science Foundation of China(No.42330510)。
文摘With the development of smart cities and smart technologies,parks,as functional units of the city,are facing smart transformation.The development of smart parks can help address challenges of technology integration within urban spaces and serve as testbeds for exploring smart city planning and governance models.Information models facilitate the effective integration of technology into space.Building Information Modeling(BIM)and City Information Modeling(CIM)have been widely used in urban construction.However,the existing information models have limitations in the application of the park,so it is necessary to develop an information model suitable for the park.This paper first traces the evolution of park smart transformation,reviews the global landscape of smart park development,and identifies key trends and persistent challenges.Addressing the particularities of parks,the concept of Park Information Modeling(PIM)is proposed.PIM leverages smart technologies such as artificial intelligence,digital twins,and collaborative sensing to help form a‘space-technology-system’smart structure,enabling systematic management of diverse park spaces,addressing the deficiency in park-level information models,and aiming to achieve scale articulation between BIM and CIM.Finally,through a detailed top-level design application case study of the Nanjing Smart Education Park in China,this paper illustrates the translation process of the PIM concept into practice,showcasing its potential to provide smart management tools for park managers and enhance services for park stakeholders,although further empirical validation is required.
基金supported by the Deanship of Graduate Studies and Scientific Research at Qassim University(QU-APC-2024-9/1).
文摘Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.
基金supported by the National Natural Science Foundation of China(62222212).
文摘Information extraction(IE)aims to automatically identify and extract information about specific interests from raw texts.Despite the abundance of solutions based on fine-tuning pretrained language models,IE in the context of fewshot and zero-shot scenarios remains highly challenging due to the scarcity of training data.Large language models(LLMs),on the other hand,can generalize well to unseen tasks with few-shot demonstrations or even zero-shot instructions and have demonstrated impressive ability for a wide range of natural language understanding or generation tasks.Nevertheless,it is unclear,whether such effectiveness can be replicated in the task of IE,where the target tasks involve specialized schema and quite abstractive entity or relation concepts.In this paper,we first examine the validity of LLMs in executing IE tasks with an established prompting strategy and further propose multiple types of augmented prompting methods,including the structured fundamental prompt(SFP),the structured interactive reasoning prompt(SIRP),and the voting-enabled structured interactive reasoning prompt(VESIRP).The experimental results demonstrate that while directly promotes inferior performance,the proposed augmented prompt methods significantly improve the extraction accuracy,achieving comparable or even better performance(e.g.,zero-shot FewNERD,FewNERD-INTRA)than state-of-theart methods that require large-scale training samples.This study represents a systematic exploration of employing instruction-following LLM for the task of IE.It not only establishes a performance benchmark for this novel paradigm but,more importantly,validates a practical technical pathway through the proposed prompt enhancement method,offering a viable solution for efficient IE in low-resource settings.
基金supported by the project“GEF9874:Strengthening Coordinated Approaches to Reduce Invasive Alien Species(lAS)Threats to Globally Significant Agrobiodiversity and Agroecosystems in China”funding from the Excellent Talent Training Funding Project in Dongcheng District,Beijing,with project number 2024-dchrcpyzz-9.
文摘Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environmental science research,ecological and environmental monitoring projects,disaster response,and emergency management.A key method employed in these vehicles for achieving high-precision positioning is LiDAR(lightlaser detection and ranging)-Visual Simultaneous Localization and Mapping(SLAM).However,maintaining highprecision localization in complex scenarios,such as degraded environments or when dynamic objects are present,remains a significant challenge.To address this issue,we integrate both semantic and texture information from LiDAR and cameras to enhance the robustness and efficiency of data registration.Specifically,semantic information simplifies the modeling of scene elements,reducing the reliance on dense point clouds,which can be less efficient.Meanwhile,visual texture information complements LiDAR-Visual localization by providing additional contextual details.By incorporating semantic and texture details frompaired images and point clouds,we significantly improve the quality of data association,thereby increasing the success rate of localization.This approach not only enhances the operational capabilities of ecological monitoring vehicles in complex environments but also contributes to improving the overall efficiency and effectiveness of ecological monitoring and environmental protection efforts.
基金National Natural Science Foundation of China(grant numbers 42293351,41877239,51422904 and 51379112).
文摘Advanced geological prediction is a crucial means to ensure safety and efficiency in tunnel construction.However,diff erent advanced geological forecasting methods have their own limitations,resulting in poor detection accuracy.Using multiple methods to carry out a comprehensive evaluation can eff ectively improve the accuracy of advanced geological prediction results.In this study,geological information is combined with the detection results of geophysical methods,including transient electromagnetic,induced polarization,and tunnel seismic prediction,to establish a comprehensive analysis method of adverse geology.First,the possible main adverse geological problems are determined according to the geological information.Subsequently,various physical parameters of the rock mass in front of the tunnel face can then be derived on the basis of multisource geophysical data.Finally,based on the analysis results of geological information,the multisource data fusion algorithm is used to determine the type,location,and scale of adverse geology.The advanced geological prediction results that can provide eff ective guidance for tunnel construction can then be obtained.
文摘Objective: This study evaluates the impact of handshake and information support on patients’ outcomes during laparoscopic cholecystectomy. It examines the effects on their physiological and psychological responses and overall satisfaction with nursing care. Methods: A total of 84 patients scheduled for laparoscopic cholecystectomy were selected through convenient sampling and randomly assigned to either the control group or the intervention group using a random number table. Each group consisted of 42 patients. The control group received standard surgical nursing care. In addition to standard care, the intervention group received handshake and information support from the circulating nurse before anesthesia induction. Vital signs were recorded before surgery and before anesthesia induction. Anxiety levels were measured using the State-Trait Anxiety Inventory (STAI) and the State-Anxiety Inventory (S-AI), while nursing satisfaction was assessed using a numerical rating scale. Results: No significant differences were found between the two groups in systolic and diastolic blood pressures before surgery and anesthesia induction (P > 0.05). However, there was a significant difference in heart rate before anesthesia induction (P Conclusion: Providing handshake and information support before anesthesia induction effectively reduces stress, alleviates anxiety, and enhances comfort and satisfaction among patients undergoing laparoscopic cholecystectomy.
文摘This study analyzes the User Interface(UI)and User Experience(UX)of information systems that provide local government information.The systems analyzed are the Local Administrative Comprehensive Information Disclosure System(Zheripan),the Integrated Local Financial Disclosure System(Qinching Online),and the Local Regulations Information System(12348 Zhejiang Legal Network).The Local Administrative Comprehensive Information Disclosure System offers public service and personnel information,while the Integrated Local Financial Disclosure System provides financial information,and the Local Regulations Information System offers legal information as its main content.The analysis framework utilized three elements:objective data,psychological factors,and heuristic evaluation.The results of the first objective data analysis show that approximately 70%of visits to Zheripan and Qinching Online are through search,and the time spent on the homepage is short.In contrast,about 70%of visits to the 12348 Zhejiang Legal Network are direct visits,with users browsing multiple pages with a clear purpose.In terms of data provision methods,Zheripan provides two types of data in three formats,Qinching Online offers 28 types of data in five formats,and 12348 Zhejiang Legal Network provides one type of information in a single format.The second psychological factor analysis found that all three websites had a number of menus suitable for short-term cognitive capacity.However,only one of the sites had a layout that considered the user’s eye movement.Finally,the heuristic evaluation revealed that most of the evaluation criteria were not met.While the design is relatively simple and follows standards,feedback for users,error prevention,and help options were lacking.Moreover,the user-specific usability was low,and the systems remained at the information-providing level.Based on these findings,both short-term and long-term improvement measures for creating an interactive system beyond simple information disclosure are proposed.
文摘Nowadays,spatiotemporal information,positioning,and navigation services have become critical components of new infrastructure.Precise positioning technology is indispensable for determining spatiotemporal information and providing navigation services.
基金Philosophy and Social Sciences Research Project of Hubei Provincial Department of Education(22D057).
文摘Cultural landscape zoning research of traditional villages is the basic premise for carrying out overall protection and regional development.Through the clustering algorithm,cultural area zoning research of traditional villages can provide objective basis for its overall protection and development.Based on the field research,drawing on the theory of cultural landscape,southwest Hubei is taken as the research object,and the index system of cultural landscape type division of traditional villages is constructed from three levels of culture,geography and village carrier.Adopting the multi-attribute weighted k-modes clustering algorithm,92 traditional villages in southwest Hubei are divided into three major types,which are the western Tujia cultural characteristic area,the southern Tujia-Miao cultural penetration area,and the northern multi-ethnic cultural mixed area,and the characteristics of each area are summarized.The regional characteristics of traditional villages in southwest Hubei at the cultural landscape level are analysed from a macro point of view,which provides a reference for more objective cognition of the distribution law of traditional villages in southwest Hubei,and carrying out the contiguous protection of traditional villages.
文摘Background: For nursing students, gathering social information is essential for understanding healthcare and social issues and developing critical thinking and decision-making skills. However, the choice of information sources varies by age and individual habits. With the widespread use of the internet, there are notable differences between younger and older generations in their reliance on the internet versus traditional media sources like newspapers and television. Given the wide age range and diverse backgrounds of nursing students, understanding generational differences in information-gathering methods is important for implementing effective education. Purpose: The purpose of this study is to identify how nursing students in different age groups obtain social information and to examine media usage trends by age group. Additionally, we aim to use the findings to provide insights into effective information dissemination methods in nursing education. Results: The results showed that nursing students in their teens to forties, regardless of gender, primarily relied on the internet as their main information source, with television playing a secondary role. In contrast, students in their fifties tended to obtain information more often from newspapers and television than from the internet. This highlights an age-related difference in preferred information sources, with older students showing a greater reliance on traditional media. Conclusions: This study demonstrates that nursing students use different information-gathering methods based on their age, suggesting a need to custo-mize information dissemination strategies in nursing education. Digital media may be more effective for younger students, while traditional media or printed materials might better serve older students. Educational institutions should consider these generational differences in media usage and adopt strategies that meet the diverse needs of their student populations.
文摘Aims and Scope UroPrecision offers rapid exchange on scientific innovation in urology between clinicians and researchers worldwide and provides a globally respected source of cuttingedge information as well as a platform for international collaboration.
文摘Background: The availability of essential medicines and medical supplies is crucial for effectively delivering healthcare services. In Zambia, the Logistics Management Information System (LMIS) is a key tool for managing the supply chain of these commodities. This study aimed to evaluate the effectiveness of LMIS in ensuring the availability of essential medicines and medical supplies in public hospitals in the Copperbelt Province of Zambia. Materials and Methods: From February to April 2022, a cross-sectional study was conducted in 12 public hospitals across the Copperbelt Province. Data were collected using structured questionnaires, checklists, and stock control cards. The study assessed LMIS availability, training, and knowledge among pharmacy personnel, as well as data accuracy, product availability, and order fill rates. Descriptive statistics were used to analyse the data. Results: All surveyed hospitals had LMIS implemented and were using eLMIS as the primary LMIS. Only 47% and 48% of pharmacy personnel received training in eLMIS and Essential Medicines Logistics Improvement Program (EMLIP), respectively. Most personnel demonstrated good knowledge of LMIS, with 77.7% able to log in to eLMIS Facility Edition, 76.6% able to locate stock control cards in the system, and 78.7% able to perform transactions. However, data accuracy from physical and electronic records varied from 0% to 60%, and product availability ranged from 50% to 80%. Order fill rates from Zambia Medicines and Medical Supplies Agency (ZAMMSA) were consistently below 30%. Discrepancies were observed between physical stock counts and eLMIS records. Conclusion: This study found that most hospitals in the Copperbelt Province of Zambia have implemented LMIS use. While LMIS implementation is high in the Copperbelt Province of Zambia, challenges such as low training levels, data inaccuracies, low product availability, and order fill rates persist. Addressing these issues requires a comprehensive approach, including capacity building, data quality improvement, supply chain coordination, and investment in infrastructure and human resources. Strengthening LMIS effectiveness is crucial for improving healthcare delivery and patient outcomes in Zambia.