OBJECTIVE:To propose an automatic acupuncture robot system for performing acupuncture operations.METHODS:The acupuncture robot system consists of three components:automatic acupoint localization,acupuncture manipulati...OBJECTIVE:To propose an automatic acupuncture robot system for performing acupuncture operations.METHODS:The acupuncture robot system consists of three components:automatic acupoint localization,acupuncture manipulations,and De Qi sensation detection.The OptiTrack motion capture system is used to locate acupoints,which are then translated into coordinates in the robot control system.A flexible collaborative robot with an intelligent gripper is then used to perform acupuncture manipulations with high precision.In addition,a De Qi sensation detection system is proposed to evaluate the effect of acupuncture.To verify the stability of the designed acupuncture robot,acupoints'coordinates localized by the acupuncture robot are compared with the Gold Standard labeled by a professional acupuncturist using significant level tests.RESULTS:Through repeated experiments for eight acupoints,the acupuncture robot achieved a positioning error within 3.3 mm,which is within the allowable range of needle extraction and acupoint insertion.During needle insertion,the robot arm followed the prescribed trajectory with a mean deviation distance of 0.02 mm and a deviation angle of less than 0.15°.The results of the lifting thrusting operation in the Xingzhen process show that the mean acupuncture depth error of the designed acupuncture robot is approximately 2 mm,which is within the recommended depth range for the Xingzhen operation.In addition,the average detection accuracy of the De Qi keywords is 94.52%,which meets the requirements of acupuncture effect testing for different dialects.CONCLUSION:The proposed acupuncture robot system streamlines the acupuncture process,increases efficiency,and reduces practitioner fatigue,while also allowing for the quantification of acupuncture manipulations and evaluation of therapeutic effects.The development of an acupuncture robot system has the potential to revolutionize low back pain treatment and improve patient outcomes.展开更多
The advent of parametric design has resulted in a marked increase in the complexity of building.Unfortunately,traditional construction methods make it difficult to meet the needs.Therefore,construction robots have bec...The advent of parametric design has resulted in a marked increase in the complexity of building.Unfortunately,traditional construction methods make it difficult to meet the needs.Therefore,construction robots have become a pivotal production tool in this context.Since the arm span of a single robot usually does not exceed 3 meters,it is not competent for producing large-scale building components.Accordingly,the extension of the robot,s working range is often achieved by external axes.Nevertheless,the coupling control of external axes and robots and their kinematic solution have become key challenges.The primary technical difficulties include customized construction robots,automatic solutions for external axes,fixed axis joints,and specific motion mode control.This paper proposes solutions to these difficulties,introduces the relevant basic concepts and algorithms in detail,and encapsulates these robotics principles and algorithm processes into the Grasshopper plug-in commonly used by architects to form the FURobot software platform.This platform effectively solves the above problems,lowers the threshold for architects,and improves production efficiency.The effectiveness of the algorithm and software in this paper is verified through simulation experiments.展开更多
The proliferation of robot accounts on social media platforms has posed a significant negative impact,necessitating robust measures to counter network anomalies and safeguard content integrity.Social robot detection h...The proliferation of robot accounts on social media platforms has posed a significant negative impact,necessitating robust measures to counter network anomalies and safeguard content integrity.Social robot detection has emerged as a pivotal yet intricate task,aimed at mitigating the dissemination of misleading information.While graphbased approaches have attained remarkable performance in this realm,they grapple with a fundamental limitation:the homogeneity assumption in graph convolution allows social robots to stealthily evade detection by mingling with genuine human profiles.To unravel this challenge and thwart the camouflage tactics,this work proposed an innovative social robot detection framework based on enhanced HOmogeneity and Random Forest(HORFBot).At the core of HORFBot lies a homogeneous graph enhancement strategy,intricately woven with edge-removal techniques,tometiculously dissect the graph intomultiple revealing subgraphs.Subsequently,leveraging the power of contrastive learning,the proposed methodology meticulously trains multiple graph convolutional networks,each honed to discern nuances within these tailored subgraphs.The culminating stage involves the fusion of these feature-rich base classifiers,harmoniously aggregating their insights to produce a comprehensive detection outcome.Extensive experiments on three social robot detection datasets have shown that this method effectively improves the accuracy of social robot detection and outperforms comparative methods.展开更多
Rollover accidents involving agricultural wheeled robots,accompanied by severe mechanical impacts,pose serious threats to operational safety and reduce functional efficiency.To address this issue,an active rollover pr...Rollover accidents involving agricultural wheeled robots,accompanied by severe mechanical impacts,pose serious threats to operational safety and reduce functional efficiency.To address this issue,an active rollover prevention strategy is proposed,utilizing a single‐gimbal control moment gyro(SGCMG),to stabilize typical agricultural robots and prevent potential rollovers.To match the free oscillation of the pivot front axle,a novel recovery torque model of the coupled robot‐SGCMG system is established,in which two patterns are introduced to refine the rollover process with uncertain parameters.Additionally,a lateral stability index is adopted and analyzed to assess the hazard level of potential rollovers.Aimed at handling uncertain parameters and hazard levels,an adaptive backstepping control strategy is developed for real‐time anti‐rollover implementation.Within this strategy,control gains are adaptively tuned based on theoretical derivations,thereby suppressing rollover tendency while minimizing tuning effort.For verification,a scaled experimental platform,designed according to similarity theory,is constructed to ensure safety of personnel and equipment.Experimental results show that the proposed method can precisely regulate the output torque of the gyro,rapidly and effectively mitigating the risk of imminent rollover.This method provides a promising solution for wheeled robot stability and a theoretical basis for advanced safety control in agricultural robotics.展开更多
Gecko-inspired robots have significant potential applications;however,deviations in the yaw direction during locomotion are inevitable for legged robots that lack external sensing.These deviations cause the robot to s...Gecko-inspired robots have significant potential applications;however,deviations in the yaw direction during locomotion are inevitable for legged robots that lack external sensing.These deviations cause the robot to stray from its intended path.Therefore,a cost-effective and straightforward solution is essential for reducing this deviation.In nature,the tail is often used to maintain balance and stability.Similarly,it has been used in robots to improve manoeuvrability and stability.Our aim is to reduce this deviation using a morphological computation approach,specifically by adding a tail.To test this hypothesis,we investigated four different tails(rigid plate,rigid gecko-shaped,soft plate,and soft gecko-shaped)and assessed the deviation of the robot with these tails on different slopes.Additionally,to evaluate the influence of different tail parameters,such as material,shape,and linkage,we investigated the locomotion performance in terms of the robot's climbing speed on slopes,its ability to turn at narrow corners,and the resistance of the tails to external disturbances.A new auto-reset joint was designed to ensure that a disturbed tail could be quickly reset.Our results demonstrate that the yaw deviation of the robot can be reduced by applying a tail.Among the four tails,the soft gecko-shaped tail was the most effective for most tasks.In summary,our findings demonstrate the functional role of the tail in reducing yaw deviation,improving climbing ability and stability and provide a reference for selecting the most suitable tail for geckoinspired robots.展开更多
In recent years,the rapid advancement of artificial intelligence(AI)has fostered deep integration between large AI models and robotic technology.Robots such as robotic dogs capable of carrying heavy loads on mountaino...In recent years,the rapid advancement of artificial intelligence(AI)has fostered deep integration between large AI models and robotic technology.Robots such as robotic dogs capable of carrying heavy loads on mountainous terrain or performing waste disposal tasks and humanoid robots that can execute high-precision component installations have gradually reached the public eye,raising expectations for embodied intelligent robots.展开更多
Segmentation of demonstration trajectories and learning the contained motion primitives can effectively enhance the assistive robot's intelligence to flexibly reproduce learnt tasks in an unstructured environment....Segmentation of demonstration trajectories and learning the contained motion primitives can effectively enhance the assistive robot's intelligence to flexibly reproduce learnt tasks in an unstructured environment.With the aim to conveniently and accurately segment demonstration trajectories,a novel demonstration trajectory segmentation approach is proposed based on the beta process autoregressive hidden Markov model(BP-ARHMM)algorithm and generalised time warping(GTW)algorithm aiming to enhance the segmentation accuracy utilising acquired demonstration data.This approach first adopts the GTW algorithm to align the multiple demonstration trajectories for the same task.Then,it adopts the BP-AR-HMM algorithm to segment the demonstration trajectories,acquire the contained motion primitives,and establish the related task library.This segmentation approach is validated on the 6-degree-of-freedom JACO robotic arm by assisting users to accomplish a holding water glass task and an eating task.The experimental results show that the motion primitives within the trajectories can be correctly segmented with a high segmentation accuracy.展开更多
Since the idea of embodied artificial intelligence was born,the U.S.has been an international frontrunner in the research and development(R&D)and application of the technology,while China has been a capable chaser...Since the idea of embodied artificial intelligence was born,the U.S.has been an international frontrunner in the research and development(R&D)and application of the technology,while China has been a capable chaser in recent years,particularly in the area of humanoid robots.展开更多
Wireless millirobots engineered to infiltrate intricate vascular networks within living organisms,particularly within constricted and confined spaces,hold immense promise for the future of medical treatments.However,w...Wireless millirobots engineered to infiltrate intricate vascular networks within living organisms,particularly within constricted and confined spaces,hold immense promise for the future of medical treatments.However,with their multifaceted and intricate designs,some robots often grapple with motion and functionality issues when confronted with tight spaces characterized by small cross-sectional dimensions.In this study,drawing inspiration from the high aspect ratio and undulating swimming patterns of snakes,a millimeter-scale,snake-like robot was designed and fabricated via a combination of extrusion-based four-dimensional(4D)printing and magnetic-responsive intelligent functional inks.A sophisticated motion control strategy was also developed,which enables the robots to perform various dynamic movements,such as undulating swimming,precise turns,graceful circular motions,and coordinated cluster movements,under diverse magnetic field variations.As a potential application,the snake robot can navigate and release drugs in a model coronary intervention vessel with tortuous channels and fluid filling.The novel design and promising applications of this snake robot are invaluable tools in future medical surgeries and interventions.展开更多
When drones first emerged,most people didn’t know what to do with them,said Professor Zhang Yueming at Beijing University of Technology.“Over time,however,we identified their potential applications.The situation is ...When drones first emerged,most people didn’t know what to do with them,said Professor Zhang Yueming at Beijing University of Technology.“Over time,however,we identified their potential applications.The situation is the same for embodied intelligent robots.”When embodied intelligent robots leave the laboratory,where will they go?展开更多
Micro aerial vehicles(MAVs)have flexibility and maneuverability,which can offer vast potential for applications in both civilian and military domains.Compared to Fixed-wing/Rotor-wing MAVs,Flapping Wing Micro Robots(F...Micro aerial vehicles(MAVs)have flexibility and maneuverability,which can offer vast potential for applications in both civilian and military domains.Compared to Fixed-wing/Rotor-wing MAVs,Flapping Wing Micro Robots(FWMRs)have garnered widespread attention among scientists due to their superior miniaturized aerodynamic theory,reduced noise,and enhanced resistance to disturbances in complex and diverse environments.Flying insects,it not only has remarkable flapping flight ability(wings),but also takeoff and landing habitat ability(legs).If the various functions of flying insects can be imitated,efficient biomimetic FWMRs can be produced.This paper provides a review of the flight kinematics,aerodynamics,and wing structural parameters of insects.Then,the traditional wings and folding wings of insect-inspired FWMRs were compared.The research progress in takeoff and landing of FWMRs was also summarized,and the future developments and challenges for insect-inspired FWMRs were discussed.展开更多
The increasing use of robotic surgery has seen a wave of technology ripple through global healthcare.Similar changes occurred in aviation several decades ago.New robot types have increased access for both patients and...The increasing use of robotic surgery has seen a wave of technology ripple through global healthcare.Similar changes occurred in aviation several decades ago.New robot types have increased access for both patients and surgeons.The modern robotic curriculum therefore needs to train surgeons of varying experience,gaining access to several robot types,and based in centres around the world.Drawing on this analogy with aviation helps to derive principles for curriculum design,and considers humanemachine interface,non-technical skills,team training,and simulation.The components of the curriculum could be core(cross-platform),platform-specific,specialty-specific,and platform-transitional.Analogous concepts also emerge,including type rating,control as surgery-by-wire,spatio-haptic envelope,and virtual operations.The fourth industrial revolution sets anticipation for progress.展开更多
The accuracy of center height detection for corrugated beam guardrails is significantly affected by robot posture in the mobile highway guardrail detection systems based on structured light vision.To address the probl...The accuracy of center height detection for corrugated beam guardrails is significantly affected by robot posture in the mobile highway guardrail detection systems based on structured light vision.To address the problem,this paper proposes an integrated calibration method for structured light vision sensors.In the proposed system,the sensor is mounted on a crawler-type mobile robot,which scans and measures the center height of guardrails while in motion.However,due to external disturbances such as uneven road surfaces and vehicle vibrations,the posture of the robot may deviate,causing displacement of the sensor platform and resulting in spatial 3D measurement errors.To overcome this issue,the system integrates inertial measurement unit(IMU)data into the sensor calibration process,enabling realtime correction of posture deviations through sensor fusion.This approach achieves a unified calibration of the structured light vision system,effectively compensates for posture-induced errors,and enhances detection accuracy.A prototype was developed and tested in both laboratory and real highway environments.Experimental results demonstrate that the proposed method enables accurate center height detection of guardrails under complex road conditions,significantly reduces posture-related measurement errors,and greatly improves the efficiency and reliability of traditional detection methods.展开更多
The global population is increasing,compelling a greater food supply for survival and agricultural activity to support economic development.On the other hand,traditional farm machinery and activities result in the ove...The global population is increasing,compelling a greater food supply for survival and agricultural activity to support economic development.On the other hand,traditional farm machinery and activities result in the overuse of fertilizers,irrigation water,and land,thereby undermining environmental sustainability.The current study aims to present advanced ground robots as effective solutions for autonomous operations,enhancing efficiency,productivity,and revenues in agriculture while consuming fewer resources and preserving the environment.In this regard,an overview of diverse imaging sensors and navigation technologies for ground robots is provided as key components that assist in automation and autonomy.Recent trends adopted for deploying ground robots while integrating the internet-of-things(IoT),artificial intelligence(AI),cloud computing,edge computing,collaborative robotics,and energy and resource-efficient systems are elucidated,driving smart and sustainable agriculture.Moreover,state-of-the-art applications of ground robots in three agricultural branches are explored.Three case studies from Ireland are presented as evidence of the transformation of traditional agriculture.Some limitations that necessitates future considerations are highlighted.The current study signifies the importance of employing ground robots to leap from conventional agricultural practices to precision and sustainable operations.展开更多
Wire rope inspection robot is an important tool for wire rope condition monitoring and maintenance,which can accurately locate and judge the damage of wire rope.In addition,the wire rope inspection robot can also be u...Wire rope inspection robot is an important tool for wire rope condition monitoring and maintenance,which can accurately locate and judge the damage of wire rope.In addition,the wire rope inspection robot can also be used for cable inspection.First,the crawling structure and crawling mode of the wire rope inspection robot are reviewed,and the characteristics and existing problems of each crawling mode are analyzed separately.Next,the drive mode of the wire rope inspection robot is discussed,the types of commonly used motors are introduced,and the advantages and disadvantages of drive motors and the control modes are compared.Then,the method and principle of the non-destructive detection of the wire rope inspection robot are expounded,and the commonly used detection methods and existing deficiencies are compared.After that,the types of communication modes are compared and analyzed,and the types of wireless communication modes are also introduced.Finally,the current difficult problems of the wire rope inspection robot are summarized,and the future development trend of the wire rope inspection robot is prospected.展开更多
Underwater robots have emerged as key tools for marine exploration because of their unique ability to traverse and navigate underwater regions,which pose challenges or dangers to human expeditions.Miniature underwater...Underwater robots have emerged as key tools for marine exploration because of their unique ability to traverse and navigate underwater regions,which pose challenges or dangers to human expeditions.Miniature underwater robots are widely employed in marine science,resource surveys,seabed geological investigations,and marine life observations,owing to their compact size,minimal noise,and agile move-ment.In recent years,researchers have developed diverse miniature underwater robots inspired by bion-ics and other disciplines,leading to many landmark achievements such as centimeter-level wireless control,movement speeds up to hundreds of millimeters per second,underwater three-dimensional motion capabilities,robot swarms,and underwater operation robots.This article offers an overview of the actuation methods and locomotion patterns utilized by miniature underwater robots and assesses the advantages and disadvantages of each method.Furthermore,the challenges confronting currently available miniature underwater robots are summarized,and future development trends are explored.展开更多
The textile industry,with its centuries-old heritage,is undergoing an unprecedented transformation-one where robots are stealing the spotlight.In factory floors that once hummed with the bustling activity of skilled w...The textile industry,with its centuries-old heritage,is undergoing an unprecedented transformation-one where robots are stealing the spotlight.In factory floors that once hummed with the bustling activity of skilled workers,automated systems are now the rising stars,quietly revolutionizing every aspect of production.展开更多
Jumping robots are highly capable of overcoming obstacles.However,their explosive force,short duration,and variable trajectories pose significant challenges in achieving stable landings in complex environments.Traditi...Jumping robots are highly capable of overcoming obstacles.However,their explosive force,short duration,and variable trajectories pose significant challenges in achieving stable landings in complex environments.Traditional approaches rely heavily on sophisticated algorithms and electronic sensor feedback systems to ensure landing stability,which increases the implementation complexity.Inspired by the process by which humans complete jumps and achieve stable landings in complex environments,this study proposes a novel landing control method for jumping robots.By designing a mechanically coupled perception-control structure based on mechanical logic computing,the robot simulates the real-time transmission of neural signals triggered by the ground reaction force(GRF)in human reflex loops,thereby simplifying traditional control approaches.Through the collaboration of a flexible mechanical spine and a bistable foot module,the robot achieves an average height of 16.8 cm and a distance of 25.36 cm in consecutive stable jumps.It also demonstrates reliable landing performance on challenging terrain including slopes and cobblestone surfaces.This paper proposes a novel landing control method for jumping robots that simplifies traditional control approaches.The method enables stable landings on complex terrain through a mechanically coupled perception-control structure.This approach has potential applications in tasks requiring mobility over uneven terrain,such as search and rescue.展开更多
基金Modernization of Traditional Chinese Medicine Project of National Key R&D Program of China:The construction of the theoretical system of Traditional Chinese Medicine nonpharmacological therapy based on body surface stimulation(2023YFC3502704)Sichuan Provincial Science and Technology Program Project:Research and Development of Chinese Medicine Intelligent Tongue Diagnosis Equipment for Digestive System Chinese Medicine Advantageous Diseases(2023YFS0327)+2 种基金Research and Development of Chinese Medicine Intelligent Detection System for Intestinal Functions(2024YFFK0044)Research and Application of Chinese Medicine Diagnosis and Treatment Program for Herpes Zoster Treated by Shu Pai Fire Acupuncture(2024YFFK0089)Major Research and Development Project of The China Academy of Chinese Medical Sciences Innovation:Construction and application of the theoretical research mode of Traditional Chinese Medicine diagnosis and treatment of modern diseases(CI2021A00104)。
文摘OBJECTIVE:To propose an automatic acupuncture robot system for performing acupuncture operations.METHODS:The acupuncture robot system consists of three components:automatic acupoint localization,acupuncture manipulations,and De Qi sensation detection.The OptiTrack motion capture system is used to locate acupoints,which are then translated into coordinates in the robot control system.A flexible collaborative robot with an intelligent gripper is then used to perform acupuncture manipulations with high precision.In addition,a De Qi sensation detection system is proposed to evaluate the effect of acupuncture.To verify the stability of the designed acupuncture robot,acupoints'coordinates localized by the acupuncture robot are compared with the Gold Standard labeled by a professional acupuncturist using significant level tests.RESULTS:Through repeated experiments for eight acupoints,the acupuncture robot achieved a positioning error within 3.3 mm,which is within the allowable range of needle extraction and acupoint insertion.During needle insertion,the robot arm followed the prescribed trajectory with a mean deviation distance of 0.02 mm and a deviation angle of less than 0.15°.The results of the lifting thrusting operation in the Xingzhen process show that the mean acupuncture depth error of the designed acupuncture robot is approximately 2 mm,which is within the recommended depth range for the Xingzhen operation.In addition,the average detection accuracy of the De Qi keywords is 94.52%,which meets the requirements of acupuncture effect testing for different dialects.CONCLUSION:The proposed acupuncture robot system streamlines the acupuncture process,increases efficiency,and reduces practitioner fatigue,while also allowing for the quantification of acupuncture manipulations and evaluation of therapeutic effects.The development of an acupuncture robot system has the potential to revolutionize low back pain treatment and improve patient outcomes.
基金National Key R&D Program of China(Nos.2023YFC3806900,2022YFE0141400)。
文摘The advent of parametric design has resulted in a marked increase in the complexity of building.Unfortunately,traditional construction methods make it difficult to meet the needs.Therefore,construction robots have become a pivotal production tool in this context.Since the arm span of a single robot usually does not exceed 3 meters,it is not competent for producing large-scale building components.Accordingly,the extension of the robot,s working range is often achieved by external axes.Nevertheless,the coupling control of external axes and robots and their kinematic solution have become key challenges.The primary technical difficulties include customized construction robots,automatic solutions for external axes,fixed axis joints,and specific motion mode control.This paper proposes solutions to these difficulties,introduces the relevant basic concepts and algorithms in detail,and encapsulates these robotics principles and algorithm processes into the Grasshopper plug-in commonly used by architects to form the FURobot software platform.This platform effectively solves the above problems,lowers the threshold for architects,and improves production efficiency.The effectiveness of the algorithm and software in this paper is verified through simulation experiments.
基金Funds for the Central Universities(grant number CUC24SG018).
文摘The proliferation of robot accounts on social media platforms has posed a significant negative impact,necessitating robust measures to counter network anomalies and safeguard content integrity.Social robot detection has emerged as a pivotal yet intricate task,aimed at mitigating the dissemination of misleading information.While graphbased approaches have attained remarkable performance in this realm,they grapple with a fundamental limitation:the homogeneity assumption in graph convolution allows social robots to stealthily evade detection by mingling with genuine human profiles.To unravel this challenge and thwart the camouflage tactics,this work proposed an innovative social robot detection framework based on enhanced HOmogeneity and Random Forest(HORFBot).At the core of HORFBot lies a homogeneous graph enhancement strategy,intricately woven with edge-removal techniques,tometiculously dissect the graph intomultiple revealing subgraphs.Subsequently,leveraging the power of contrastive learning,the proposed methodology meticulously trains multiple graph convolutional networks,each honed to discern nuances within these tailored subgraphs.The culminating stage involves the fusion of these feature-rich base classifiers,harmoniously aggregating their insights to produce a comprehensive detection outcome.Extensive experiments on three social robot detection datasets have shown that this method effectively improves the accuracy of social robot detection and outperforms comparative methods.
基金supported by the National Natural Science Foundation of China(No.52175259)the 2115 Talent Development Program of China Agricultural University.
文摘Rollover accidents involving agricultural wheeled robots,accompanied by severe mechanical impacts,pose serious threats to operational safety and reduce functional efficiency.To address this issue,an active rollover prevention strategy is proposed,utilizing a single‐gimbal control moment gyro(SGCMG),to stabilize typical agricultural robots and prevent potential rollovers.To match the free oscillation of the pivot front axle,a novel recovery torque model of the coupled robot‐SGCMG system is established,in which two patterns are introduced to refine the rollover process with uncertain parameters.Additionally,a lateral stability index is adopted and analyzed to assess the hazard level of potential rollovers.Aimed at handling uncertain parameters and hazard levels,an adaptive backstepping control strategy is developed for real‐time anti‐rollover implementation.Within this strategy,control gains are adaptively tuned based on theoretical derivations,thereby suppressing rollover tendency while minimizing tuning effort.For verification,a scaled experimental platform,designed according to similarity theory,is constructed to ensure safety of personnel and equipment.Experimental results show that the proposed method can precisely regulate the output torque of the gyro,rapidly and effectively mitigating the risk of imminent rollover.This method provides a promising solution for wheeled robot stability and a theoretical basis for advanced safety control in agricultural robotics.
基金supported by the National Key Research&Development Program of China(Grant No.2020YFB1313504)the State Key Laboratory of Mechanics and Control for Aerospace Structures of Nanjing University of Aeronautics and Astronautics.
文摘Gecko-inspired robots have significant potential applications;however,deviations in the yaw direction during locomotion are inevitable for legged robots that lack external sensing.These deviations cause the robot to stray from its intended path.Therefore,a cost-effective and straightforward solution is essential for reducing this deviation.In nature,the tail is often used to maintain balance and stability.Similarly,it has been used in robots to improve manoeuvrability and stability.Our aim is to reduce this deviation using a morphological computation approach,specifically by adding a tail.To test this hypothesis,we investigated four different tails(rigid plate,rigid gecko-shaped,soft plate,and soft gecko-shaped)and assessed the deviation of the robot with these tails on different slopes.Additionally,to evaluate the influence of different tail parameters,such as material,shape,and linkage,we investigated the locomotion performance in terms of the robot's climbing speed on slopes,its ability to turn at narrow corners,and the resistance of the tails to external disturbances.A new auto-reset joint was designed to ensure that a disturbed tail could be quickly reset.Our results demonstrate that the yaw deviation of the robot can be reduced by applying a tail.Among the four tails,the soft gecko-shaped tail was the most effective for most tasks.In summary,our findings demonstrate the functional role of the tail in reducing yaw deviation,improving climbing ability and stability and provide a reference for selecting the most suitable tail for geckoinspired robots.
文摘In recent years,the rapid advancement of artificial intelligence(AI)has fostered deep integration between large AI models and robotic technology.Robots such as robotic dogs capable of carrying heavy loads on mountainous terrain or performing waste disposal tasks and humanoid robots that can execute high-precision component installations have gradually reached the public eye,raising expectations for embodied intelligent robots.
基金Doctoral Research Start-up Fund of Shandong Jiaotong University,Grant/Award Number:BS2024009Natural Science Foundation of Shandong Province of China,Grant/Award Number:ZR2022ME087+1 种基金State Key Laboratory of Robotics and Systems(HIT),Grant/Award Number:SKLRS-2024-KF-09Open Access Publication Fund of Universität Hamburg。
文摘Segmentation of demonstration trajectories and learning the contained motion primitives can effectively enhance the assistive robot's intelligence to flexibly reproduce learnt tasks in an unstructured environment.With the aim to conveniently and accurately segment demonstration trajectories,a novel demonstration trajectory segmentation approach is proposed based on the beta process autoregressive hidden Markov model(BP-ARHMM)algorithm and generalised time warping(GTW)algorithm aiming to enhance the segmentation accuracy utilising acquired demonstration data.This approach first adopts the GTW algorithm to align the multiple demonstration trajectories for the same task.Then,it adopts the BP-AR-HMM algorithm to segment the demonstration trajectories,acquire the contained motion primitives,and establish the related task library.This segmentation approach is validated on the 6-degree-of-freedom JACO robotic arm by assisting users to accomplish a holding water glass task and an eating task.The experimental results show that the motion primitives within the trajectories can be correctly segmented with a high segmentation accuracy.
文摘Since the idea of embodied artificial intelligence was born,the U.S.has been an international frontrunner in the research and development(R&D)and application of the technology,while China has been a capable chaser in recent years,particularly in the area of humanoid robots.
基金the National Natural Science Foundation of China(Nos.52105421 and 52373050)the Guangdong Provincial Natural Science Foundation,China(No.2022A1515011621)+1 种基金the Science and Technology Projects in Guangzhou,China(Nos.202102080330 and 2024A04J6446)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(No.22qntd0101).
文摘Wireless millirobots engineered to infiltrate intricate vascular networks within living organisms,particularly within constricted and confined spaces,hold immense promise for the future of medical treatments.However,with their multifaceted and intricate designs,some robots often grapple with motion and functionality issues when confronted with tight spaces characterized by small cross-sectional dimensions.In this study,drawing inspiration from the high aspect ratio and undulating swimming patterns of snakes,a millimeter-scale,snake-like robot was designed and fabricated via a combination of extrusion-based four-dimensional(4D)printing and magnetic-responsive intelligent functional inks.A sophisticated motion control strategy was also developed,which enables the robots to perform various dynamic movements,such as undulating swimming,precise turns,graceful circular motions,and coordinated cluster movements,under diverse magnetic field variations.As a potential application,the snake robot can navigate and release drugs in a model coronary intervention vessel with tortuous channels and fluid filling.The novel design and promising applications of this snake robot are invaluable tools in future medical surgeries and interventions.
文摘When drones first emerged,most people didn’t know what to do with them,said Professor Zhang Yueming at Beijing University of Technology.“Over time,however,we identified their potential applications.The situation is the same for embodied intelligent robots.”When embodied intelligent robots leave the laboratory,where will they go?
基金supported by the National Natural Science Foundation of China(grant numbers 52305321 and 62273246)The Natural Science Foundation of Jiangsu Province(BK20230496)+3 种基金China Postdoctoral Science Foundation Funded Project(2023M732536 and 2024T170630)Jiangsu Province Excellence Postdoctoral Program(2023ZB218)The National Key R&D Program of China(2022YFB4702202)The Jiangsu Provincial Key Technology R&D Program(BE2021009-02).
文摘Micro aerial vehicles(MAVs)have flexibility and maneuverability,which can offer vast potential for applications in both civilian and military domains.Compared to Fixed-wing/Rotor-wing MAVs,Flapping Wing Micro Robots(FWMRs)have garnered widespread attention among scientists due to their superior miniaturized aerodynamic theory,reduced noise,and enhanced resistance to disturbances in complex and diverse environments.Flying insects,it not only has remarkable flapping flight ability(wings),but also takeoff and landing habitat ability(legs).If the various functions of flying insects can be imitated,efficient biomimetic FWMRs can be produced.This paper provides a review of the flight kinematics,aerodynamics,and wing structural parameters of insects.Then,the traditional wings and folding wings of insect-inspired FWMRs were compared.The research progress in takeoff and landing of FWMRs was also summarized,and the future developments and challenges for insect-inspired FWMRs were discussed.
文摘The increasing use of robotic surgery has seen a wave of technology ripple through global healthcare.Similar changes occurred in aviation several decades ago.New robot types have increased access for both patients and surgeons.The modern robotic curriculum therefore needs to train surgeons of varying experience,gaining access to several robot types,and based in centres around the world.Drawing on this analogy with aviation helps to derive principles for curriculum design,and considers humanemachine interface,non-technical skills,team training,and simulation.The components of the curriculum could be core(cross-platform),platform-specific,specialty-specific,and platform-transitional.Analogous concepts also emerge,including type rating,control as surgery-by-wire,spatio-haptic envelope,and virtual operations.The fourth industrial revolution sets anticipation for progress.
基金Supported by the Special Fund for Basic Scientific Research of Central-Level Public Welfare Scientific Research Institutes(2024-9007)。
文摘The accuracy of center height detection for corrugated beam guardrails is significantly affected by robot posture in the mobile highway guardrail detection systems based on structured light vision.To address the problem,this paper proposes an integrated calibration method for structured light vision sensors.In the proposed system,the sensor is mounted on a crawler-type mobile robot,which scans and measures the center height of guardrails while in motion.However,due to external disturbances such as uneven road surfaces and vehicle vibrations,the posture of the robot may deviate,causing displacement of the sensor platform and resulting in spatial 3D measurement errors.To overcome this issue,the system integrates inertial measurement unit(IMU)data into the sensor calibration process,enabling realtime correction of posture deviations through sensor fusion.This approach achieves a unified calibration of the structured light vision system,effectively compensates for posture-induced errors,and enhances detection accuracy.A prototype was developed and tested in both laboratory and real highway environments.Experimental results demonstrate that the proposed method enables accurate center height detection of guardrails under complex road conditions,significantly reduces posture-related measurement errors,and greatly improves the efficiency and reliability of traditional detection methods.
文摘The global population is increasing,compelling a greater food supply for survival and agricultural activity to support economic development.On the other hand,traditional farm machinery and activities result in the overuse of fertilizers,irrigation water,and land,thereby undermining environmental sustainability.The current study aims to present advanced ground robots as effective solutions for autonomous operations,enhancing efficiency,productivity,and revenues in agriculture while consuming fewer resources and preserving the environment.In this regard,an overview of diverse imaging sensors and navigation technologies for ground robots is provided as key components that assist in automation and autonomy.Recent trends adopted for deploying ground robots while integrating the internet-of-things(IoT),artificial intelligence(AI),cloud computing,edge computing,collaborative robotics,and energy and resource-efficient systems are elucidated,driving smart and sustainable agriculture.Moreover,state-of-the-art applications of ground robots in three agricultural branches are explored.Three case studies from Ireland are presented as evidence of the transformation of traditional agriculture.Some limitations that necessitates future considerations are highlighted.The current study signifies the importance of employing ground robots to leap from conventional agricultural practices to precision and sustainable operations.
基金the National Natural Science Foundation of China(No.12072362)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Wire rope inspection robot is an important tool for wire rope condition monitoring and maintenance,which can accurately locate and judge the damage of wire rope.In addition,the wire rope inspection robot can also be used for cable inspection.First,the crawling structure and crawling mode of the wire rope inspection robot are reviewed,and the characteristics and existing problems of each crawling mode are analyzed separately.Next,the drive mode of the wire rope inspection robot is discussed,the types of commonly used motors are introduced,and the advantages and disadvantages of drive motors and the control modes are compared.Then,the method and principle of the non-destructive detection of the wire rope inspection robot are expounded,and the commonly used detection methods and existing deficiencies are compared.After that,the types of communication modes are compared and analyzed,and the types of wireless communication modes are also introduced.Finally,the current difficult problems of the wire rope inspection robot are summarized,and the future development trend of the wire rope inspection robot is prospected.
基金supported by the Natural Science Foundation of Jiangsu Province,China(BK20220813)the Fundamental Research Funds for the Central Universities(2242023K40014).
文摘Underwater robots have emerged as key tools for marine exploration because of their unique ability to traverse and navigate underwater regions,which pose challenges or dangers to human expeditions.Miniature underwater robots are widely employed in marine science,resource surveys,seabed geological investigations,and marine life observations,owing to their compact size,minimal noise,and agile move-ment.In recent years,researchers have developed diverse miniature underwater robots inspired by bion-ics and other disciplines,leading to many landmark achievements such as centimeter-level wireless control,movement speeds up to hundreds of millimeters per second,underwater three-dimensional motion capabilities,robot swarms,and underwater operation robots.This article offers an overview of the actuation methods and locomotion patterns utilized by miniature underwater robots and assesses the advantages and disadvantages of each method.Furthermore,the challenges confronting currently available miniature underwater robots are summarized,and future development trends are explored.
文摘The textile industry,with its centuries-old heritage,is undergoing an unprecedented transformation-one where robots are stealing the spotlight.In factory floors that once hummed with the bustling activity of skilled workers,automated systems are now the rising stars,quietly revolutionizing every aspect of production.
基金Supported by New Chongqing Innovative Young Talent Project(Grant No.2024NSCQ-qncxX0468)Natural Science Foundation of Chongqing(Grant No.CSTB2022NSCQ-MSX1283)Dreams Foundation of Jianghuai Advanced Technology Center(Grant No.2023-ZM01Z007).
文摘Jumping robots are highly capable of overcoming obstacles.However,their explosive force,short duration,and variable trajectories pose significant challenges in achieving stable landings in complex environments.Traditional approaches rely heavily on sophisticated algorithms and electronic sensor feedback systems to ensure landing stability,which increases the implementation complexity.Inspired by the process by which humans complete jumps and achieve stable landings in complex environments,this study proposes a novel landing control method for jumping robots.By designing a mechanically coupled perception-control structure based on mechanical logic computing,the robot simulates the real-time transmission of neural signals triggered by the ground reaction force(GRF)in human reflex loops,thereby simplifying traditional control approaches.Through the collaboration of a flexible mechanical spine and a bistable foot module,the robot achieves an average height of 16.8 cm and a distance of 25.36 cm in consecutive stable jumps.It also demonstrates reliable landing performance on challenging terrain including slopes and cobblestone surfaces.This paper proposes a novel landing control method for jumping robots that simplifies traditional control approaches.The method enables stable landings on complex terrain through a mechanically coupled perception-control structure.This approach has potential applications in tasks requiring mobility over uneven terrain,such as search and rescue.