期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
Strict greedy design paradigm applied to the stochastic multi-armed bandit problem
1
作者 Joey Hong 《机床与液压》 北大核心 2015年第6期1-6,共6页
The process of making decisions is something humans do inherently and routinely,to the extent that it appears commonplace. However,in order to achieve good overall performance,decisions must take into account both the... The process of making decisions is something humans do inherently and routinely,to the extent that it appears commonplace. However,in order to achieve good overall performance,decisions must take into account both the outcomes of past decisions and opportunities of future ones. Reinforcement learning,which is fundamental to sequential decision-making,consists of the following components: 1 A set of decisions epochs; 2 A set of environment states; 3 A set of available actions to transition states; 4 State-action dependent immediate rewards for each action.At each decision,the environment state provides the decision maker with a set of available actions from which to choose. As a result of selecting a particular action in the state,the environment generates an immediate reward for the decision maker and shifts to a different state and decision. The ultimate goal for the decision maker is to maximize the total reward after a sequence of time steps.This paper will focus on an archetypal example of reinforcement learning,the stochastic multi-armed bandit problem. After introducing the dilemma,I will briefly cover the most common methods used to solve it,namely the UCB and εn- greedy algorithms. I will also introduce my own greedy implementation,the strict-greedy algorithm,which more tightly follows the greedy pattern in algorithm design,and show that it runs comparably to the two accepted algorithms. 展开更多
关键词 Greedy algorithms Allocation strategy Stochastic multi-armed bandit problem
在线阅读 下载PDF
Training a Quantum Neural Network to Solve the Contextual Multi-Armed Bandit Problem
2
作者 Wei Hu James Hu 《Natural Science》 2019年第1期17-27,共11页
Artificial intelligence has permeated all aspects of our lives today. However, to make AI behave like real AI, the critical bottleneck lies in the speed of computing. Quantum computers employ the peculiar and unique p... Artificial intelligence has permeated all aspects of our lives today. However, to make AI behave like real AI, the critical bottleneck lies in the speed of computing. Quantum computers employ the peculiar and unique properties of quantum states such as superposition, entanglement, and interference to process information in ways that classical computers cannot. As a new paradigm of computation, quantum computers are capable of performing tasks intractable for classical processors, thus providing a quantum leap in AI research and making the development of real AI a possibility. In this regard, quantum machine learning not only enhances the classical machine learning approach but more importantly it provides an avenue to explore new machine learning models that have no classical counterparts. The qubit-based quantum computers cannot naturally represent the continuous variables commonly used in machine learning, since the measurement outputs of qubit-based circuits are generally discrete. Therefore, a continuous-variable (CV) quantum architecture based on a photonic quantum computing model is selected for our study. In this work, we employ machine learning and optimization to create photonic quantum circuits that can solve the contextual multi-armed bandit problem, a problem in the domain of reinforcement learning, which demonstrates that quantum reinforcement learning algorithms can be learned by a quantum device. 展开更多
关键词 Continuous-Variable QUANTUM COMPUTERS QUANTUM Machine LEARNING QUANTUM Reinforcement LEARNING CONTEXTUAL multi-armed bandit problem
暂未订购
Mobility-Aware User Scheduling in Wireless Federated Learning with Contextual Multi-Armed Bandit
3
作者 Li Jun Sun Haiyang +4 位作者 Deng Xiumei Wei Kang Shi Long Liang Le Chen Wen 《China Communications》 2025年第11期256-272,共17页
Federated learning(FL)is an intricate and privacy-preserving technique that enables distributed mobile devices to collaboratively train a machine learning model.However,in real-world FL scenarios,the training performa... Federated learning(FL)is an intricate and privacy-preserving technique that enables distributed mobile devices to collaboratively train a machine learning model.However,in real-world FL scenarios,the training performance is affected by a combination of factors such as the mobility of user devices,limited communication and computational resources,thus making the user scheduling problem crucial.To tackle this problem,we jointly consider the user mobility,communication and computational capacities,and develop a stochastic optimization problem to minimize the convergence time.Specifically,we first establish a convergence bound on the training performance based on the heterogeneity of users’data,and then leverage this bound to derive the participation rate for each user.After deriving the user-specific participation rate,we aim to minimize the training latency by optimizing user scheduling under the constraints of the energy consumption and participation rate.Afterward,we transform this optimization problem to the contextual multi-armed bandit framework based on the Lyapunov method and solve it with the submodular reward enhanced linear upper confidence bound(SR-linUCB)algorithm.Experimental results demonstrate the superiority of our proposed algorithm on the training performance and time consumption compared with stateof-the-art algorithms for both independent and identically distributed(IID)and non-IID settings. 展开更多
关键词 contextual multi-armed bandit federated learning resource allocation upper confidence bound user scheduling
在线阅读 下载PDF
Starlet:Network defense resource allocation with multi-armed bandits for cloud-edge crowd sensing in IoT
4
作者 Hui Xia Ning Huang +2 位作者 Xuecai Feng Rui Zhang Chao Liu 《Digital Communications and Networks》 SCIE CSCD 2024年第3期586-596,共11页
The cloud platform has limited defense resources to fully protect the edge servers used to process crowd sensing data in Internet of Things.To guarantee the network's overall security,we present a network defense ... The cloud platform has limited defense resources to fully protect the edge servers used to process crowd sensing data in Internet of Things.To guarantee the network's overall security,we present a network defense resource allocation with multi-armed bandits to maximize the network's overall benefit.Firstly,we propose the method for dynamic setting of node defense resource thresholds to obtain the defender(attacker)benefit function of edge servers(nodes)and distribution.Secondly,we design a defense resource sharing mechanism for neighboring nodes to obtain the defense capability of nodes.Subsequently,we use the decomposability and Lipschitz conti-nuity of the defender's total expected utility to reduce the difference between the utility's discrete and continuous arms and analyze the difference theoretically.Finally,experimental results show that the method maximizes the defender's total expected utility and reduces the difference between the discrete and continuous arms of the utility. 展开更多
关键词 Internet of things Defense resource sharing multi-armed bandits Defense resource allocation
在线阅读 下载PDF
Risk-averse Contextual Multi-armed Bandit Problem with Linear Payoffs
5
作者 Yifan Lin Yuhao Wang Enlu Zhou 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2023年第3期267-288,共22页
In this paper we consider the contextual multi-armed bandit problem for linear payoffs under a risk-averse criterion.At each round,contexts are revealed for each arm,and the decision maker chooses one arm to pull and ... In this paper we consider the contextual multi-armed bandit problem for linear payoffs under a risk-averse criterion.At each round,contexts are revealed for each arm,and the decision maker chooses one arm to pull and receives the corresponding reward.In particular,we consider mean-variance as the risk criterion,and the best arm is the one with the largest mean-variance reward.We apply the Thompson sampling algorithm for the disjoint model,and provide a comprehensive regret analysis for a variant of the proposed algorithm.For T rounds,K actions,and d-dimensional feature vectors,we prove a regret bound of O((1+ρ+1/ρ)d In T ln K/δ√dKT^(1+2∈)ln K/δ1/e)that holds with probability 1-δunder the mean-variance criterion with risk tolerance p,for any 0<ε<1/2,0<δ<1.The empirical performance of our proposed algorithms is demonstrated via a portfolio selection problem. 展开更多
关键词 multi-armed bandit CONTEXT RISK-AVERSE Thompson sampling
原文传递
分布式在线鞍点问题的Bandit反馈优化算法 被引量:1
6
作者 张文韬 张保勇 +1 位作者 袁德明 徐胜元 《自动化学报》 北大核心 2025年第4期857-874,共18页
本文研究了多智能体时变网络上基于Bandit反馈的分布式在线鞍点问题,其中每个智能体通过本地计算和局部信息交流去协作最小化全局损失函数.在Bandit反馈下,包括梯度在内的损失函数信息是不可用的,每个智能体仅能获得和使用在某决策或其... 本文研究了多智能体时变网络上基于Bandit反馈的分布式在线鞍点问题,其中每个智能体通过本地计算和局部信息交流去协作最小化全局损失函数.在Bandit反馈下,包括梯度在内的损失函数信息是不可用的,每个智能体仅能获得和使用在某决策或其附近产生的函数值.为此,结合单点梯度估计方法和预测映射技术,提出一种非欧几里得意义上的分布式在线Bandit鞍点优化算法.以动态鞍点遗憾作为性能指标,对于一般的凸−凹损失函数,建立了遗憾上界并在某些预设条件下确保所提算法的次线性收敛.此外,考虑到在迭代优化中计算优化子程序的精确解通常较为困难,进一步扩展一种基于近似计算方法的算法变种,并严格分析精确度设置对扩展算法遗憾上界的影响.最后,通过一个目标跟踪案例对算法的有效性和先进性进行仿真验证. 展开更多
关键词 bandit 反馈 分布式优化 在线鞍点问题 镜面下降 动态鞍点遗憾
在线阅读 下载PDF
Distributed Weighted Data Aggregation Algorithm in End-to-Edge Communication Networks Based on Multi-armed Bandit 被引量:1
7
作者 Yifei ZOU Senmao QI +1 位作者 Cong'an XU Dongxiao YU 《计算机科学》 CSCD 北大核心 2023年第2期13-22,共10页
As a combination of edge computing and artificial intelligence,edge intelligence has become a promising technique and provided its users with a series of fast,precise,and customized services.In edge intelligence,when ... As a combination of edge computing and artificial intelligence,edge intelligence has become a promising technique and provided its users with a series of fast,precise,and customized services.In edge intelligence,when learning agents are deployed on the edge side,the data aggregation from the end side to the designated edge devices is an important research topic.Considering the various importance of end devices,this paper studies the weighted data aggregation problem in a single hop end-to-edge communication network.Firstly,to make sure all the end devices with various weights are fairly treated in data aggregation,a distributed end-to-edge cooperative scheme is proposed.Then,to handle the massive contention on the wireless channel caused by end devices,a multi-armed bandit(MAB)algorithm is designed to help the end devices find their most appropriate update rates.Diffe-rent from the traditional data aggregation works,combining the MAB enables our algorithm a higher efficiency in data aggregation.With a theoretical analysis,we show that the efficiency of our algorithm is asymptotically optimal.Comparative experiments with previous works are also conducted to show the strength of our algorithm. 展开更多
关键词 Weighted data aggregation End-to-edge communication multi-armed bandit Edge intelligence
在线阅读 下载PDF
Diversity-Based Recruitment in Crowdsensing by Combinatorial Multi-Armed Bandits
8
作者 Abdalaziz Sawwan Jie Wu 《Tsinghua Science and Technology》 2025年第2期732-747,共16页
Mobile Crowdsensing(MCS)represents a transformative approach to collecting data from the environment as it utilizes the ubiquity and sensory capabilities of mobile devices with human participants.This paradigm enables... Mobile Crowdsensing(MCS)represents a transformative approach to collecting data from the environment as it utilizes the ubiquity and sensory capabilities of mobile devices with human participants.This paradigm enables scales of data collection critical for applications ranging from environmental monitoring to urban planning.However,the effective harnessing of this distributed data collection capability faces significant challenges.One of the most significant challenges is the variability in the sensing qualities of the participating devices while they are initially unknown and must be learned over time to optimize task assignments.This paper tackles the dual challenges of managing task diversity to mitigate data redundancy and optimizing task assignment amidst the inherent variability of worker performance.We introduce a novel model that dynamically adjusts task weights based on assignment frequency to promote diversity and incorporates a flexible approach to account for the different qualities of task completion,especially in scenarios with overlapping task assignments.Our strategy aims to maximize the overall weighted quality of data collected within the constraints of a predefined budget.Our strategy leverages a combinatorial multi-armed bandit framework with an upper confidence bound approach to guide decision-making.We demonstrate the efficacy of our approach through a combination of regret analysis and simulations grounded in realistic scenarios. 展开更多
关键词 diverse allocation mobile crowdsensing multi-agent systems multi-armed bandits online learning worker recruitment
原文传递
Stochastic programming based multi-arm bandit offloading strategy for internet of things
9
作者 Bin Cao Tingyong Wu Xiang Bai 《Digital Communications and Networks》 SCIE CSCD 2023年第5期1200-1211,共12页
In order to solve the high latency of traditional cloud computing and the processing capacity limitation of Internet of Things(IoT)users,Multi-access Edge Computing(MEC)migrates computing and storage capabilities from... In order to solve the high latency of traditional cloud computing and the processing capacity limitation of Internet of Things(IoT)users,Multi-access Edge Computing(MEC)migrates computing and storage capabilities from the remote data center to the edge of network,providing users with computation services quickly and directly.In this paper,we investigate the impact of the randomness caused by the movement of the IoT user on decision-making for offloading,where the connection between the IoT user and the MEC servers is uncertain.This uncertainty would be the main obstacle to assign the task accurately.Consequently,if the assigned task cannot match well with the real connection time,a migration(connection time is not enough to process)would be caused.In order to address the impact of this uncertainty,we formulate the offloading decision as an optimization problem considering the transmission,computation and migration.With the help of Stochastic Programming(SP),we use the posteriori recourse to compensate for inaccurate predictions.Meanwhile,in heterogeneous networks,considering multiple candidate MEC servers could be selected simultaneously due to overlapping,we also introduce the Multi-Arm Bandit(MAB)theory for MEC selection.The extensive simulations validate the improvement and effectiveness of the proposed SP-based Multi-arm bandit Method(SMM)for offloading in terms of reward,cost,energy consumption and delay.The results showthat SMMcan achieve about 20%improvement compared with the traditional offloading method that does not consider the randomness,and it also outperforms the existing SP/MAB based method for offloading. 展开更多
关键词 Multi-access computing Internet of things OFFLOADING Stochastic programming multi-arm bandit
在线阅读 下载PDF
基于多臂赌博机遗传算法的无人机与卡车协同配送
10
作者 朱烨娜 刘敏 +1 位作者 赵肄江 陈萱霖 《计算机科学与探索》 北大核心 2025年第8期2261-2272,共12页
无人机与卡车协同配送新模式凭借其高效、环保、不受地形限制等优势,正在改变传统的物流配送方式。带无人机的旅行商问题(TSP-D)是上述配送新模式中的一种经典问题,比纯卡车物流配送更为复杂,需要从无人机和卡车间的协同交互中寻找最优... 无人机与卡车协同配送新模式凭借其高效、环保、不受地形限制等优势,正在改变传统的物流配送方式。带无人机的旅行商问题(TSP-D)是上述配送新模式中的一种经典问题,比纯卡车物流配送更为复杂,需要从无人机和卡车间的协同交互中寻找最优的配送组合,带来了新的挑战。提出了一种基于多臂赌博机的混合遗传算法来求解TSP-D。采用了自然数排列的染色体编码,并应用基于动态规划的精确划分方法对其解码,以生成无人机与卡车协同配送解方案。新设计了一种多臂赌博机局部搜索策略,将局部搜索算子池中的五种不同搜索算子视作赌博机的多个“臂”。先通过赌博机摇臂搜索后解方案适应值的提升程度来计算奖励,再根据ε-greedy强化学习方法计算各个“臂”被选中的概率,以便选择合适的搜索算子来增强算法的局部搜索能力。实验结果表明,提出的算法与其他主流的算法相比,在不同分布与不同规模的多数测试实例上均有更低的解方案成本。进一步的实验分析验证了多臂赌博机局部搜索策略比其他局部搜索策略具有更好的自适应能力,能显著提升算法的性能。最后,将提出的算法应用于长沙市一个实际的配送案例,展示了其现实应用效果。 展开更多
关键词 无人机卡车协同配送 带无人机的旅行商问题 混合遗传算法 多臂赌博机
在线阅读 下载PDF
基于鲁棒Restless Bandits模型的多水下自主航行器任务分配策略 被引量:2
11
作者 李鑫滨 章寿涛 +1 位作者 闫磊 韩松 《计算机应用》 CSCD 北大核心 2019年第10期2795-2801,共7页
针对水下监测网络中多自主航行器(AUV)协同信息采集任务分配问题进行了研究。首先,为了同时考虑系统中目标传感器的节点状态与声学信道状态对AUV任务分配问题的影响,构建了水声监测网络系统的综合模型;其次,针对水下存在的多未知干扰因... 针对水下监测网络中多自主航行器(AUV)协同信息采集任务分配问题进行了研究。首先,为了同时考虑系统中目标传感器的节点状态与声学信道状态对AUV任务分配问题的影响,构建了水声监测网络系统的综合模型;其次,针对水下存在的多未知干扰因素并考虑了模型产生不精确的情况,基于强化学习理论将多AUV任务分配系统建模为鲁棒无休止赌博机问题(RBP)。最后,提出鲁棒Whittle算法求解所建立的RBP,从而求解得出多AUV的任务分配策略。仿真结果表明,在干扰环境下与未考虑干扰因素的分配策略相比,在系统分别选择1、2、3个目标时,鲁棒AUV分配策略对应的系统累计回报值参数的性能分别提升了5.5%、12.3%和9.6%,验证了所提方法的有效性。 展开更多
关键词 水声监测网络 水下自主航行器任务分配 鲁棒控制 不确定模型 无休止赌博机问题
在线阅读 下载PDF
Large Deviation Algorithms for Thresholding Bandit Problem
12
作者 Manjing Zhang Guangwu Liu +2 位作者 Shan Dai Jiaqi Chen Philippe Fournier-Viger 《Big Data Mining and Analytics》 2025年第5期1189-1209,共21页
The Thresholding Bandit(TB)problem is a popular sequential decision-making problem,which aims at identifying the systems whose means are greater than a threshold.Instead of working on the upper bound of a loss functio... The Thresholding Bandit(TB)problem is a popular sequential decision-making problem,which aims at identifying the systems whose means are greater than a threshold.Instead of working on the upper bound of a loss function,our approach stands out from conventional practices by directly minimizing the loss itself.Leveraging the large deviation theory,we firstly provide an asymptotically optimal allocation rule for the TB problem,and then propose a parameter-free Large Deviation(LD)algorithm to make the allocation rule implementable.Central limit theorem-based Large Deviation(CLD)algorithm is further proposed as a supplement to improve the computation efficiency using normal approximation.Extensive experiments are conducted to validate the superiority of our algorithms compared to existing methods,and demonstrate their broader applications to more general distributions and various kinds of loss functions. 展开更多
关键词 Thresholding bandit(TB)problem Large Deviation(LD)theory optimal allocation rule parameter-free policy asymptotical optimality
原文传递
Residential HVAC Aggregation Based on Risk-averse Multi-armed Bandit Learning for Secondary Frequency Regulation 被引量:8
13
作者 Xinyi Chen Qinran Hu +3 位作者 Qingxin Shi Xiangjun Quan Zaijun Wu Fangxing Li 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2020年第6期1160-1167,共8页
As the penetration of renewable energy continues to increase,stochastic and intermittent generation resources gradually replace the conventional generators,bringing significant challenges in stabilizing power system f... As the penetration of renewable energy continues to increase,stochastic and intermittent generation resources gradually replace the conventional generators,bringing significant challenges in stabilizing power system frequency.Thus,aggregating demand-side resources for frequency regulation attracts attentions from both academia and industry.However,in practice,conventional aggregation approaches suffer from random and uncertain behaviors of the users such as opting out control signals.The risk-averse multi-armed bandit learning approach is adopted to learn the behaviors of the users and a novel aggregation strategy is developed for residential heating,ventilation,and air conditioning(HVAC)to provide reliable secondary frequency regulation.Compared with the conventional approach,the simulation results show that the risk-averse multiarmed bandit learning approach performs better in secondary frequency regulation with fewer users being selected and opting out of the control.Besides,the proposed approach is more robust to random and changing behaviors of the users. 展开更多
关键词 HEATING ventilation and air conditioning(HVAC) load control multi-armed bandit online learning secondary frequency regulation
原文传递
面向异构ICN节点的副本选择算法研究
14
作者 高雷 朱小勇 《网络新媒体技术》 2024年第4期26-34,共9页
信息中心网络(ICN)是一种革新式网络架构,打破了传统TCP/IP网络端到端传输的限制,提升内容分发效率。ICN构建全网规模的缓存系统,在网络内采用多副本冗余的方式缓存数据内容,以便用户就近获取。与传统互联网缓存系统不同,ICN的缓存呈现... 信息中心网络(ICN)是一种革新式网络架构,打破了传统TCP/IP网络端到端传输的限制,提升内容分发效率。ICN构建全网规模的缓存系统,在网络内采用多副本冗余的方式缓存数据内容,以便用户就近获取。与传统互联网缓存系统不同,ICN的缓存呈现泛在化的特点,工作设备是网络基础设施,导致服务资源的异构性普遍存在。在这种环境下,选择适当的副本节点成为重要研究问题。本文首先通过M/M/1排队模型对异构ICN节点进行抽象建模和分析,然后将异构副本节点的选择建模成多臂老虎机问题,继而引入UCB1算法来探索并学习最优决策。仿真实验结果表明,该算法在提高缓存服务可靠性和缩短内容获取时延方面具有明显优势,算法使服务可靠性达到99.15%,将内容获取的平均时延最大缩短8.63%。 展开更多
关键词 信息中心网络 网内缓存 副本选择 M/M/1 排队模型 多臂老虎机问题
在线阅读 下载PDF
基于信任和K臂赌博机问题选择多问题协商对象 被引量:14
15
作者 王黎明 黄厚宽 柴玉梅 《软件学报》 EI CSCD 北大核心 2006年第12期2537-2546,共10页
Agent之间的多问题协商(multi-issuenegotiation)是一个复杂的动态交互过程.解决协商之前的对象选择问题在电子商务中有着重要的应用价值.为了提高多问题协商的准确性和购物Agent的效用,主要解决协商前的销售Agent的选择问题.为了充分... Agent之间的多问题协商(multi-issuenegotiation)是一个复杂的动态交互过程.解决协商之前的对象选择问题在电子商务中有着重要的应用价值.为了提高多问题协商的准确性和购物Agent的效用,主要解决协商前的销售Agent的选择问题.为了充分利用协商历史,实现探索(exploration)和利用(exploitation)的折衷,把销售Agent的选择问题转变成K臂赌博机问题(K-armedbanditproblem)来求解.提出了信任和声誉的度量模型,结合K臂赌博机问题的求解技术,采用学习机制,提出了几个确定奖励分布的改进算法.最后,以模拟协商过程为基础,将改进算法、信任和声誉有机地结合起来,提高了选择销售Agent的准确性和实用性.几个实验都说明了该工作在应用中的有效性. 展开更多
关键词 AGENT 协商水臂赌博机问题 信任 声誉 效用
在线阅读 下载PDF
一种满足马尔可夫性质的不完全信息下的Web服务组合方法 被引量:19
16
作者 陈彦萍 李增智 +1 位作者 唐亚哲 郭志胜 《计算机学报》 EI CSCD 北大核心 2006年第7期1076-1083,共8页
针对满足马尔可夫性质的服务组合过程给出了按照用户服务质量(QoS)要求的服务组合方法.首先,提出了一种支持QoS属性描述的Web服务描述模型,并实现了对组合服务整个生命周期的QoS信息描述.在此基础上提出了基于多目标决策理论和k臂赌... 针对满足马尔可夫性质的服务组合过程给出了按照用户服务质量(QoS)要求的服务组合方法.首先,提出了一种支持QoS属性描述的Web服务描述模型,并实现了对组合服务整个生命周期的QoS信息描述.在此基础上提出了基于多目标决策理论和k臂赌博机理论的服务选择算法,与同类方法相比,该方法可以在不完全信息下根据用户对QoS属性的偏好来选择合适的候选服务进行组合.最后,给出了QoS驱动的服务组合框架E-WsFrame和具体实现,并分析了实验结果.实验表明E-WsFrame可以综合考虑服务组合的功能要求和QoS要求,从而根据服务请求实现服务的自动组合. 展开更多
关键词 面向服务的体系结构 WEB服务 服务组合 服务管理 QOS k臂赌博机算法
在线阅读 下载PDF
浅析大革命时期中共关于土匪问题的策略方针 被引量:1
17
作者 王菠 董辉 《西南石油大学学报(社会科学版)》 2014年第2期110-115,共6页
土匪自古有之,近代以来,随着中国社会政治、经济危机的加剧,土匪问题更是愈演愈烈,截至中共成立时期,中国已俨然成为"土匪王国"、"盗匪世界"。关于土匪问题,中国共产党在成立后和大革命时期,坚持用马克思主义的立... 土匪自古有之,近代以来,随着中国社会政治、经济危机的加剧,土匪问题更是愈演愈烈,截至中共成立时期,中国已俨然成为"土匪王国"、"盗匪世界"。关于土匪问题,中国共产党在成立后和大革命时期,坚持用马克思主义的立场、观点分析处理问题,对中国兵匪互通的特殊国情、匪情保持清醒的认识,充分认识到土匪问题的严重性及其对国民革命的影响,号召并组织民众武装起来以抵御匪患,取得了良好的社会成效。 展开更多
关键词 大革命时期 中国共产党 土匪 兵匪互通 关于土匪问题的策略
在线阅读 下载PDF
论朱德关于土匪问题的认识及军事实践
18
作者 曾庆亮 孙祥榕 侯发兵 《西华师范大学学报(哲学社会科学版)》 2020年第4期76-81,共6页
朱德长期接触和处理土匪问题,形成了有关这一问题的一系列认识并有诸多军事实践。早在青少年时期,朱德即对被满清政府斥为“土匪”的底层群众抱以极大的同情;在滇军任职时期,他对危害百姓生命财产安全的各路土匪进行了艰苦的围剿,并总... 朱德长期接触和处理土匪问题,形成了有关这一问题的一系列认识并有诸多军事实践。早在青少年时期,朱德即对被满清政府斥为“土匪”的底层群众抱以极大的同情;在滇军任职时期,他对危害百姓生命财产安全的各路土匪进行了艰苦的围剿,并总结了丰富的游击战经验;新民主主义革命时期,他指挥革命军队对危害革命和抗战的土匪势力进行了坚决肃清,并从阶级角度指出土匪问题根源于土地制度,其实质是阶级问题,作为社会总问题的一部分它需要同时也只能在对旧社会的根本改造中得到彻底解决;新中国成立后,为维护国家安全和社会稳定,他命令人民解放军严厉镇压土匪活动并对新疆等地的剿匪问题有过重要指示。 展开更多
关键词 朱德 土匪 土匪问题 剿匪
在线阅读 下载PDF
浅析大革命时期中共关于土匪问题的策略方针
19
作者 王菠 董辉 《中国井冈山干部学院学报》 2014年第1期81-86,共6页
近代以来,随着中国社会、政治、经济危机的加剧,土匪问题愈演愈烈,至中共成立时期,中国已俨然被西方学者描绘成为"土匪王国"、"盗匪世界"。中国共产党在成立后和大革命时期,坚持用马克思主义的立场、观点分析处理... 近代以来,随着中国社会、政治、经济危机的加剧,土匪问题愈演愈烈,至中共成立时期,中国已俨然被西方学者描绘成为"土匪王国"、"盗匪世界"。中国共产党在成立后和大革命时期,坚持用马克思主义的立场、观点分析处理土匪问题,对中国兵匪互通的特殊国情、匪情保持清醒认识,充分认识到土匪问题的严重性及其对国民革命的影响,针对土匪问题的不同情形,采取有效的策略方针加以妥善处理,有力地推进了革命运动的开展,取得了一定的理论与实践积淀。 展开更多
关键词 大革命时期 中国共产党 土匪问题 策略 方针
在线阅读 下载PDF
Optimal index shooting policy for layered missile defense system 被引量:2
20
作者 LI Longyue FAN Chengli +2 位作者 XING Qinghua XU Hailong ZHAO Huizhen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期118-129,共12页
In order to cope with the increasing threat of the ballistic missile(BM)in a shorter reaction time,the shooting policy of the layered defense system needs to be optimized.The main decisionmaking problem of shooting op... In order to cope with the increasing threat of the ballistic missile(BM)in a shorter reaction time,the shooting policy of the layered defense system needs to be optimized.The main decisionmaking problem of shooting optimization is how to choose the next BM which needs to be shot according to the previous engagements and results,thus maximizing the expected return of BMs killed or minimizing the cost of BMs penetration.Motivated by this,this study aims to determine an optimal shooting policy for a two-layer missile defense(TLMD)system.This paper considers a scenario in which the TLMD system wishes to shoot at a collection of BMs one at a time,and to maximize the return obtained from BMs killed before the system demise.To provide a policy analysis tool,this paper develops a general model for shooting decision-making,the shooting engagements can be described as a discounted reward Markov decision process.The index shooting policy is a strategy that can effectively balance the shooting returns and the risk that the defense mission fails,and the goal is to maximize the return obtained from BMs killed before the system demise.The numerical results show that the index policy is better than a range of competitors,especially the mean returns and the mean killing BM number. 展开更多
关键词 Gittins index shooting policy layered missile defense multi-armed bandits problem Markov decision process
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部