期刊文献+
共找到128篇文章
< 1 2 7 >
每页显示 20 50 100
Mobility-Aware User Scheduling in Wireless Federated Learning with Contextual Multi-Armed Bandit
1
作者 Li Jun Sun Haiyang +4 位作者 Deng Xiumei Wei Kang Shi Long Liang Le Chen Wen 《China Communications》 2025年第11期256-272,共17页
Federated learning(FL)is an intricate and privacy-preserving technique that enables distributed mobile devices to collaboratively train a machine learning model.However,in real-world FL scenarios,the training performa... Federated learning(FL)is an intricate and privacy-preserving technique that enables distributed mobile devices to collaboratively train a machine learning model.However,in real-world FL scenarios,the training performance is affected by a combination of factors such as the mobility of user devices,limited communication and computational resources,thus making the user scheduling problem crucial.To tackle this problem,we jointly consider the user mobility,communication and computational capacities,and develop a stochastic optimization problem to minimize the convergence time.Specifically,we first establish a convergence bound on the training performance based on the heterogeneity of users’data,and then leverage this bound to derive the participation rate for each user.After deriving the user-specific participation rate,we aim to minimize the training latency by optimizing user scheduling under the constraints of the energy consumption and participation rate.Afterward,we transform this optimization problem to the contextual multi-armed bandit framework based on the Lyapunov method and solve it with the submodular reward enhanced linear upper confidence bound(SR-linUCB)algorithm.Experimental results demonstrate the superiority of our proposed algorithm on the training performance and time consumption compared with stateof-the-art algorithms for both independent and identically distributed(IID)and non-IID settings. 展开更多
关键词 contextual multi-armed bandit federated learning resource allocation upper confidence bound user scheduling
在线阅读 下载PDF
Demonstration-enhanced policy search for space multi-arm robot collaborative skill learning
2
作者 Tian GAO Chengfei YUE +1 位作者 Xiaozhe JU Tao LIN 《Chinese Journal of Aeronautics》 2025年第3期462-473,共12页
The increasing complexity of on-orbit tasks imposes great demands on the flexible operation of space robotic arms, prompting the development of space robots from single-arm manipulation to multi-arm collaboration. In ... The increasing complexity of on-orbit tasks imposes great demands on the flexible operation of space robotic arms, prompting the development of space robots from single-arm manipulation to multi-arm collaboration. In this paper, a combined approach of Learning from Demonstration (LfD) and Reinforcement Learning (RL) is proposed for space multi-arm collaborative skill learning. The combination effectively resolves the trade-off between learning efficiency and feasible solution in LfD, as well as the time-consuming pursuit of the optimal solution in RL. With the prior knowledge of LfD, space robotic arms can achieve efficient guided learning in high-dimensional state-action space. Specifically, an LfD approach with Probabilistic Movement Primitives (ProMP) is firstly utilized to encode and reproduce the demonstration actions, generating a distribution as the initialization of policy. Then in the RL stage, a Relative Entropy Policy Search (REPS) algorithm modified in continuous state-action space is employed for further policy improvement. More importantly, the learned behaviors can maintain and reflect the characteristics of demonstrations. In addition, a series of supplementary policy search mechanisms are designed to accelerate the exploration process. The effectiveness of the proposed method has been verified both theoretically and experimentally. Moreover, comparisons with state-of-the-art methods have confirmed the outperformance of the approach. 展开更多
关键词 Space multi-arm collaboration Demonstrations .Reinforcement Learning Probabilistic Movement Primitives Relative Entropy Policy Search Policy search mechanism
原文传递
Apo E基因multi-ARMS与PCR-RFLP分型法的比较研究
3
作者 唐慧 董虹 +3 位作者 高建梅 华映昆 张丽平 严新民 《大理学院学报(综合版)》 CAS 2002年第3期1-4,共4页
目的 :以聚合酶链反应—限制性酶切片段长度多态性(PCR -RFLP)方法作为参照 ,建立一种ApoE基因分型方法。方法 :以基因组DNA为模板 ,用PCR -RFLP法和等位基因特异性复合PCR方法(MultiplexAmplificationRefractoryMutationSystem,multi-A... 目的 :以聚合酶链反应—限制性酶切片段长度多态性(PCR -RFLP)方法作为参照 ,建立一种ApoE基因分型方法。方法 :以基因组DNA为模板 ,用PCR -RFLP法和等位基因特异性复合PCR方法(MultiplexAmplificationRefractoryMutationSystem,multi-ARMS)检测了75例个体的ApoE基因型。结果 :共检测出5种常见的ApoE基因型 :ε2/2 ,ε3/3 ,ε2/3,ε3/4 ,ε2/4。两种方法所得的结果完全一致。结论 :说明multi-ARMS方法快速简便、准确可靠 。 展开更多
关键词 APOE基因 multi-armS PCR-RFLP分型法 比较研究 基因分型
在线阅读 下载PDF
Impedance control of multi-arm space robot for the capture of non-cooperative targets 被引量:8
4
作者 GE Dongming SUN Guanghui +1 位作者 ZOU Yuanjie SHI Jixin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第5期1051-1061,共11页
Robotic systems are expected to play an increasingly important role in future space activities. The robotic on-orbital service, whose key is the capturing technology, becomes a research hot spot in recent years. This ... Robotic systems are expected to play an increasingly important role in future space activities. The robotic on-orbital service, whose key is the capturing technology, becomes a research hot spot in recent years. This paper studies the dynamics modeling and impedance control of a multi-arm free-flying space robotic system capturing a non-cooperative target. Firstly, a control-oriented dynamics model is essential in control algorithm design and code realization. Unlike a numerical algorithm, an analytical approach is suggested. Using a general and a quasi-coordinate Lagrangian formulation, the kinematics and dynamics equations are derived.Then, an impedance control algorithm is developed which allows coordinated control of the multiple manipulators to capture a target.Through enforcing a reference impedance, end-effectors behave like a mass-damper-spring system fixed in inertial space in reaction to any contact force between the capture hands and the target. Meanwhile, the position and the attitude of the base are maintained stably by using gas jet thrusters to work against the manipulators' reaction. Finally, a simulation by using a space robot with two manipulators and a free-floating non-cooperative target is illustrated to verify the effectiveness of the proposed method. 展开更多
关键词 multi-arm space robot impedance control non-cooperative target CAPTURE
在线阅读 下载PDF
Distributed Weighted Data Aggregation Algorithm in End-to-Edge Communication Networks Based on Multi-armed Bandit 被引量:1
5
作者 Yifei ZOU Senmao QI +1 位作者 Cong'an XU Dongxiao YU 《计算机科学》 CSCD 北大核心 2023年第2期13-22,共10页
As a combination of edge computing and artificial intelligence,edge intelligence has become a promising technique and provided its users with a series of fast,precise,and customized services.In edge intelligence,when ... As a combination of edge computing and artificial intelligence,edge intelligence has become a promising technique and provided its users with a series of fast,precise,and customized services.In edge intelligence,when learning agents are deployed on the edge side,the data aggregation from the end side to the designated edge devices is an important research topic.Considering the various importance of end devices,this paper studies the weighted data aggregation problem in a single hop end-to-edge communication network.Firstly,to make sure all the end devices with various weights are fairly treated in data aggregation,a distributed end-to-edge cooperative scheme is proposed.Then,to handle the massive contention on the wireless channel caused by end devices,a multi-armed bandit(MAB)algorithm is designed to help the end devices find their most appropriate update rates.Diffe-rent from the traditional data aggregation works,combining the MAB enables our algorithm a higher efficiency in data aggregation.With a theoretical analysis,we show that the efficiency of our algorithm is asymptotically optimal.Comparative experiments with previous works are also conducted to show the strength of our algorithm. 展开更多
关键词 Weighted data aggregation End-to-edge communication multi-armed bandit Edge intelligence
在线阅读 下载PDF
Stochastic programming based multi-arm bandit offloading strategy for internet of things
6
作者 Bin Cao Tingyong Wu Xiang Bai 《Digital Communications and Networks》 SCIE CSCD 2023年第5期1200-1211,共12页
In order to solve the high latency of traditional cloud computing and the processing capacity limitation of Internet of Things(IoT)users,Multi-access Edge Computing(MEC)migrates computing and storage capabilities from... In order to solve the high latency of traditional cloud computing and the processing capacity limitation of Internet of Things(IoT)users,Multi-access Edge Computing(MEC)migrates computing and storage capabilities from the remote data center to the edge of network,providing users with computation services quickly and directly.In this paper,we investigate the impact of the randomness caused by the movement of the IoT user on decision-making for offloading,where the connection between the IoT user and the MEC servers is uncertain.This uncertainty would be the main obstacle to assign the task accurately.Consequently,if the assigned task cannot match well with the real connection time,a migration(connection time is not enough to process)would be caused.In order to address the impact of this uncertainty,we formulate the offloading decision as an optimization problem considering the transmission,computation and migration.With the help of Stochastic Programming(SP),we use the posteriori recourse to compensate for inaccurate predictions.Meanwhile,in heterogeneous networks,considering multiple candidate MEC servers could be selected simultaneously due to overlapping,we also introduce the Multi-Arm Bandit(MAB)theory for MEC selection.The extensive simulations validate the improvement and effectiveness of the proposed SP-based Multi-arm bandit Method(SMM)for offloading in terms of reward,cost,energy consumption and delay.The results showthat SMMcan achieve about 20%improvement compared with the traditional offloading method that does not consider the randomness,and it also outperforms the existing SP/MAB based method for offloading. 展开更多
关键词 Multi-access computing Internet of things OFFLOADING Stochastic programming multi-arm bandit
在线阅读 下载PDF
Cross-linking Copolymerization of Acrylic Acid and Multi-armed Cross-linkers
7
作者 Qiang CHEN Ying GUAN +2 位作者 Xian Min ZHANG Yu Xing PENG Jian XU 《Chinese Chemical Letters》 SCIE CAS CSCD 2001年第11期1029-1032,共4页
The overall cross-linking copolymerization of acrylic acid and multi-armed cross-linkers are investigated by in situ interferometry. The results show that the more arms the cross-linkers have, the higher the polymeriz... The overall cross-linking copolymerization of acrylic acid and multi-armed cross-linkers are investigated by in situ interferometry. The results show that the more arms the cross-linkers have, the higher the polymerization rate is. However, they also mean the existence of less cross-linking efficiency and some defects in gel network. 展开更多
关键词 multi-armed cross-linker acrylic acid in situ interferometry
在线阅读 下载PDF
Starlet:Network defense resource allocation with multi-armed bandits for cloud-edge crowd sensing in IoT
8
作者 Hui Xia Ning Huang +2 位作者 Xuecai Feng Rui Zhang Chao Liu 《Digital Communications and Networks》 SCIE CSCD 2024年第3期586-596,共11页
The cloud platform has limited defense resources to fully protect the edge servers used to process crowd sensing data in Internet of Things.To guarantee the network's overall security,we present a network defense ... The cloud platform has limited defense resources to fully protect the edge servers used to process crowd sensing data in Internet of Things.To guarantee the network's overall security,we present a network defense resource allocation with multi-armed bandits to maximize the network's overall benefit.Firstly,we propose the method for dynamic setting of node defense resource thresholds to obtain the defender(attacker)benefit function of edge servers(nodes)and distribution.Secondly,we design a defense resource sharing mechanism for neighboring nodes to obtain the defense capability of nodes.Subsequently,we use the decomposability and Lipschitz conti-nuity of the defender's total expected utility to reduce the difference between the utility's discrete and continuous arms and analyze the difference theoretically.Finally,experimental results show that the method maximizes the defender's total expected utility and reduces the difference between the discrete and continuous arms of the utility. 展开更多
关键词 Internet of things Defense resource sharing multi-armed bandits Defense resource allocation
在线阅读 下载PDF
Training a Quantum Neural Network to Solve the Contextual Multi-Armed Bandit Problem
9
作者 Wei Hu James Hu 《Natural Science》 2019年第1期17-27,共11页
Artificial intelligence has permeated all aspects of our lives today. However, to make AI behave like real AI, the critical bottleneck lies in the speed of computing. Quantum computers employ the peculiar and unique p... Artificial intelligence has permeated all aspects of our lives today. However, to make AI behave like real AI, the critical bottleneck lies in the speed of computing. Quantum computers employ the peculiar and unique properties of quantum states such as superposition, entanglement, and interference to process information in ways that classical computers cannot. As a new paradigm of computation, quantum computers are capable of performing tasks intractable for classical processors, thus providing a quantum leap in AI research and making the development of real AI a possibility. In this regard, quantum machine learning not only enhances the classical machine learning approach but more importantly it provides an avenue to explore new machine learning models that have no classical counterparts. The qubit-based quantum computers cannot naturally represent the continuous variables commonly used in machine learning, since the measurement outputs of qubit-based circuits are generally discrete. Therefore, a continuous-variable (CV) quantum architecture based on a photonic quantum computing model is selected for our study. In this work, we employ machine learning and optimization to create photonic quantum circuits that can solve the contextual multi-armed bandit problem, a problem in the domain of reinforcement learning, which demonstrates that quantum reinforcement learning algorithms can be learned by a quantum device. 展开更多
关键词 Continuous-Variable QUANTUM COMPUTERS QUANTUM Machine LEARNING QUANTUM Reinforcement LEARNING CONTEXTUAL multi-armed BANDIT PROBLEM
暂未订购
Strict greedy design paradigm applied to the stochastic multi-armed bandit problem
10
作者 Joey Hong 《机床与液压》 北大核心 2015年第6期1-6,共6页
The process of making decisions is something humans do inherently and routinely,to the extent that it appears commonplace. However,in order to achieve good overall performance,decisions must take into account both the... The process of making decisions is something humans do inherently and routinely,to the extent that it appears commonplace. However,in order to achieve good overall performance,decisions must take into account both the outcomes of past decisions and opportunities of future ones. Reinforcement learning,which is fundamental to sequential decision-making,consists of the following components: 1 A set of decisions epochs; 2 A set of environment states; 3 A set of available actions to transition states; 4 State-action dependent immediate rewards for each action.At each decision,the environment state provides the decision maker with a set of available actions from which to choose. As a result of selecting a particular action in the state,the environment generates an immediate reward for the decision maker and shifts to a different state and decision. The ultimate goal for the decision maker is to maximize the total reward after a sequence of time steps.This paper will focus on an archetypal example of reinforcement learning,the stochastic multi-armed bandit problem. After introducing the dilemma,I will briefly cover the most common methods used to solve it,namely the UCB and εn- greedy algorithms. I will also introduce my own greedy implementation,the strict-greedy algorithm,which more tightly follows the greedy pattern in algorithm design,and show that it runs comparably to the two accepted algorithms. 展开更多
关键词 Greedy algorithms Allocation strategy Stochastic multi-armed bandit problem
在线阅读 下载PDF
Meta-Analysis of Multi-Arm Trials Using Binomial Approach
11
作者 Hathaikan Chootrakool Pichet Treewai 《Open Journal of Statistics》 2022年第1期15-32,共18页
Most meta-analysis has concentrated on combining of treatment effect measures based on comparisons of two treatments. Meta-analysis of multi-arm trials is a key component of submission to summarize evidence from all p... Most meta-analysis has concentrated on combining of treatment effect measures based on comparisons of two treatments. Meta-analysis of multi-arm trials is a key component of submission to summarize evidence from all possible studies. In this paper, an exact binomial model is proposed by using logistic regression model to compare different treatment in multi-arm trials. Two approaches such as unconditional maximum likelihood and conditional maximum likelihood have been determined and compared for the logistic regression model. The proposed models are performed using the data from 27 randomized clinical trials (RCTs) which determine the efficacy of antiplatelet therapy in reduction venous thrombosis and pulmonary embolism. 展开更多
关键词 META-ANALYSIS multi-arm Trials Binomial Approach
在线阅读 下载PDF
具有边界值未知控制增益和输出约束的多机械臂有限时间控制
12
作者 李绍宇 王福杰 +4 位作者 钟金明 李醒 郭芳 秦毅 孙泽文 《控制理论与应用》 北大核心 2025年第9期1827-1837,共11页
针对具有边界值未知控制增益和输出全状态约束的多机械手协同搬运系统,提出一种基于积分障碍Lyapunov函数和径向基函数神经网络的鲁棒有限时间分布式自适应控制算法.该算法采用自适应径向基函数神经网络逼近系统的未知项,利用积分型障碍... 针对具有边界值未知控制增益和输出全状态约束的多机械手协同搬运系统,提出一种基于积分障碍Lyapunov函数和径向基函数神经网络的鲁棒有限时间分布式自适应控制算法.该算法采用自适应径向基函数神经网络逼近系统的未知项,利用积分型障碍Lyapunov函数保证输出的位置和速度信号不违背约束,并通过包含控制增益未知下确界的Lyapunov函数和在控制律中引入辅助项调节参数,在无需获取边界值信息的情况下实现了对未知控制增益的补偿.最后,结合有限时间稳定理论和反步式控制框架,实现了系统的位置、速度和内力误差在有限时间内有界收敛. 展开更多
关键词 未知控制增益 多机械臂系统 积分障碍Lyapunov函数 有时间控制
在线阅读 下载PDF
Flex-QUIC:AI for QUIC Transport Protocol with High-Efficiency in Future Wireless Networks
13
作者 Jiang Tao Liu Yang +2 位作者 Zhang Yu Peng Miaoran Wang Haoyu 《China Communications》 2025年第12期1-14,共14页
This paper proposes Flex-QUIC,an AIempowered quick UDP Internet connections(QUIC)enhancement framework that addresses the challenge of degraded transmission efficiency caused by the static parameterization of acknowle... This paper proposes Flex-QUIC,an AIempowered quick UDP Internet connections(QUIC)enhancement framework that addresses the challenge of degraded transmission efficiency caused by the static parameterization of acknowledgment(ACK)mechanisms,loss detection,and forward error correction(FEC)in dynamic wireless networks.Unlike the standard QUIC protocol,Flex-QUIC systematically integrates machine learning across three critical modules to achieve high-efficiency operation.First,a contextual multi-armed bandit-based ACK adaptation mechanism optimizes the ACK ratio to reduce wireless channel contention.Second,the adaptive loss detection module utilizes a long short-term memory(LSTM)model to predict the reordering displacement for optimizing the packet reordering tolerance.Third,the FEC transmission scheme jointly adjusts the redundancy level based on the LSTM-predicted loss rate and congestion window state.Extensive evaluations across Wi-Fi,5G,and satellite network scenarios demonstrate that Flex-QUIC significantly improves throughput and latency reduction compared to the standard QUIC and other enhanced QUIC variants,highlighting its adaptability to diverse and dynamic network conditions.Finally,we further discuss open issues in deploying AI-native transport protocols. 展开更多
关键词 contextual multi-armed bandit long shortterm memory QUIC transport protocol wireless networks
在线阅读 下载PDF
多机械臂协同作业的结构优化与性能提升研究
14
作者 贾杏梅 《机械管理开发》 2025年第12期29-30,33,共3页
多机械臂在协同作业过程中易出现结构干涉和空间冲突,从而限制复杂工序机械系统性能的提升。为提升协同作业的空间协调性与结构稳定性,围绕机械臂结构配置、工作半径及其布置方式进行了优化设计。过程中结合机械参数对设备布局进行重构... 多机械臂在协同作业过程中易出现结构干涉和空间冲突,从而限制复杂工序机械系统性能的提升。为提升协同作业的空间协调性与结构稳定性,围绕机械臂结构配置、工作半径及其布置方式进行了优化设计。过程中结合机械参数对设备布局进行重构,并优化机械设备整体工作流程。实验显示,研究方法在10个监测点位中的控制位置误差在0.102~0.130μm区间内;设备平均无故障时间从800 h提升至2500 h。实验结果表明,所提方法能有效提升多机械臂系统的整体运行质量,为精密机械结构的工程化应用提供理论基础与实践依据。 展开更多
关键词 机械手臂 多臂系统 结构优化 设备布局
在线阅读 下载PDF
聚变堆多功能重载维护机械臂关节驱动策略研究
15
作者 孙拥军 胡南南 +3 位作者 程勇 潘洪涛 程羊 张俊 《电力科学与工程》 2025年第4期21-27,共7页
多功能重载维护机械臂长9 m,末端负载2.5 t,主要用于以蛇形姿态搭载工具进行维护操作。针对工业常用同步控制方式难以实现重载机械臂关节多电机转矩协同的问题,提出了主从控制加转矩限幅的策略。该策略通过设定主轴转矩对从轴转矩进行限... 多功能重载维护机械臂长9 m,末端负载2.5 t,主要用于以蛇形姿态搭载工具进行维护操作。针对工业常用同步控制方式难以实现重载机械臂关节多电机转矩协同的问题,提出了主从控制加转矩限幅的策略。该策略通过设定主轴转矩对从轴转矩进行限幅,并设置从轴速度附加值使从轴电流环饱和,从而提升从轴的转矩响应速度,实现快速转矩跟随。为验证策略的有效性,设计了测试平台,对比了工业常用同步控制方式与主从控制加转矩限幅策略的性能。测试结果表明,主从控制加转矩限幅策略在转矩同步性能上显著优于工业常用方式,转矩同步误差降低了95.7%。 展开更多
关键词 重载机械臂 遥操作系统 多电机同步 关节驱动 核环境
在线阅读 下载PDF
煤矿井下机械臂控制系统的分布式多关节姿态控制研究
16
作者 王文平 《自动化应用》 2025年第5期109-111,114,共4页
煤矿井下存在高湿度、瓦斯泄漏等危险,机械臂的精准控制对煤矿井下作业至关重要。基于此,研究机械臂控制系统的分布式多关节姿态控制,并通过实验验证其效果。实验表明,分布式多关节姿态控制的精度能提升30.77%,响应时间缩短44.08%。姿... 煤矿井下存在高湿度、瓦斯泄漏等危险,机械臂的精准控制对煤矿井下作业至关重要。基于此,研究机械臂控制系统的分布式多关节姿态控制,并通过实验验证其效果。实验表明,分布式多关节姿态控制的精度能提升30.77%,响应时间缩短44.08%。姿态控制中误差为0.032°,应急响应速度提高了40.64%,机械臂的撤回速度为124.8 ms。该研究成果能为煤矿井下救援机械的发展提供技术支持,有效保障煤矿作业安全。 展开更多
关键词 分布式控制 机械臂控制系统 多关节姿态控制 煤矿井下
在线阅读 下载PDF
一款智能语音提醒多功能药盒的电控系统设计
17
作者 杨晓珍 邓举明 林春罕 《机械工程与自动化》 2025年第6期160-161,共2页
传统闹铃提醒药盒存在无法显示药品名称、时间和剂量,且不具备定时语音播报提醒功能等诸多缺点,为此研制了一款智能语音提醒多功能药盒。该多功能药盒由药仓盒和电控系统两大部分组成,具有智能化语音播报功能,该电控系统主要由电源电路... 传统闹铃提醒药盒存在无法显示药品名称、时间和剂量,且不具备定时语音播报提醒功能等诸多缺点,为此研制了一款智能语音提醒多功能药盒。该多功能药盒由药仓盒和电控系统两大部分组成,具有智能化语音播报功能,该电控系统主要由电源电路、人机界面电路、语音提示电路、ARM电路、声光提示电路和继电器驱动电路等六大部分组成。相对于传统的闹铃提醒药盒,该智能药盒更人性化。该多功能药盒电控系统设计方案具有架构简单、器件低廉等诸多优点,具有一定的推广应用价值。 展开更多
关键词 语音提醒 多功能药盒 电控系统 ARM
在线阅读 下载PDF
基于STM32的农田地膜捡拾履带式机械臂机器人设计与实现
18
作者 张曼玉 杨雪键 +1 位作者 马海龙 伊力夏提·热合曼 《时代汽车》 2025年第20期13-15,共3页
为提升农田地膜捡拾作业效率与设备可靠性,研究聚焦履带式机械臂机器人的热管理难题。基于广西甘蔗田高温高湿工况特性,设计多模态散热协同控制系统。系统集成液冷循环模块与风冷辅助模块,通过STM32F407芯片实现三回路精准温控:主控单... 为提升农田地膜捡拾作业效率与设备可靠性,研究聚焦履带式机械臂机器人的热管理难题。基于广西甘蔗田高温高湿工况特性,设计多模态散热协同控制系统。系统集成液冷循环模块与风冷辅助模块,通过STM32F407芯片实现三回路精准温控:主控单元动态液冷回路、伺服电机智能风冷回路、电池组独立温控回路。经优化设计,系统在45℃环境温度下持续运行9小时,主控芯片温度稳定在65±2℃,亩均散热功耗较传统方案降低39%。实际应用表明,该热管理系统使设备故障率下降58%,维护周期延长至48小时/次,为复杂农田环境下的连续作业提供可靠保障。 展开更多
关键词 STM32微控制器 履带式机械臂 多模态散热系统 液冷-风冷协同控制 农田作业装备
在线阅读 下载PDF
基于PLC与双模态感知的设备房巡检系统设计
19
作者 周帆 《自动化应用》 2025年第21期6-10,共5页
针对轨道交通设备房人工巡检效率低、监控盲区多、高压设备巡视风险大等问题,设计了一种基于施耐德M580 PLC的滑轨式移动机械臂巡检系统。该系统采用EtherCAT总线同步控制架构,集成多模态传感技术与分层式双闭环控制策略,可实现设备房... 针对轨道交通设备房人工巡检效率低、监控盲区多、高压设备巡视风险大等问题,设计了一种基于施耐德M580 PLC的滑轨式移动机械臂巡检系统。该系统采用EtherCAT总线同步控制架构,集成多模态传感技术与分层式双闭环控制策略,可实现设备房及设备柜的高精度、全覆盖、自动化巡检。在硬件层面,该系统采用5自由度机械臂与直线滑轨的混联运动机构,通过双核PLC实现5轴伺服系统的微秒级同步控制。在软件层面,基于IEC标准开发PLC控制程序,并集成多模态传感器的数据融合与协议转换。同时,结合IEEE 802.1Q协议构建安全通信网络,以确保实时数据传输的可靠性。在决策层,引入贝叶斯推理模型进行故障概率建模,以提升异常检测的准确率。此外,该系统创新性地融合ISO人机交互标准,通过OPC UA协议实现与数据采集与监视控制系统(SCADA)系统的安全数据交互,以为轨道交通设施自动化运维提供可靠的解决方案。 展开更多
关键词 PLC控制 双模态感知 机械臂巡检系统 通信安全 混联运动机构 多模态传感器
在线阅读 下载PDF
基于ARM的自主移动机器人控制系统设计 被引量:18
20
作者 陈剑斌 田联房 王孝洪 《机械设计与制造》 北大核心 2011年第6期160-162,共3页
自主移动机器人是近年来研究热点,基于三节履带式机器人机械结构,提出了以ARM架构微处理器s3c2410为核心、多传感器的自主移动机器人控制系统,采用了Linux嵌入式操作系统作为S3c2410软件开发平台。微处理器外部扩展数字电路采用了CPLD... 自主移动机器人是近年来研究热点,基于三节履带式机器人机械结构,提出了以ARM架构微处理器s3c2410为核心、多传感器的自主移动机器人控制系统,采用了Linux嵌入式操作系统作为S3c2410软件开发平台。微处理器外部扩展数字电路采用了CPLD来实现,减少了外围分立元件的使用及PCB面积,可靠性高、抗干扰能力强;基于Verilog语言对CPLD进行了设计与实现。ARM与CPLD采用ISA总线方式通信,整个控制系统具有良好的可扩展性、硬件可裁剪性。通过爬楼梯、避障等实验,验证了机器人具有良好的自主移动性能。 展开更多
关键词 自主移动机器人 多传感器 控制系统 ARM CPLD
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部