期刊文献+
共找到626篇文章
< 1 2 32 >
每页显示 20 50 100
Demonstration-enhanced policy search for space multi-arm robot collaborative skill learning
1
作者 Tian GAO Chengfei YUE +1 位作者 Xiaozhe JU Tao LIN 《Chinese Journal of Aeronautics》 2025年第3期462-473,共12页
The increasing complexity of on-orbit tasks imposes great demands on the flexible operation of space robotic arms, prompting the development of space robots from single-arm manipulation to multi-arm collaboration. In ... The increasing complexity of on-orbit tasks imposes great demands on the flexible operation of space robotic arms, prompting the development of space robots from single-arm manipulation to multi-arm collaboration. In this paper, a combined approach of Learning from Demonstration (LfD) and Reinforcement Learning (RL) is proposed for space multi-arm collaborative skill learning. The combination effectively resolves the trade-off between learning efficiency and feasible solution in LfD, as well as the time-consuming pursuit of the optimal solution in RL. With the prior knowledge of LfD, space robotic arms can achieve efficient guided learning in high-dimensional state-action space. Specifically, an LfD approach with Probabilistic Movement Primitives (ProMP) is firstly utilized to encode and reproduce the demonstration actions, generating a distribution as the initialization of policy. Then in the RL stage, a Relative Entropy Policy Search (REPS) algorithm modified in continuous state-action space is employed for further policy improvement. More importantly, the learned behaviors can maintain and reflect the characteristics of demonstrations. In addition, a series of supplementary policy search mechanisms are designed to accelerate the exploration process. The effectiveness of the proposed method has been verified both theoretically and experimentally. Moreover, comparisons with state-of-the-art methods have confirmed the outperformance of the approach. 展开更多
关键词 Space multi-arm collaboration Demonstrations .Reinforcement Learning Probabilistic Movement Primitives Relative Entropy Policy Search Policy search mechanism
原文传递
Starlet:Network defense resource allocation with multi-armed bandits for cloud-edge crowd sensing in IoT
2
作者 Hui Xia Ning Huang +2 位作者 Xuecai Feng Rui Zhang Chao Liu 《Digital Communications and Networks》 SCIE CSCD 2024年第3期586-596,共11页
The cloud platform has limited defense resources to fully protect the edge servers used to process crowd sensing data in Internet of Things.To guarantee the network's overall security,we present a network defense ... The cloud platform has limited defense resources to fully protect the edge servers used to process crowd sensing data in Internet of Things.To guarantee the network's overall security,we present a network defense resource allocation with multi-armed bandits to maximize the network's overall benefit.Firstly,we propose the method for dynamic setting of node defense resource thresholds to obtain the defender(attacker)benefit function of edge servers(nodes)and distribution.Secondly,we design a defense resource sharing mechanism for neighboring nodes to obtain the defense capability of nodes.Subsequently,we use the decomposability and Lipschitz conti-nuity of the defender's total expected utility to reduce the difference between the utility's discrete and continuous arms and analyze the difference theoretically.Finally,experimental results show that the method maximizes the defender's total expected utility and reduces the difference between the discrete and continuous arms of the utility. 展开更多
关键词 Internet of things Defense resource sharing multi-armed bandits Defense resource allocation
在线阅读 下载PDF
Apo E基因multi-ARMS与PCR-RFLP分型法的比较研究
3
作者 唐慧 董虹 +3 位作者 高建梅 华映昆 张丽平 严新民 《大理学院学报(综合版)》 CAS 2002年第3期1-4,共4页
目的 :以聚合酶链反应—限制性酶切片段长度多态性(PCR -RFLP)方法作为参照 ,建立一种ApoE基因分型方法。方法 :以基因组DNA为模板 ,用PCR -RFLP法和等位基因特异性复合PCR方法(MultiplexAmplificationRefractoryMutationSystem,multi-A... 目的 :以聚合酶链反应—限制性酶切片段长度多态性(PCR -RFLP)方法作为参照 ,建立一种ApoE基因分型方法。方法 :以基因组DNA为模板 ,用PCR -RFLP法和等位基因特异性复合PCR方法(MultiplexAmplificationRefractoryMutationSystem,multi-ARMS)检测了75例个体的ApoE基因型。结果 :共检测出5种常见的ApoE基因型 :ε2/2 ,ε3/3 ,ε2/3,ε3/4 ,ε2/4。两种方法所得的结果完全一致。结论 :说明multi-ARMS方法快速简便、准确可靠 。 展开更多
关键词 APOE基因 multi-armS PCR-RFLP分型法 比较研究 基因分型
在线阅读 下载PDF
Impedance control of multi-arm space robot for the capture of non-cooperative targets 被引量:7
4
作者 GE Dongming SUN Guanghui +1 位作者 ZOU Yuanjie SHI Jixin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第5期1051-1061,共11页
Robotic systems are expected to play an increasingly important role in future space activities. The robotic on-orbital service, whose key is the capturing technology, becomes a research hot spot in recent years. This ... Robotic systems are expected to play an increasingly important role in future space activities. The robotic on-orbital service, whose key is the capturing technology, becomes a research hot spot in recent years. This paper studies the dynamics modeling and impedance control of a multi-arm free-flying space robotic system capturing a non-cooperative target. Firstly, a control-oriented dynamics model is essential in control algorithm design and code realization. Unlike a numerical algorithm, an analytical approach is suggested. Using a general and a quasi-coordinate Lagrangian formulation, the kinematics and dynamics equations are derived.Then, an impedance control algorithm is developed which allows coordinated control of the multiple manipulators to capture a target.Through enforcing a reference impedance, end-effectors behave like a mass-damper-spring system fixed in inertial space in reaction to any contact force between the capture hands and the target. Meanwhile, the position and the attitude of the base are maintained stably by using gas jet thrusters to work against the manipulators' reaction. Finally, a simulation by using a space robot with two manipulators and a free-floating non-cooperative target is illustrated to verify the effectiveness of the proposed method. 展开更多
关键词 multi-arm space robot impedance control non-cooperative target CAPTURE
在线阅读 下载PDF
Distributed Weighted Data Aggregation Algorithm in End-to-Edge Communication Networks Based on Multi-armed Bandit 被引量:1
5
作者 Yifei ZOU Senmao QI +1 位作者 Cong'an XU Dongxiao YU 《计算机科学》 CSCD 北大核心 2023年第2期13-22,共10页
As a combination of edge computing and artificial intelligence,edge intelligence has become a promising technique and provided its users with a series of fast,precise,and customized services.In edge intelligence,when ... As a combination of edge computing and artificial intelligence,edge intelligence has become a promising technique and provided its users with a series of fast,precise,and customized services.In edge intelligence,when learning agents are deployed on the edge side,the data aggregation from the end side to the designated edge devices is an important research topic.Considering the various importance of end devices,this paper studies the weighted data aggregation problem in a single hop end-to-edge communication network.Firstly,to make sure all the end devices with various weights are fairly treated in data aggregation,a distributed end-to-edge cooperative scheme is proposed.Then,to handle the massive contention on the wireless channel caused by end devices,a multi-armed bandit(MAB)algorithm is designed to help the end devices find their most appropriate update rates.Diffe-rent from the traditional data aggregation works,combining the MAB enables our algorithm a higher efficiency in data aggregation.With a theoretical analysis,we show that the efficiency of our algorithm is asymptotically optimal.Comparative experiments with previous works are also conducted to show the strength of our algorithm. 展开更多
关键词 Weighted data aggregation End-to-edge communication multi-armed bandit Edge intelligence
在线阅读 下载PDF
Cross-linking Copolymerization of Acrylic Acid and Multi-armed Cross-linkers
6
作者 Qiang CHEN Ying GUAN +2 位作者 Xian Min ZHANG Yu Xing PENG Jian XU 《Chinese Chemical Letters》 SCIE CAS CSCD 2001年第11期1029-1032,共4页
The overall cross-linking copolymerization of acrylic acid and multi-armed cross-linkers are investigated by in situ interferometry. The results show that the more arms the cross-linkers have, the higher the polymeriz... The overall cross-linking copolymerization of acrylic acid and multi-armed cross-linkers are investigated by in situ interferometry. The results show that the more arms the cross-linkers have, the higher the polymerization rate is. However, they also mean the existence of less cross-linking efficiency and some defects in gel network. 展开更多
关键词 multi-armed cross-linker acrylic acid in situ interferometry
在线阅读 下载PDF
Stochastic programming based multi-arm bandit offloading strategy for internet of things
7
作者 Bin Cao Tingyong Wu Xiang Bai 《Digital Communications and Networks》 SCIE CSCD 2023年第5期1200-1211,共12页
In order to solve the high latency of traditional cloud computing and the processing capacity limitation of Internet of Things(IoT)users,Multi-access Edge Computing(MEC)migrates computing and storage capabilities from... In order to solve the high latency of traditional cloud computing and the processing capacity limitation of Internet of Things(IoT)users,Multi-access Edge Computing(MEC)migrates computing and storage capabilities from the remote data center to the edge of network,providing users with computation services quickly and directly.In this paper,we investigate the impact of the randomness caused by the movement of the IoT user on decision-making for offloading,where the connection between the IoT user and the MEC servers is uncertain.This uncertainty would be the main obstacle to assign the task accurately.Consequently,if the assigned task cannot match well with the real connection time,a migration(connection time is not enough to process)would be caused.In order to address the impact of this uncertainty,we formulate the offloading decision as an optimization problem considering the transmission,computation and migration.With the help of Stochastic Programming(SP),we use the posteriori recourse to compensate for inaccurate predictions.Meanwhile,in heterogeneous networks,considering multiple candidate MEC servers could be selected simultaneously due to overlapping,we also introduce the Multi-Arm Bandit(MAB)theory for MEC selection.The extensive simulations validate the improvement and effectiveness of the proposed SP-based Multi-arm bandit Method(SMM)for offloading in terms of reward,cost,energy consumption and delay.The results showthat SMMcan achieve about 20%improvement compared with the traditional offloading method that does not consider the randomness,and it also outperforms the existing SP/MAB based method for offloading. 展开更多
关键词 Multi-access computing Internet of things OFFLOADING Stochastic programming multi-arm bandit
在线阅读 下载PDF
Training a Quantum Neural Network to Solve the Contextual Multi-Armed Bandit Problem
8
作者 Wei Hu James Hu 《Natural Science》 2019年第1期17-27,共11页
Artificial intelligence has permeated all aspects of our lives today. However, to make AI behave like real AI, the critical bottleneck lies in the speed of computing. Quantum computers employ the peculiar and unique p... Artificial intelligence has permeated all aspects of our lives today. However, to make AI behave like real AI, the critical bottleneck lies in the speed of computing. Quantum computers employ the peculiar and unique properties of quantum states such as superposition, entanglement, and interference to process information in ways that classical computers cannot. As a new paradigm of computation, quantum computers are capable of performing tasks intractable for classical processors, thus providing a quantum leap in AI research and making the development of real AI a possibility. In this regard, quantum machine learning not only enhances the classical machine learning approach but more importantly it provides an avenue to explore new machine learning models that have no classical counterparts. The qubit-based quantum computers cannot naturally represent the continuous variables commonly used in machine learning, since the measurement outputs of qubit-based circuits are generally discrete. Therefore, a continuous-variable (CV) quantum architecture based on a photonic quantum computing model is selected for our study. In this work, we employ machine learning and optimization to create photonic quantum circuits that can solve the contextual multi-armed bandit problem, a problem in the domain of reinforcement learning, which demonstrates that quantum reinforcement learning algorithms can be learned by a quantum device. 展开更多
关键词 Continuous-Variable QUANTUM COMPUTERS QUANTUM Machine LEARNING QUANTUM Reinforcement LEARNING CONTEXTUAL multi-armed BANDIT PROBLEM
暂未订购
Strict greedy design paradigm applied to the stochastic multi-armed bandit problem
9
作者 Joey Hong 《机床与液压》 北大核心 2015年第6期1-6,共6页
The process of making decisions is something humans do inherently and routinely,to the extent that it appears commonplace. However,in order to achieve good overall performance,decisions must take into account both the... The process of making decisions is something humans do inherently and routinely,to the extent that it appears commonplace. However,in order to achieve good overall performance,decisions must take into account both the outcomes of past decisions and opportunities of future ones. Reinforcement learning,which is fundamental to sequential decision-making,consists of the following components: 1 A set of decisions epochs; 2 A set of environment states; 3 A set of available actions to transition states; 4 State-action dependent immediate rewards for each action.At each decision,the environment state provides the decision maker with a set of available actions from which to choose. As a result of selecting a particular action in the state,the environment generates an immediate reward for the decision maker and shifts to a different state and decision. The ultimate goal for the decision maker is to maximize the total reward after a sequence of time steps.This paper will focus on an archetypal example of reinforcement learning,the stochastic multi-armed bandit problem. After introducing the dilemma,I will briefly cover the most common methods used to solve it,namely the UCB and εn- greedy algorithms. I will also introduce my own greedy implementation,the strict-greedy algorithm,which more tightly follows the greedy pattern in algorithm design,and show that it runs comparably to the two accepted algorithms. 展开更多
关键词 Greedy algorithms Allocation strategy Stochastic multi-armed bandit problem
在线阅读 下载PDF
Meta-Analysis of Multi-Arm Trials Using Binomial Approach
10
作者 Hathaikan Chootrakool Pichet Treewai 《Open Journal of Statistics》 2022年第1期15-32,共18页
Most meta-analysis has concentrated on combining of treatment effect measures based on comparisons of two treatments. Meta-analysis of multi-arm trials is a key component of submission to summarize evidence from all p... Most meta-analysis has concentrated on combining of treatment effect measures based on comparisons of two treatments. Meta-analysis of multi-arm trials is a key component of submission to summarize evidence from all possible studies. In this paper, an exact binomial model is proposed by using logistic regression model to compare different treatment in multi-arm trials. Two approaches such as unconditional maximum likelihood and conditional maximum likelihood have been determined and compared for the logistic regression model. The proposed models are performed using the data from 27 randomized clinical trials (RCTs) which determine the efficacy of antiplatelet therapy in reduction venous thrombosis and pulmonary embolism. 展开更多
关键词 META-ANALYSIS multi-arm Trials Binomial Approach
在线阅读 下载PDF
Diversity-Based Recruitment in Crowdsensing by Combinatorial Multi-Armed Bandits
11
作者 Abdalaziz Sawwan Jie Wu 《Tsinghua Science and Technology》 2025年第2期732-747,共16页
Mobile Crowdsensing(MCS)represents a transformative approach to collecting data from the environment as it utilizes the ubiquity and sensory capabilities of mobile devices with human participants.This paradigm enables... Mobile Crowdsensing(MCS)represents a transformative approach to collecting data from the environment as it utilizes the ubiquity and sensory capabilities of mobile devices with human participants.This paradigm enables scales of data collection critical for applications ranging from environmental monitoring to urban planning.However,the effective harnessing of this distributed data collection capability faces significant challenges.One of the most significant challenges is the variability in the sensing qualities of the participating devices while they are initially unknown and must be learned over time to optimize task assignments.This paper tackles the dual challenges of managing task diversity to mitigate data redundancy and optimizing task assignment amidst the inherent variability of worker performance.We introduce a novel model that dynamically adjusts task weights based on assignment frequency to promote diversity and incorporates a flexible approach to account for the different qualities of task completion,especially in scenarios with overlapping task assignments.Our strategy aims to maximize the overall weighted quality of data collected within the constraints of a predefined budget.Our strategy leverages a combinatorial multi-armed bandit framework with an upper confidence bound approach to guide decision-making.We demonstrate the efficacy of our approach through a combination of regret analysis and simulations grounded in realistic scenarios. 展开更多
关键词 diverse allocation mobile crowdsensing multi-agent systems multi-armed bandits online learning worker recruitment
原文传递
Mobility-Aware User Scheduling in Wireless Federated Learning with Contextual Multi-Armed Bandit
12
作者 Li Jun Sun Haiyang +4 位作者 Deng Xiumei Wei Kang Shi Long Liang Le Chen Wen 《China Communications》 2025年第11期256-272,共17页
Federated learning(FL)is an intricate and privacy-preserving technique that enables distributed mobile devices to collaboratively train a machine learning model.However,in real-world FL scenarios,the training performa... Federated learning(FL)is an intricate and privacy-preserving technique that enables distributed mobile devices to collaboratively train a machine learning model.However,in real-world FL scenarios,the training performance is affected by a combination of factors such as the mobility of user devices,limited communication and computational resources,thus making the user scheduling problem crucial.To tackle this problem,we jointly consider the user mobility,communication and computational capacities,and develop a stochastic optimization problem to minimize the convergence time.Specifically,we first establish a convergence bound on the training performance based on the heterogeneity of users’data,and then leverage this bound to derive the participation rate for each user.After deriving the user-specific participation rate,we aim to minimize the training latency by optimizing user scheduling under the constraints of the energy consumption and participation rate.Afterward,we transform this optimization problem to the contextual multi-armed bandit framework based on the Lyapunov method and solve it with the submodular reward enhanced linear upper confidence bound(SR-linUCB)algorithm.Experimental results demonstrate the superiority of our proposed algorithm on the training performance and time consumption compared with stateof-the-art algorithms for both independent and identically distributed(IID)and non-IID settings. 展开更多
关键词 contextual multi-armed bandit federated learning resource allocation upper confidence bound user scheduling
在线阅读 下载PDF
An in situ dressing material containing a multi-armed antibiotic for healing irregular wounds 被引量:1
13
作者 Ruihua Dong Mian Chen +4 位作者 Yuexiao Jia Hao Tang Ziyin Xiong Yunze Long Xingyu Jiang 《Aggregate》 EI CAS 2024年第3期248-257,共10页
Acute and infected wounds resulting from accidents,battlefield trauma,or surgical interventions have become a global healthcare burden due to the complex bacterial infection environment.However,conventional gauze dres... Acute and infected wounds resulting from accidents,battlefield trauma,or surgical interventions have become a global healthcare burden due to the complex bacterial infection environment.However,conventional gauze dressings present insufficient contact with irregular wounds and lack antibacterial activity against multi-drug-resistant bacteria.In this study,we develop in situ nanofibrous dressings tailored tofit wounds of various shapes and sizes while providing nanoscale comfort and excellent antibacterial properties.Our approach involves the fabrication of these dressings using a handheld electrospinning device that allows for the direct depo-sition of nanofiber dressings onto specific irregular wound sites,resulting in perfect conformal wound closure without any mismatch in 2 min.The nanofibrous dressings are loaded with multi-armed antibiotics that exhibit outstanding antibacterial activ-ity against Staphylococcus aureus(S.aureus)and methicillin-resistant S.aureus.Compared to conventional vancomycin,this in situ nanofibrous dressing shows great antibacterial performance against up to 98%of multi-drug-resistant bacteria.In vitro and in vivo experiments demonstrate the ability of in situ nanofibrous dressings to prevent multi-drug-resistant bacterial infection,greatly alleviate inflammation,and promote wound healing.Ourfindings highlight the potential of these personalized nanofibrous dressings for clinical applications,including emergency,accident,and surgical healthcare treatment. 展开更多
关键词 deposited nanofibrous dressing multi-armed antibiotics personalized healthcare portable electrospin-ning device
在线阅读 下载PDF
一种自适应的网格化联邦学习客户端调度算法 被引量:1
14
作者 吴家皋 蒋宇栋 刘林峰 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期79-89,共11页
针对联邦学习(Federated Learning,FL)系统异构性而导致的训练性能下降问题,提出了一种自适应的网格化联邦学习客户端调度算法。首先,全面考虑FL的异构性特点,将3种异构性分别定义为3个独立的维度,包括训练速度、数据量和数据分布维度,... 针对联邦学习(Federated Learning,FL)系统异构性而导致的训练性能下降问题,提出了一种自适应的网格化联邦学习客户端调度算法。首先,全面考虑FL的异构性特点,将3种异构性分别定义为3个独立的维度,包括训练速度、数据量和数据分布维度,提出了一种新的FL客户端三维网格模型,并将所有客户端分配到该模型中相应的单元格内,以对其进行分类管理。在此基础上,为了克服传统启发式算法的不足,提出了一种基于多臂老虎机的网格化客户端调度算法,该算法能自适应地选择模型精度较低的单元格中的客户端子集参与每轮的FL训练,以改善客户端选择的公平性。仿真实验表明,与几种相关的最新FL算法相比,所提出的算法能显著提高模型精度,同时减少训练时间,从而验证了其有效性。 展开更多
关键词 联邦学习 异构性 三维网格 客户端选择 多臂老虎机
在线阅读 下载PDF
移动群智感知中发掘潜在高质量用户的激励机制
15
作者 江海峰 商景杰 +1 位作者 王树豪 张寿军 《小型微型计算机系统》 北大核心 2025年第3期620-626,共7页
在移动群智感知的激励机制中,用户的感知质量和能力是重要的指标,对不同类型的任务是有差异的,用笼统的感知质量与能力标准选择用户往往会埋没潜在的高质量用户.针对这一问题,本文将用户的感知质量与能力根据任务的不同类型进行细分,在... 在移动群智感知的激励机制中,用户的感知质量和能力是重要的指标,对不同类型的任务是有差异的,用笼统的感知质量与能力标准选择用户往往会埋没潜在的高质量用户.针对这一问题,本文将用户的感知质量与能力根据任务的不同类型进行细分,在用户感知质量与能力未知的情况下,将用户选择问题建模成反向拍卖与多臂赌博机模型,不断学习与更新用户的感知质量与能力值,使用置信区间上界的方法估计用户的感知质量,并将其与用户的能力和报价作为选择用户的标准,提出了基于置信区间上界的质量与能力并驱的激励机制.当能力值均值达到平台规定的阈值时,用户将拥有招募其他用户的权限,并从其招募的用户完成的任务中获得额外的收益.本文证明了该激励机制满足计算有效性、真实性和个体理性.仿真实验结果表明,本文所提的激励机制在用户平均效用、任务平均质量和不同任务类型高能力值用户占比等方面具有良好的性能. 展开更多
关键词 移动群智感知 激励机制 多臂赌博机 置信区间上界
在线阅读 下载PDF
基于LSTM-MAB融合框架的动态股票交易决策优化研究
16
作者 李斌 于涵阅 《经济理论与经济管理》 北大核心 2025年第9期117-132,共16页
为提升短期股票交易的收益表现并有效控制风险,本文构建了一个融合长短期记忆网络(Long Short-term Memory,LSTM)和多臂老虎机模型(Multiarmed Bandit,MAB)的动态交易决策优化框架。该框架以LSTM对未来股价进行精准预测,捕捉市场时间序... 为提升短期股票交易的收益表现并有效控制风险,本文构建了一个融合长短期记忆网络(Long Short-term Memory,LSTM)和多臂老虎机模型(Multiarmed Bandit,MAB)的动态交易决策优化框架。该框架以LSTM对未来股价进行精准预测,捕捉市场时间序列特征,同时采用Decayε-Greedy算法动态调整探索与利用的平衡策略,从而实现股票选择与持仓决策的双重优化。本文通过对中国A股市场开展实证回测,并与遗传算法、传统ε-Greedy、随机选择和汤普森抽样等策略进行对比,验证了LSTM-MAB模型在动态市场条件下的收益能力和稳健性。实验结果表明,LSTMMAB模型在平均回报率、夏普比率和风险控制方面均优于对照组,表现出更强的抗风险能力和决策适应性。 展开更多
关键词 交易决策 股价预测 多臂老虎机 长短期记忆网络
在线阅读 下载PDF
贪心策略与调度规则融合的煤矸分拣机器人多任务分配方法
17
作者 曹现刚 丁文韬 +3 位作者 吴旭东 王鹏 藏家松 刘依哲 《工矿自动化》 北大核心 2025年第4期64-73,139,共11页
煤炭复杂的原煤开采工艺与原煤含矸率变化导致带式输送机上矸石的到达率、位置坐标和粒度大小呈现非线性变化,影响煤矸分拣的综合收益。在综合考虑矸石队列特征与排队论调度规则的基础上,提出了贪心策略与调度规则融合的多机械臂煤矸分... 煤炭复杂的原煤开采工艺与原煤含矸率变化导致带式输送机上矸石的到达率、位置坐标和粒度大小呈现非线性变化,影响煤矸分拣的综合收益。在综合考虑矸石队列特征与排队论调度规则的基础上,提出了贪心策略与调度规则融合的多机械臂煤矸分拣机器人多任务分配方法。构建包含匹配矩阵、效益矩阵和环境状态矩阵的多机械臂煤矸分拣机器人多任务分配基础框架。分析矸石队列各维度信息特点与部分调度规则机理,研究不同调度规则间的组合方法,建立调度规则组合集,通过贪心策略比较不同时间窗口内不同调度规则的综合收益,以煤矸分拣过程中的分拣率与任务完成成功率作为综合收益,按照综合收益最大来选择调度规则进行多任务分配。搭建不同最大过煤量的时变原煤流仿真环境,进行多机械臂煤矸分拣机器人多任务分配仿真实验,结果表明:对于最大过煤量120,150 kg/s的时变原煤流样本,采用贪心策略与调度规则融合的煤矸分拣机器人多任务分配方法时矸石分拣率分别为97.69%,89.10%,较单一调度规则方法分别提升6.82%,5.67%;任务完成成功率为95.64%,86.46%,较单一调度规则方法分别提升3.02%,2.13%;机械臂利用率标准差较小,表明该方法降低了原煤流时变性对煤矸分拣综合收益的影响。 展开更多
关键词 煤矸分拣机器人 多机械臂 时变原煤流 多任务分配 贪心策略 调度规则组合
在线阅读 下载PDF
基于多工况拓扑优化的挤压铸造悬置托臂轻量化设计
18
作者 陈云 周澳华 +3 位作者 高聚堡 杨鹏 胡楷雄 滕庆 《特种铸造及有色合金》 北大核心 2025年第9期1312-1319,共8页
以汽车悬置托臂为研究对象,采用线性加权法建立了多工况拓扑优化数学模型,通过层次分析法确定了各工况的权重系数,将得到的悬置托臂多工况拓扑优化结果与挤压铸造工艺结合完成了对悬置托臂的轻量化设计。优化后的悬置托臂在相应服役工... 以汽车悬置托臂为研究对象,采用线性加权法建立了多工况拓扑优化数学模型,通过层次分析法确定了各工况的权重系数,将得到的悬置托臂多工况拓扑优化结果与挤压铸造工艺结合完成了对悬置托臂的轻量化设计。优化后的悬置托臂在相应服役工况下通过了刚度和强度的校核,且质量相较于球墨铸铁悬置托臂减轻了54.7%。经T6热处理后,本体取样的平均抗拉强度为325.1 MPa,屈服强度为275.2 MPa,伸长率为8.7%。优化后的悬置托臂通过了静压试验,满足了产品使用要求。 展开更多
关键词 多工况拓扑优化 悬置托臂 挤压铸造 轻量化设计
原文传递
多通道航磁同步数据采集系统的研制
19
作者 陈卓琳 胡星星 +3 位作者 滕云田 刘高川 沈晓宇 曹瑜珈 《地震研究》 北大核心 2025年第1期151-158,共8页
针对无人机多传感器矢量磁测补偿系统,研制了一套小体积、低功耗的多通道数据同步采集系统。该系统采用模拟采集和控制部分分开设计的方法。模拟采集部分基于STM32处理器STM32F103C8T6,集成了9通道24位高精度的模数转换芯片ADS1255、倾... 针对无人机多传感器矢量磁测补偿系统,研制了一套小体积、低功耗的多通道数据同步采集系统。该系统采用模拟采集和控制部分分开设计的方法。模拟采集部分基于STM32处理器STM32F103C8T6,集成了9通道24位高精度的模数转换芯片ADS1255、倾角和温度传感器,能够实现9通道数据的同步采集、飞行载体的倾角数据和温度数据的获取。控制部分基于32位ARM低功耗处理器S3C2416和嵌入式LINUX系统,完成了数据实时采集、SD卡存储、GNSS同步校时和网络通信等功能,并具有功耗低、体积小的特点,满足了机载数据采集系统特定的应用需求。 展开更多
关键词 无人机航磁 数据采集 多通道 ARM
在线阅读 下载PDF
双臂采茶机器人的协同采摘规划
20
作者 贾江鸣 王翔 +4 位作者 周宇杰 武传宇 陈建能 俞蓉 李昱洁 《茶叶科学》 北大核心 2025年第4期671-686,共16页
为应对名优茶产业中劳动力短缺、人工成本上升以及采摘精度要求高等问题,多臂采茶机器人成为了近年来的研究热点。提出了一种动态划分作业空间的采摘点分配方法,结合蚁群算法和采摘点优先级综合优化了机械臂的路径规划,以提高采茶机器... 为应对名优茶产业中劳动力短缺、人工成本上升以及采摘精度要求高等问题,多臂采茶机器人成为了近年来的研究热点。提出了一种动态划分作业空间的采摘点分配方法,结合蚁群算法和采摘点优先级综合优化了机械臂的路径规划,以提高采茶机器人的作业效率。仿真结果表明,该方法实现了单芽采摘平均时间为1.41 s,双臂同步作业时间比为91.95%;相比空间二分法的62.86%覆盖率,该方法实现了作业空间的全覆盖。为解决现有深度相机独立作业模式限制,进一步提出了动态新增采摘点规划方法,实现了深度相机与机械臂的同步作业。田间试验结果表明,采茶机器人采用动态划分作业空间的采摘点分配方法与动态新增采摘点规划的双臂协同规划方法后,单芽采摘平均时间为1.52 s,整体效率相较于单臂采茶机器人提高了29.95%。该方法不仅提升了采茶机器人的作业效率,还实现了作业空间的全覆盖,确保了高效协同采摘的实现。 展开更多
关键词 采摘机器人 双机械臂 协同采摘规划 动态新增采摘点规划
在线阅读 下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部