期刊文献+
共找到2,706篇文章
< 1 2 136 >
每页显示 20 50 100
Harnessing Trend Theory to Enhance Distributed Proximal Point Algorithm Approaches for Multi-Area Economic Dispatch Optimization
1
作者 Yaming Ren Xing Deng 《Computers, Materials & Continua》 2025年第3期4503-4533,共31页
The exponential growth in the scale of power systems has led to a significant increase in the complexity of dispatch problem resolution,particularly within multi-area interconnected power grids.This complexity necessi... The exponential growth in the scale of power systems has led to a significant increase in the complexity of dispatch problem resolution,particularly within multi-area interconnected power grids.This complexity necessitates the employment of distributed solution methodologies,which are not only essential but also highly desirable.In the realm of computational modelling,the multi-area economic dispatch problem(MAED)can be formulated as a linearly constrained separable convex optimization problem.The proximal point algorithm(PPA)is particularly adept at addressing such mathematical constructs effectively.This study introduces parallel(PPPA)and serial(SPPA)variants of the PPA as distributed algorithms,specifically designed for the computational modelling of the MAED.The PPA introduces a quadratic term into the objective function,which,while potentially complicating the iterative updates of the algorithm,serves to dampen oscillations near the optimal solution,thereby enhancing the convergence characteristics.Furthermore,the convergence efficiency of the PPA is significantly influenced by the parameter c.To address this parameter sensitivity,this research draws on trend theory from stock market analysis to propose trend theory-driven distributed PPPA and SPPA,thereby enhancing the robustness of the computational models.The computational models proposed in this study are anticipated to exhibit superior performance in terms of convergence behaviour,stability,and robustness with respect to parameter selection,potentially outperforming existing methods such as the alternating direction method of multipliers(ADMM)and Auxiliary Problem Principle(APP)in the computational simulation of power system dispatch problems.The simulation results demonstrate that the trend theory-based PPPA,SPPA,ADMM and APP exhibit significant robustness to the initial value of parameter c,and show superior convergence characteristics compared to the residual balancing ADMM. 展开更多
关键词 multi-area economic dispatch problem proximal point algorithm trend theory
在线阅读 下载PDF
Resilient Fixed-Order Distributed Dynamic Output Feedback Load Frequency Control Design for Interconnected Multi-Area Power Systems 被引量:5
2
作者 Ali Azarbahram Amir Amini Mahdi Sojoodi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第5期1139-1151,共13页
The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator cont... The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system. 展开更多
关键词 Dynamic OUTPUT FEEDBACK CONTROL interconnected multi-area POWER systems LOAD frequency CONTROL linear matrix INEQUALITIES POWER system CONTROL
在线阅读 下载PDF
Robust H_∞ Load Frequency Control of Multi-area Power System With Time Delay:A Sliding Mode Control Approach 被引量:6
3
作者 Yonghui Sun Yingxuan Wang +2 位作者 Zhinong Wei Guoqiang Sun Xiaopeng Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第2期610-617,共8页
This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of re... This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of renewable energies,a new sliding surface function is constructed to guarantee the fast response and robust performance, then the sliding mode control law is designed to guarantee the reach ability of the sliding surface in a finite-time interval. The sufficient robust frequency stabilization result for multi-area power system with time delay is presented in terms of linear matrix inequalities(LMIs). Finally,a two-area power system is provided to illustrate the usefulness and effectiveness of the obtained results. 展开更多
关键词 Index Terms--Load frequency control (LFC) multi-area powersystem robust control sliding mode control (SMC) time delay.
在线阅读 下载PDF
Solving Multi-Area Environmental/Economic Dispatch by Pareto-Based Chemical-Reaction Optimization Algorithm 被引量:6
4
作者 Junqing Li Quanke Pan +2 位作者 Peiyong Duan Hongyan Sang Kaizhou Gao 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第5期1240-1250,共11页
In this study, we present a Pareto-based chemicalreaction optimization(PCRO) algorithm for solving the multiarea environmental/economic dispatch optimization problems.Two objectives are minimized simultaneously, i.e.,... In this study, we present a Pareto-based chemicalreaction optimization(PCRO) algorithm for solving the multiarea environmental/economic dispatch optimization problems.Two objectives are minimized simultaneously, i.e., total fuel cost and emission. In the proposed algorithm, each solution is represented by a chemical molecule. A novel encoding mechanism for solving the multi-area environmental/economic dispatch optimization problems is designed to dynamically enhance the performance of the proposed algorithm. Then, an ensemble of effective neighborhood approaches is developed, and a selfadaptive neighborhood structure selection mechanism is also embedded in PCRO to increase the search ability while maintaining population diversity. In addition, a grid-based crowding distance strategy is introduced, which can obviously enable the algorithm to easily converge near the Pareto front. Furthermore,a kinetic-energy-based search procedure is developed to enhance the global search ability. Finally, the proposed algorithm is tested on sets of the instances that are generated based on realistic production. Through the analysis of experimental results, the highly effective performance of the proposed PCRO algorithm is favorably compared with several algorithms, with regards to both solution quality and diversity. 展开更多
关键词 Chemical-reaction OPTIMIZATION algorithm gridbased CROWDING distance multi-area environmental/economic DISPATCH (MAEED) problem multi-objective OPTIMIZATION
在线阅读 下载PDF
Multi-Area Unit Commitment Using Hybrid Particle Swarm Optimization Technique with Import and Export Constraints 被引量:1
5
作者 S. R. P. CHITRA SELVI R. P. KUMUDINI DEVI C. CHRISTOBER ASIR RAJAN 《Engineering(科研)》 2009年第3期140-150,共11页
This paper presents a novel approach to solve the Multi-Area unit commitment problem using particle swarm optimization technique. The objective of the multi-area unit commitment problem is to determine the optimal or ... This paper presents a novel approach to solve the Multi-Area unit commitment problem using particle swarm optimization technique. The objective of the multi-area unit commitment problem is to determine the optimal or a near optimal commitment strategy for generating the units. And it is located in multiple areas that are interconnected via tie lines and joint operation of generation resources can result in significant operational cost savings. The dynamic programming method is applied to solve Multi-Area Unit Commitment problem and particle swarm optimization technique is embedded for computing the generation assigned to each area and the power allocated to all committed unit. Particle Swarm Optimization technique is developed to derive its Pareto-optimal solutions. The tie-line transfer limits are considered as a set of constraints during the optimization process to ensure the system security and reliability. Case study of four areas each containing 26 units connected via tie lines has been taken for analysis. Numerical results are shown comparing the cost solutions and computation time obtained by using the Particle Swarm Optimization method is efficient than the conventional Dynamic Programming and Evolutionary Programming Method. 展开更多
关键词 multi-area UNIT COMMITMENT EVOLUTIONARY PROGRAMMING Dynamic PROGRAMMING Method
在线阅读 下载PDF
Ant Lion Optimization Approach for Load Frequency Control of Multi-Area Interconnected Power Systems
6
作者 R. Satheeshkumar R. Shivakumar 《Circuits and Systems》 2016年第9期2357-2383,共27页
This work proposes a novel nature-inspired algorithm called Ant Lion Optimizer (ALO). The ALO algorithm mimics the search mechanism of antlions in nature. A time domain based objective function is established to tune ... This work proposes a novel nature-inspired algorithm called Ant Lion Optimizer (ALO). The ALO algorithm mimics the search mechanism of antlions in nature. A time domain based objective function is established to tune the parameters of the PI controller based LFC, which is solved by the proposed ALO algorithm to reach the most convenient solutions. A three-area interconnected power system is investigated as a test system under various loading conditions to confirm the effectiveness of the suggested algorithm. Simulation results are given to show the enhanced performance of the developed ALO algorithm based controllers in comparison with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Bat Algorithm (BAT) and conventional PI controller. These results represent that the proposed BAT algorithm tuned PI controller offers better performance over other soft computing algorithms in conditions of settling times and several performance indices. 展开更多
关键词 Load Frequency Control (LFC) multi-area Power System Proportional-Integral (PI) Controller Ant Lion Optimization (ALO) Bat Algorithm (BAT) Genetic Algorithm (GA) Particle Swarm Optimization (PSO)
在线阅读 下载PDF
Unit Commitment with Joint Chance Constraints in Multi-area Power Systems with Wind Power Based on Partial Sample Average Approximation 被引量:1
7
作者 Jinghua Li Hongyu Zeng Yutian Xie 《Journal of Modern Power Systems and Clean Energy》 2025年第1期241-252,共12页
Joint chance constraints(JCCs)can ensure the consistency and correlation of stochastic variables when participating in decision-making.Sample average approximation(SAA)is the most popular method for solving JCCs in un... Joint chance constraints(JCCs)can ensure the consistency and correlation of stochastic variables when participating in decision-making.Sample average approximation(SAA)is the most popular method for solving JCCs in unit commitment(UC)problems.However,the typical SAA requires large Monte Carlo(MC)samples to ensure the solution accuracy,which results in large-scale mixed-integer programming(MIP)problems.To address this problem,this paper presents the partial sample average approximation(PSAA)to deal with JCCs in UC problems in multi-area power systems with wind power.PSAA partitions the stochastic variables and historical dataset,and the historical dataset is then partitioned into non-sampled and sampled sets.When approximating the expectation of stochastic variables,PSAA replaces the big-M formulation with the cumulative distribution function of the non-sampled set,thus preventing binary variables from being introduced.Finally,PSAA can transform the chance constraints to deterministic constraints with only continuous variables,avoiding the large-scale MIP problem caused by SAA.Simulation results demonstrate that PSAA has significant advantages in solution accuracy and efficiency compared with other existing methods including traditional SAA,SAA with improved big-M,SAA with Latin hypercube sampling(LHS),and the multi-stage robust optimization methods. 展开更多
关键词 Unit commitment joint chance constraint renewable energy multi-area power system wind power sample average approximation partial sample average approximation
原文传递
Double-Layer Optimization Mechanism for Multi-Area OPF Considering Valve-Point Loading Effect
8
作者 Jizhong Zhu Cong Zeng +1 位作者 Yun Liu Xuancong Xu 《CSEE Journal of Power and Energy Systems》 2025年第2期683-691,共9页
In terms of the multi-area optimal power flow (OPF) problem, the optimized objectives are always a fuel cost function expressed by a second-order polynomial. However, the valve-point loading effect, whose cost curve i... In terms of the multi-area optimal power flow (OPF) problem, the optimized objectives are always a fuel cost function expressed by a second-order polynomial. However, the valve-point loading effect, whose cost curve is a transcendental function formed by the superposition of the sine and polynomial function, will make the objective function non-convex and non-differentiable. Conventional distributed optimization technologies can hardly make a solution directly. Therefore, it is necessary to realize a distributed solution for multi-area OPF from another point of view. In this paper, we constitute a new double-layer optimization mechanism. The proposed distributed meta-heuristic optimization (DMHO) algorithm is put on the top layer to optimize the dispatching of each area, and in each iteration a distributed power flow calculation method is embedded as the bottom layer to minimize the mismatch of power balance. Numerical experiments demonstrate that the proposed approach not only implements a multi-area OPF distributed solution but also accelerates the convergence rate, improves the solution accuracy and enhances the robustness. In addition, a fully decentralized computation experiment is performed in an actual distributed environment to test its practicability and computation efficiency. 展开更多
关键词 Distributed computation platform distributed meta-heuristic optimization algorithm double-layer optimization mechanism multi-area optimal powerflow
原文传递
Robust Two-stage Dispatch of Multi-area Integrated Electric-gas Systems: A Decentralized Approach
9
作者 Nan Jia Cheng Wang +2 位作者 Yao Li Nian Liu Tianshu Bi 《CSEE Journal of Power and Energy Systems》 2025年第2期850-860,共11页
This paper proposes a decentralized robust two-stage dispatch framework for multi-area integrated electric-gas systems (M-IEGSs), with the consideration of Weymouth and linepack equations of tie-pipelines. The overall... This paper proposes a decentralized robust two-stage dispatch framework for multi-area integrated electric-gas systems (M-IEGSs), with the consideration of Weymouth and linepack equations of tie-pipelines. The overall methodology includes the equivalent conversion for the robust two-stage program and the decentralized optimization for the equivalent form. To obtain a tractable and equivalent counterpart for the robust two-stage program, a quadruple-loop procedure based on the column-and-constraint generation (C&CG) and the penalty convex-concave procedure (P-CCP) algorithms is derived, resulting in a series of mixed integer second-order cone programs (MISOCPs). Then, an improved I-ADMM is proposed to realize the decentralized optimization for MISOCPs. Moreover, three acceleration methods are devised to reduce the computation burden. Simulation results validate the effectiveness of the proposed methodology and corresponding acceleration measures. 展开更多
关键词 Decentralized robust dispatch improved iterative alternating direction multiplier method multi-area integrated electric-gas systems robust two-stage programs
原文传递
Multi-area Frequency-constrained Unit Commitment for Power Systems with High Penetration of Renewable Energy Sources and Induction Machine Load 被引量:2
10
作者 Leibao Wang Hui Fan +5 位作者 Jifeng Liang Longxun Xu Tiecheng Li Peng Luo Bo Hu Kaigui Xie 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第3期754-766,共13页
The increasing penetration of renewable energy sources(RESs)brings great challenges to the frequency security of power systems.The traditional frequency-constrained unit commitment(FCUC)analyzes frequency by simplifyi... The increasing penetration of renewable energy sources(RESs)brings great challenges to the frequency security of power systems.The traditional frequency-constrained unit commitment(FCUC)analyzes frequency by simplifying the average system frequency and ignoring numerous induction machines(IMs)in load,which may underestimate the risk and increase the operational cost.In this paper,we consider a multiarea frequency response(MAFR)model to capture the frequency dynamics in the unit scheduling problem,in which regional frequency security and the inertia of IM load are modeled with high-dimension differential algebraic equations.A multi-area FCUC(MFCUC)is formulated as mixed-integer nonlinear programming(MINLP)on the basis of the MAFR model.Then,we develop a multi-direction decomposition algorithm to solve the MFCUC efficiently.The original MINLP is decomposed into a master problem and subproblems.The subproblems check the nonlinear frequency dynamics and generate linear optimization cuts for the master problem to improve the frequency security in its optimal solution.Case studies on the modified IEEE 39-bus system and IEEE 118-bus system show a great reduction in operational costs.Moreover,simulation results verify the ability of the proposed MAFR model to reflect regional frequency security and the available inertia of IMs in unit scheduling. 展开更多
关键词 Decomposition algorithm frequency response frequency-constrained unit commitment induction machine multi-area mixed-integer nonlinear programming(MINLP)
原文传递
Data-driven Surrogate-assisted Method for High-dimensional Multi-area Combined Economic/Emission Dispatch 被引量:1
11
作者 Chenhao Lin Huijun Liang +2 位作者 Aokang Pang Jianwei Zhong Yongchao Yang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第1期52-64,共13页
Multi-area combined economic/emission dispatch(MACEED)problems are generally studied using analytical functions.However,as the scale of power systems increases,ex isting solutions become time-consuming and may not mee... Multi-area combined economic/emission dispatch(MACEED)problems are generally studied using analytical functions.However,as the scale of power systems increases,ex isting solutions become time-consuming and may not meet oper ational constraints.To overcome excessive computational ex pense in high-dimensional MACEED problems,a novel data-driven surrogate-assisted method is proposed.First,a cosine-similarity-based deep belief network combined with a back-propagation(DBN+BP)neural network is utilized to replace cost and emission functions.Second,transfer learning is applied with a pretraining and fine-tuning method to improve DBN+BP regression surrogate models,thus realizing fast con struction of surrogate models between different regional power systems.Third,a multi-objective antlion optimizer with a novel general single-dimension retention bi-objective optimization poli cy is proposed to execute MACEED optimization to obtain scheduling decisions.The proposed method not only ensures the convergence,uniformity,and extensibility of the Pareto front,but also greatly reduces the computational time.Finally,a 4-ar ea 40-unit test system with different constraints is employed to demonstrate the effectiveness of the proposed method. 展开更多
关键词 multi-area combined economic/emission dispatch high-dimensional power system deep belief network data driven transfer learning
原文传递
煤矿综采工作面人员入侵危险区域智能识别方法 被引量:2
12
作者 毛清华 翟姣 +2 位作者 胡鑫 苏毅楠 薛旭升 《煤炭学报》 北大核心 2025年第2期1347-1361,共15页
为解决煤矿综采工作面人员尺度多变、危险区域动态变化等因素导致人员入侵危险区域时,视频AI识别准确率不高的问题,提出一种RSCA-YOLOv8s与危险区域自动划分的煤矿综采工作面人员入侵危险区域智能识别方法。针对综采工作面人员识别准确... 为解决煤矿综采工作面人员尺度多变、危险区域动态变化等因素导致人员入侵危险区域时,视频AI识别准确率不高的问题,提出一种RSCA-YOLOv8s与危险区域自动划分的煤矿综采工作面人员入侵危险区域智能识别方法。针对综采工作面人员识别准确率低问题,在YOLOv8s模型基础上引入RFAConv-SE(Squeeze-and-Excitation with Receptive-Field Attention Convolution)与CCNet(Criss-Cross Attention Network)注意力模块提高复杂背景图像中模型对全局及上下文信息的捕获能力,C2f模块融合Res2Net网络提高模型的多尺度和小目标人员特征提取能力,通过改进的SPCASFF(Adaptive Structure Feature Fusion with Sub-Pixel Convolution layer)模块提升模型对多尺度人员特征的自适应融合能力。针对综采工作面摄像头跟随液压支架动态变化导致危险区域在视场范围内动态变化的问题,提出一种基于护帮板、挡煤板标志性目标关键特征点提取的危险区域自动划分方法。针对危险区域不规则变化与基于重叠度的判断方法参数设置困难的问题,提出一种基于射线法判断人员与危险区域像素坐标位置关系的人员入侵危险区域精准识别方法。通过消融试验、RSCA-YOLOv8s与YOLOv5s、YOLOv8-SPDConv等方法对比试验,以及综采工作面7组多场景危险区域自动划分与5组人员入侵危险区域识别试验测试,结果表明:RSCA-YOLOv8s的人员识别方法准确率更高,达到了97.2%,相较基线模型mAP@0.5提高了1.1%,mAP@0.5:0.95提高了2.5%,对小目标人员具有更准确的识别能力和更高的识别精度;该方法危险区域自动划分的平均准确率为97.285%,人员入侵危险区域的判别准确率为98%以上。 展开更多
关键词 综采工作面 人员入侵 危险区域 多尺度目标 YOLOv8s 区域自动划分
在线阅读 下载PDF
基于“精准适配”的多情景、多规则都市圈三生空间优化探索——以北京首都都市圈为例 被引量:1
13
作者 王凯 周亚杰 +5 位作者 穆望舒 王文静 李长风 徐辉 贾鹏飞 秦维 《国际城市规划》 北大核心 2025年第2期1-9,共9页
我国的都市圈具有人口密度高、城镇与自然嵌套复杂的特点,生产、生活、生态空间之间矛盾突出、协调性不足。本文立足“精准适配”的区域规划理念,构建了一个多目标情景驱动、多规则体系约束的空间优化推演模型,提出了不同情景下具有多... 我国的都市圈具有人口密度高、城镇与自然嵌套复杂的特点,生产、生活、生态空间之间矛盾突出、协调性不足。本文立足“精准适配”的区域规划理念,构建了一个多目标情景驱动、多规则体系约束的空间优化推演模型,提出了不同情景下具有多样性、可变性的空间格局优化方案。以北京首都都市圈为例,在街镇单元开展指标测算和模型推演,探索了从整体规划到局部优化的协同推演方法。分析结果验证了该空间优化策略在提升都市圈的韧性和功能效率方面的有效性,为提升区域整体的生态与经济效益提供了科学方法;该方法也突破传统的用地边界推演技术,为区域规划优化空间结构提供了量化分析手段。 展开更多
关键词 精准适配 都市圈 多目标情景 规则体系 空间优化推演
原文传递
基于深度强化学习的城市交通信号分层协同控制方法 被引量:1
14
作者 代亮 杜鹏飞 +1 位作者 黄自彬 杨朋博 《交通运输系统工程与信息》 北大核心 2025年第4期63-72,95,共11页
强化学习具有强大的自适应性和学习能力,能够根据环境变化和反馈信号不断调整策略和行为,实现持续优化,为城市交通信号控制提供新的技术手段。针对现有强化学习方法在交通信号协同控制中存在的智能体协作效率低下与控制区域划分机制缺... 强化学习具有强大的自适应性和学习能力,能够根据环境变化和反馈信号不断调整策略和行为,实现持续优化,为城市交通信号控制提供新的技术手段。针对现有强化学习方法在交通信号协同控制中存在的智能体协作效率低下与控制区域划分机制缺失问题,本文提出一种交通信号分层协同控制架构,通过构建交叉口智能体,进行状态空间与回报函数的关联性协同设计,并建立基于拥堵扩散的交通控制子区划分模型,实现动态划分交通控制子区。最后,构建子区智能体协调子区内部交叉口智能体,交叉口智能体根据子区智能体提供的全局性建议以及所在交叉口情况完成信号控制方案的优化,实现区域交通信号分层协同控制。仿真结果表明,与现有定时控制与强化学习方法相比,本文方法平均行程时间分别降低56.78%和29.23%。相比MPLight(Max Pressure Light)方法,平均速度提升7.21%,平均行程时间与停车次数分别减少22.62%和3.98%。此外,通过对比在不同规模以及拓扑结构路网的性能表现,验证本文方法在同质交叉口路网中具有一定可移植性。 展开更多
关键词 智能交通 交通信号控制 深度强化学习 多智能体 子区划分
在线阅读 下载PDF
电子商务进农村综合示范政策促进了农业农村高质量发展吗? 被引量:1
15
作者 周利平 柯芩 《农林经济管理学报》 北大核心 2025年第4期584-594,共11页
基于2010—2021年中国30个省份的面板数据,运用多时点双重差分模型和中介效应模型,实证分析电子商务进农村综合示范政策对农业农村高质量发展的影响机理。结果表明:电子商务进农村综合示范政策对农业农村高质量发展具有显著促进作用,政... 基于2010—2021年中国30个省份的面板数据,运用多时点双重差分模型和中介效应模型,实证分析电子商务进农村综合示范政策对农业农村高质量发展的影响机理。结果表明:电子商务进农村综合示范政策对农业农村高质量发展具有显著促进作用,政策实施后使示范省份的农业农村高质量发展水平年均提升约0.329个单位,且该结论在多重稳健性检验后依然成立。机制分析显示,该政策主要通过优化农业产业结构和提升农业劳动生产率两条路径实现促进作用。异质性分析发现,政策效果受地区农村电商基础设施水平和经济发展水平影响,对农村电商基础设施水平较低和经济发展水平较低地区的促进作用更为显著。据此,建议扩大政策覆盖范围,重点向农村电商基础设施水平和经济发展水平较低地区倾斜,并持续优化农业产业结构,强化农业劳动力培训体系,以进一步提升政策效能。 展开更多
关键词 电子商务进农村综合示范政策 农业农村高质量发展 多时点双重差分模型
在线阅读 下载PDF
大型复杂老矿区多目标多层次协同建模研究
16
作者 崔原 刘嘉伟 +4 位作者 刘高 陈奉川 葛崇基 武耀栋 王旭 《矿业安全与环保》 北大核心 2025年第4期148-155,共8页
为满足大型复杂老矿区的综合治理与开发需求,提出采用多目标多层次协同建模方法,整合矿区地质、工程资料等多源信息,形成矿区信息数据库,构建地质模型、工程模型,动态集成协同模型并应用到抚顺煤田矿区。建模过程强调“管理—仿真—集... 为满足大型复杂老矿区的综合治理与开发需求,提出采用多目标多层次协同建模方法,整合矿区地质、工程资料等多源信息,形成矿区信息数据库,构建地质模型、工程模型,动态集成协同模型并应用到抚顺煤田矿区。建模过程强调“管理—仿真—集成—开发”多目标导向、注重对地质模型、工程模型、模型应用的多层次表达,能根据实际所需,动态生成不同目标不同层次的模型并进行集成和有针对性的模型应用。研究结果表明:协同模型能精确反映矿区信息,为矿区综合治理与未来开发提供科学依据,建模方法为大型复杂老矿区治理和开发提供了有效的技术支撑和指导意义。 展开更多
关键词 煤矿 大型复杂老矿区 多目标 多层次 协同建模
在线阅读 下载PDF
塔里木盆地超深层碳酸盐岩储层研究新进展
17
作者 云露 曹自成 +4 位作者 韩俊 耿锋 李海英 刘永立 黄诚 《天然气工业》 北大核心 2025年第10期127-140,共14页
塔里木盆地勘探以典型喀斯特岩溶缝洞型和主干走滑断裂断控缝洞型储层为特色,形成了以塔河-轮南为代表的岩溶型、以顺北-富满为代表的构造型2个典型优势成储条件下油气勘探经典案例,但随着油气勘探向超深层甚至万米特深层进军,非典型优... 塔里木盆地勘探以典型喀斯特岩溶缝洞型和主干走滑断裂断控缝洞型储层为特色,形成了以塔河-轮南为代表的岩溶型、以顺北-富满为代表的构造型2个典型优势成储条件下油气勘探经典案例,但随着油气勘探向超深层甚至万米特深层进军,非典型优势成储条件下是否能发育规模储集体,是制约后续勘探决策与实现突破的关键问题。为此,通过系统分析盆地近10多年来在岩溶型、断控型、相控型勘探新进展与典型案例,探讨了非典型优势成储条件下不同成储要素的表现形式与成储机制,丰富和完善了超深层-万米特深层海相碳酸盐岩储层成因机理认识。研究结果表明:①完善了盆内中小尺度走滑断裂与逆冲断裂控储作用认识,建立了多序级走滑断裂带储集体栅状结构模型,指出了逆冲断裂带控储作用受断裂平面分带、垂向分层与岩溶作用差异共同控制;②深化了盆地岩溶复杂区储层形成、改造与保存动态过程研究,剖析了以于奇西为代表的复杂岩溶区4种古地貌组合单元(岩溶平原、浅峰丛洼地、深峰丛洼地和溶丘洼地)缝洞体发育特征及差异,指出了浅峰丛洼地区为规模缝洞储层保存最有利区;③与内幕不整合相关的岩溶储层正在成为盆地重要的勘探类型,揭示了上震旦统—中下奥陶统碳酸盐岩内幕多期次、不同级别不整合面及暴露溶蚀作用,在中下寒武统台缘带及台内不整合面附近发育较好储集体深度已突破万米。结论认为:①首次在盆地发现石灰岩孔隙型储层,突破了以往石灰岩基质物性较差的传统认识,进一步开拓了新的油气储层勘探新类型;②指出了盆地碳酸盐岩储层形成受走滑-逆冲及复合断裂活动、有利沉积环境与相带、多类型岩溶作用的协同控制,提出了断-相-溶“多元复合”联控规模成储新模式并在顺北隆2井油气勘探实践中得以证实,上述模式及成功实践为中国超深-万米特深层海相碳酸盐岩油气勘探提供新的借鉴。 展开更多
关键词 塔里木盆地 超深—特深层 碳酸盐岩 规模储集体 岩溶与断控缝洞型 多序级走滑断裂 复杂岩溶区 多元复合联控
在线阅读 下载PDF
基于MGWR模型的太行山脉自然保护地空间格局评价及空间优化 被引量:3
18
作者 王成武 罗俊杰 +2 位作者 汪宙峰 张荞 谢亮 《生态学杂志》 北大核心 2025年第1期325-336,共12页
太行山脉自然保护地在生态系统修复、生物多样性保护和自然遗迹保护等方面发挥了重要作用,承担了中国华北地区生态文明建设的重要功能。本研究以太行山脉300个国家级及省市级自然保护地为对象,通过莫兰指数、多距离空间聚类、核密度分... 太行山脉自然保护地在生态系统修复、生物多样性保护和自然遗迹保护等方面发挥了重要作用,承担了中国华北地区生态文明建设的重要功能。本研究以太行山脉300个国家级及省市级自然保护地为对象,通过莫兰指数、多距离空间聚类、核密度分析等空间分析方法研究自然保护地数量和面积的空间格局,借助多尺度地理加权回归模型(MGWR)对影响因素进行空间异质性分析,为自然保护地空间优化提供科学依据。结果表明:(1)自然保护地数量在整体上显著聚集分布(I_(全)=0.9707)。湿地公园(I_(湿)=0.7130)和风景名胜区(I_(风)=0.5031)较其他自然保护地聚集程度更强。(2)自然保护地面积在空间上形成“双核一带”聚集格局。具体表现为以保定市(涞水县、易县)为中心的北太行东北高密度核心区、以石家庄市(灵寿县)、忻州市(五台县)为中心的西太行西北高密度核心区和以邢台县-壶关县-济源市为核心串联而形成的核心地带。(3)自然保护地面积空间格局的影响因素存在显著空间异质性。植被覆盖率和路网密度的正面影响最强,而海拔和建设用地面积的负面影响最强。因此,在自然保护地规划和建设中应区别各类保护地的属性特点,在强调提升自然保护地植被覆盖率的同时,对于城市化地区的自然保护地要关注路网密度的积极影响和建设用地的抑制作用,在高海拔地区规划与设立自然保护地要注意数量和规模适度。 展开更多
关键词 自然保护地 空间分异 格局优化 多尺度地理加权回归模型 太行山脉
原文传递
多维价值视角下高密度建成区地下空间资源评估与规划决策方法——以首都功能核心区为例
19
作者 赵怡婷 吴克捷 +1 位作者 石晓冬 林泷嵚 《隧道建设(中英文)》 北大核心 2025年第6期1180-1191,共12页
为了有效支撑高密度建成环境下的地下空间精细化规划管控与引导,以北京市建设密度最高、城市环境最为复杂的首都功能核心区为研究对象,探索构建高密度建成区地下空间资源评估与规划决策模型。基于地上地下统筹视角,建立涵盖经济价值、... 为了有效支撑高密度建成环境下的地下空间精细化规划管控与引导,以北京市建设密度最高、城市环境最为复杂的首都功能核心区为研究对象,探索构建高密度建成区地下空间资源评估与规划决策模型。基于地上地下统筹视角,建立涵盖经济价值、社会需求、生态本底、历史保护、防灾安全、空间布局、功能设施等7个价值维度的地下空间资源开发利用潜力综合评估框架,总结提炼各价值维度的地下空间开发利用影响因素及其量化评估指标,实现精确至地块的地下空间开发利用潜力量化研判。从资源条件、开发动力和限制要求3方面有效识别5大类13小类地下空间规划管控分区,提出针对性规划管控要求,其评估精度、要素广度、量化程度能有效支撑高密度建成区地下空间资源的精细化管控和科学决策,并具有一定的推广应用价值。 展开更多
关键词 多维价值 高密度建成区 地下空间 资源评估 规划管控
在线阅读 下载PDF
基于LCZOA算法的季冻区大型水利工程建设进度优化方法研究 被引量:1
20
作者 耿敬 李秋洁 +1 位作者 李向阳 李明伟 《工程管理学报》 2025年第2期86-92,共7页
针对季冻区大型水利工程建设管理要求,计入冰河季冻因素,提出以工期最短、成本最少、质量最高和安全风险最低为优化目标,以建设强度和工程资源量为约束条件的季冻区大型水利工程建设进度规划模型(CSOM-LWCP-SFA);针对CSOM-LWCP-SFA模型... 针对季冻区大型水利工程建设管理要求,计入冰河季冻因素,提出以工期最短、成本最少、质量最高和安全风险最低为优化目标,以建设强度和工程资源量为约束条件的季冻区大型水利工程建设进度规划模型(CSOM-LWCP-SFA);针对CSOM-LWCP-SFA模型求解难题,基于莱维飞行策略和混沌扰动策略,改进斑马优化算法(ZOA)固有缺陷,提出一种新的莱维混沌斑马优化算法(LCZOA);利用LCZOA算法求解CSOM-LWCP-SFA模型,构建一种基于LCZOA算法的季冻区大型水利工程建设进度优化方法;并基于北方某大型水利工程建设数据,开展数值仿真试验。验证了季冻区大型水利工程建设进度优化方法具有良好的可行性与优越性,可为后续水利工程的智慧建设管理提供参考。 展开更多
关键词 大型水利工程 季冻区 多目标优化 斑马优化算法 莱维飞行策略 混沌扰动策略
在线阅读 下载PDF
上一页 1 2 136 下一页 到第
使用帮助 返回顶部