Based on radiative transfer theory in vegetation and geometric-optical principles, an analytical physi-cal mode] for calculating multiangular, multispectral reflectance over a non-random, multiple component vegetation...Based on radiative transfer theory in vegetation and geometric-optical principles, an analytical physi-cal mode] for calculating multiangular, multispectral reflectance over a non-random, multiple component vegetation canopy is developed. This model is derived by taking advantages of the previous leaf canopy and multicomponent canopy BRF models. It quantitatively accounts for both the impact of foliage elements' orientation on the canopy hotspot through an innovative algorithm to estimate the hotspot function for any arbitrarily oriented foliage element and contributions of all foliage elements to the reflectance by multiple scattering. Thus, it is characterized by more com-pletely considering the integrative influence of spatial variations in optical and structural properties of all foliage ele-ments on canopy reflectance than any previous analytical BRF models. Simulation results from this model demonstrate that canopy hotspot becomes strongest when the mean inclination angle of foliage elements is around 20? and then it rapidly decreases with an increase in that angle. Comparison with field measured BRF data shows that this model can reproduce the angular asymmetrical distribution of canopy BRF, a feature of natural vegetation's reflectance which all leaf canopy models cannot reproduce.展开更多
Deserts,which have high surface albedo and wide area,are important components of the earth system.It is very important for the research of surface radiation and energy balance to understand the anisotropic scattering ...Deserts,which have high surface albedo and wide area,are important components of the earth system.It is very important for the research of surface radiation and energy balance to understand the anisotropic scattering of desert areas.The emergence and development of multi-angle remote sensing made possible the inversion of the anisotropic scattering of desert areas at the regional or global scale.Firstly,this paper explored the accuracy of the inversion of asymmetry factor using the Hapke model and the simulated single-and multi-phase MISR data.Based on the results,the asymmetry factor of representative surface of desert areas in northwestern China was retrieved.The values of the asymmetry factor retrieved from MISR data were compared with the values retrieved from the laboratory data.The results showed that the single-phase MISR data could be used for the inversion of asymmetry parameter of desert areas.The sign of the asymmetry parameter for the laboratory measurements was positive,which suggests that the surface of laboratory samples is forward scattering.The sign of the asymmetry parameter for MISR data was negative;that is,it is backscattering.The values of the asymmetry parameters retrieved from MISR data were related to the character of the land surface.At Loulan,where the surface was smoother than other sites,retrieved values exhibited the largest negative values of asymmetry factor,suggesting the strongest backscattering.The sand dune area of the Kumtag Desert,which has the greatest roughness,had only slightly negative asymmetry factor values.These findings indicated that at the sensor scale,a rough surface(e.g.,dunes) does not necessarily mean more backscattering than a smooth surface.This finding has significant implications for empirical methods(e.g.,using the normalized index of backward-scattered radiance minus forward-scattered radiance as an indicator of surface roughness),which should be used carefully for analyzing surface roughness from the remote sensing data.展开更多
基金Project supported by the National Natural Science Foundation of China and the President Fund of the Chinese Academy of Sciences.
文摘Based on radiative transfer theory in vegetation and geometric-optical principles, an analytical physi-cal mode] for calculating multiangular, multispectral reflectance over a non-random, multiple component vegetation canopy is developed. This model is derived by taking advantages of the previous leaf canopy and multicomponent canopy BRF models. It quantitatively accounts for both the impact of foliage elements' orientation on the canopy hotspot through an innovative algorithm to estimate the hotspot function for any arbitrarily oriented foliage element and contributions of all foliage elements to the reflectance by multiple scattering. Thus, it is characterized by more com-pletely considering the integrative influence of spatial variations in optical and structural properties of all foliage ele-ments on canopy reflectance than any previous analytical BRF models. Simulation results from this model demonstrate that canopy hotspot becomes strongest when the mean inclination angle of foliage elements is around 20? and then it rapidly decreases with an increase in that angle. Comparison with field measured BRF data shows that this model can reproduce the angular asymmetrical distribution of canopy BRF, a feature of natural vegetation's reflectance which all leaf canopy models cannot reproduce.
基金supported by National Natural Science Foundation of China (Grant No.40930103)National High-tech Research & Development Programme of China (Grant No.2009AA12Z134)National Natural Science Foundation of China (Grant No.40701125)
文摘Deserts,which have high surface albedo and wide area,are important components of the earth system.It is very important for the research of surface radiation and energy balance to understand the anisotropic scattering of desert areas.The emergence and development of multi-angle remote sensing made possible the inversion of the anisotropic scattering of desert areas at the regional or global scale.Firstly,this paper explored the accuracy of the inversion of asymmetry factor using the Hapke model and the simulated single-and multi-phase MISR data.Based on the results,the asymmetry factor of representative surface of desert areas in northwestern China was retrieved.The values of the asymmetry factor retrieved from MISR data were compared with the values retrieved from the laboratory data.The results showed that the single-phase MISR data could be used for the inversion of asymmetry parameter of desert areas.The sign of the asymmetry parameter for the laboratory measurements was positive,which suggests that the surface of laboratory samples is forward scattering.The sign of the asymmetry parameter for MISR data was negative;that is,it is backscattering.The values of the asymmetry parameters retrieved from MISR data were related to the character of the land surface.At Loulan,where the surface was smoother than other sites,retrieved values exhibited the largest negative values of asymmetry factor,suggesting the strongest backscattering.The sand dune area of the Kumtag Desert,which has the greatest roughness,had only slightly negative asymmetry factor values.These findings indicated that at the sensor scale,a rough surface(e.g.,dunes) does not necessarily mean more backscattering than a smooth surface.This finding has significant implications for empirical methods(e.g.,using the normalized index of backward-scattered radiance minus forward-scattered radiance as an indicator of surface roughness),which should be used carefully for analyzing surface roughness from the remote sensing data.