期刊文献+
共找到269,061篇文章
< 1 2 250 >
每页显示 20 50 100
Emergency Control Strategy Based on Multi-agent Theory under Blackout
1
作者 Bin Sun Ming Liu +3 位作者 Luofang Zhu Nian Liu Xiaoyan Qiu Zhe Zhuang 《Energy and Power Engineering》 2013年第4期717-721,共5页
The multi-agent theory is introduced and applied in the way to strike the control amount of emergency control according to stability margin, based on which an emergency control strategy of the power system is presente... The multi-agent theory is introduced and applied in the way to strike the control amount of emergency control according to stability margin, based on which an emergency control strategy of the power system is presented. The multi-agent control structure which is put forward in this article has three layers: system agent, areal agent and local agents. System agent sends controlling execution signal to the load-local agent according to the position and the amount of load shedding upload from areal agent;The areal agent judges whether the power system is stable by monitoring and analyzing the maximum relative power angle. In the condition of instability, determines the position of load-shedding, and the optimal amount of load-shedding according to the stability margin based on the corrected transient energy function, upload control amount to system agent;local-generator agent is mainly used for real-time monitoring the power angle of generator sets and uploading it to the areal agency, local-loads agent control load by receiving the control signal from system agent. Simulations on IEEE39 system show that the proposed control strategy improves the system stability. 展开更多
关键词 multi-agent Corrected TRANSIENT Energy FUNCTION EMERGENCY Control Stability MARGIN
暂未订购
“大数据、大模型、大计算”全新范式与舆情精准研判:理论和Multi-Agent实证两个向度的探索 被引量:1
2
作者 丁晓蔚 戚庆燕 刘梓航 《传媒观察》 2025年第2期28-42,共15页
本文探讨了“大数据、大模型、大计算”全新范式在舆情精准研判中的相关理论和应用实证。理论部分论述了该范式的概念和所涉关系,分析了其与Multi-Agent多智能体系统之间的联系。实证部分基于此范式在舆情研判中的应用案例,提出Multi-Ag... 本文探讨了“大数据、大模型、大计算”全新范式在舆情精准研判中的相关理论和应用实证。理论部分论述了该范式的概念和所涉关系,分析了其与Multi-Agent多智能体系统之间的联系。实证部分基于此范式在舆情研判中的应用案例,提出Multi-Agent多智能体协作驱动的舆情分析框架,构建全新的舆情研判流程,能有效应对动态变化的舆情环境。采用Multi-Agent对热点事件是否上热搜进行预测和检验,并与传统大模型和BERT模型进行对比分析。研究表明:Multi-Agent在应对涉及公众情感共鸣和社会性广泛事件时具有显著优势,能通过多角度的综合评估提升预测精度和鲁棒性。通过实证研究验证了Multi-Agent在舆情监测中的重要价值,为未来舆情精准研判提供了新的技术路径。 展开更多
关键词 “大数据、大模型、大计算”全新范式 multi-agent多智能体系统 舆情精准研判
原文传递
Immune multi-agent model using vaccine for cooperative air-defense system of systems for surface warship formation based on danger theory 被引量:9
3
作者 Jun Wang Xiaozhe Zhao +2 位作者 Beiping Xu Wei Wang Zhiyong Niu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第6期946-953,共8页
Aiming at the problem on cooperative air-defense of surface warship formation, this paper maps the cooperative airdefense system of systems (SoS) for surface warship formation (CASoSSWF) to the biological immune s... Aiming at the problem on cooperative air-defense of surface warship formation, this paper maps the cooperative airdefense system of systems (SoS) for surface warship formation (CASoSSWF) to the biological immune system (BIS) according to the similarity of the defense mechanism and characteristics between the CASoSSWF and the BIS, and then designs the models of components and the architecture for a monitoring agent, a regulating agent, a killer agent, a pre-warning agent and a communicating agent by making use of the theories and methods of the artificial immune system, the multi-agent system (MAS), the vaccine and the danger theory (DT). Moreover a new immune multi-agent model using vaccine based on DT (IMMUVBDT) for the cooperative air-defense SoS is advanced. The immune response and immune mechanism of the CASoSSWF are analyzed. The model has a capability of memory, evolution, commendable dynamic environment adaptability and self-learning, and embodies adequately the cooperative air-defense mechanism for the CASoSSWF. Therefore it shows a novel idea for the CASoSSWF which can provide conception models for a surface warship formation operation simulation system. 展开更多
关键词 immune multi-agent model (IMM) VACCINE surface warship formation cooperative air-defense system of systems (CASoS) danger theory (DT)
在线阅读 下载PDF
Multi-agent system application in accordance with game theory in bi-directional coordination network model 被引量:3
4
作者 ZHANG Jie WANG Gang +3 位作者 YUE Shaohua SONG Yafei LIU Jiayi YAO Xiaoqiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第2期279-289,共11页
The multi-agent system is the optimal solution to complex intelligent problems. In accordance with the game theory, the concept of loyalty is introduced to analyze the relationship between agents' individual incom... The multi-agent system is the optimal solution to complex intelligent problems. In accordance with the game theory, the concept of loyalty is introduced to analyze the relationship between agents' individual income and global benefits and build the logical architecture of the multi-agent system. Besides, to verify the feasibility of the method, the cyclic neural network is optimized, the bi-directional coordination network is built as the training network for deep learning, and specific training scenes are simulated as the training background. After a certain number of training iterations, the model can learn simple strategies autonomously. Also,as the training time increases, the complexity of learning strategies rises gradually. Strategies such as obstacle avoidance, firepower distribution and collaborative cover are adopted to demonstrate the achievability of the model. The model is verified to be realizable by the examples of obstacle avoidance, fire distribution and cooperative cover. Under the same resource background, the model exhibits better convergence than other deep learning training networks, and it is not easy to fall into the local endless loop.Furthermore, the ability of the learning strategy is stronger than that of the training model based on rules, which is of great practical values. 展开更多
关键词 LOYALTY GAME theory bi-directional COORDINATION network multi-agent system learning STRATEGY
在线阅读 下载PDF
Theory and Experiments on Enclosing Control of Multi-Agent Systems 被引量:5
5
作者 Yihui Wang Yanfei Liu Zhong Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第10期1677-1685,共9页
This paper proposes a control strategy called enclosing control.This strategy can be described as follows:the followers design their control inputs based on the state information of neighbor agents and move to specifi... This paper proposes a control strategy called enclosing control.This strategy can be described as follows:the followers design their control inputs based on the state information of neighbor agents and move to specified positions.The convex hull formed by these followers contains the leaders.We use the single-integrator model to describe the dynamics of the agents and proposes a continuous-time control protocol and a sampled-data based protocol for multi-agent systems with stationary leaders with fixed network topology.Then the state differential equations are analyzed to obtain the parameter requirements for the system to achieve convergence.Moreover,the conditions achieving enclosing control are established for both protocols.A special enclosing control with no leader located on the convex hull boundary under the protocols is studied,which can effectively prevent enclosing control failures caused by errors in the system.Moreover,several simulations are proposed to validate theoretical results and compare the differences between the three control protocols.Finally,experimental results on the multi-robot platform are provided to verify the feasibility of the protocol in the physical system. 展开更多
关键词 Cooperative control directed network topology enclosing control leader-following multi-agent systems
在线阅读 下载PDF
A Survey of Cooperative Multi-agent Reinforcement Learning for Multi-task Scenarios 被引量:1
6
作者 Jiajun CHAI Zijie ZHAO +1 位作者 Yuanheng ZHU Dongbin ZHAO 《Artificial Intelligence Science and Engineering》 2025年第2期98-121,共24页
Cooperative multi-agent reinforcement learning(MARL)is a key technology for enabling cooperation in complex multi-agent systems.It has achieved remarkable progress in areas such as gaming,autonomous driving,and multi-... Cooperative multi-agent reinforcement learning(MARL)is a key technology for enabling cooperation in complex multi-agent systems.It has achieved remarkable progress in areas such as gaming,autonomous driving,and multi-robot control.Empowering cooperative MARL with multi-task decision-making capabilities is expected to further broaden its application scope.In multi-task scenarios,cooperative MARL algorithms need to address 3 types of multi-task problems:reward-related multi-task,arising from different reward functions;multi-domain multi-task,caused by differences in state and action spaces,state transition functions;and scalability-related multi-task,resulting from the dynamic variation in the number of agents.Most existing studies focus on scalability-related multitask problems.However,with the increasing integration between large language models(LLMs)and multi-agent systems,a growing number of LLM-based multi-agent systems have emerged,enabling more complex multi-task cooperation.This paper provides a comprehensive review of the latest advances in this field.By combining multi-task reinforcement learning with cooperative MARL,we categorize and analyze the 3 major types of multi-task problems under multi-agent settings,offering more fine-grained classifications and summarizing key insights for each.In addition,we summarize commonly used benchmarks and discuss future directions of research in this area,which hold promise for further enhancing the multi-task cooperation capabilities of multi-agent systems and expanding their practical applications in the real world. 展开更多
关键词 MULTI-TASK multi-agent reinforcement learning large language models
在线阅读 下载PDF
Improved Event-Triggered Adaptive Neural Network Control for Multi-agent Systems Under Denial-of-Service Attacks 被引量:1
7
作者 Huiyan ZHANG Yu HUANG +1 位作者 Ning ZHAO Peng SHI 《Artificial Intelligence Science and Engineering》 2025年第2期122-133,共12页
This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method... This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system. 展开更多
关键词 multi-agent systems neural network DoS attacks memory-based adaptive event-triggered mechanism
在线阅读 下载PDF
Multi-Agent Network Intrusion Active Defense Model Based on Immune Theory 被引量:2
8
作者 LIU Sunjun LI Tao WANG Diangang HU Xiaoqing XU Chun 《Wuhan University Journal of Natural Sciences》 CAS 2007年第1期167-171,共5页
Inspired by the immune theory and multi-agent systems, an immune multi-agent active defense model for network intrusion is established. The concept of immune agent is introduced, and its running mechanism is establish... Inspired by the immune theory and multi-agent systems, an immune multi-agent active defense model for network intrusion is established. The concept of immune agent is introduced, and its running mechanism is established. The method, which uses antibody concentration to quantitatively describe the degree of intrusion danger, is presented. This model implements the multi-layer and distributed active defense mechanism for network intrusion. The experiment results show that this model is a good solution to the network security defense. 展开更多
关键词 artificial immune system intrusion detection system multi-agent system network security
在线阅读 下载PDF
Graph-based multi-agent reinforcement learning for collaborative search and tracking of multiple UAVs 被引量:2
9
作者 Bocheng ZHAO Mingying HUO +4 位作者 Zheng LI Wenyu FENG Ze YU Naiming QI Shaohai WANG 《Chinese Journal of Aeronautics》 2025年第3期109-123,共15页
This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary obj... This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary objective is to explore the unknown environments to locate and track targets effectively. To address this problem, we propose a novel Multi-Agent Reinforcement Learning (MARL) method based on Graph Neural Network (GNN). Firstly, a method is introduced for encoding continuous-space multi-UAV problem data into spatial graphs which establish essential relationships among agents, obstacles, and targets. Secondly, a Graph AttenTion network (GAT) model is presented, which focuses exclusively on adjacent nodes, learns attention weights adaptively and allows agents to better process information in dynamic environments. Reward functions are specifically designed to tackle exploration challenges in environments with sparse rewards. By introducing a framework that integrates centralized training and distributed execution, the advancement of models is facilitated. Simulation results show that the proposed method outperforms the existing MARL method in search rate and tracking performance with less collisions. The experiments show that the proposed method can be extended to applications with a larger number of agents, which provides a potential solution to the challenging problem of multi-UAV autonomous tracking in dynamic unknown environments. 展开更多
关键词 Unmanned aerial vehicle(UAV) multi-agent reinforcement learning(MARL) Graph attention network(GAT) Tracking Dynamic and unknown environment
原文传递
Road Pricing Design Based on Game Theory and Multi-agent Consensus 被引量:2
10
作者 Nan Xiao Xuehe Wang +3 位作者 Lihua Xie Tichakorn Wongpiromsarn Emilio Frazzoli Daniela Rus 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2014年第1期31-39,共9页
Consensus theory and noncooperative game theory respectively deal with cooperative and noncooperative interactions among multiple players/agents. They provide a natural framework for road pricing design, since each mo... Consensus theory and noncooperative game theory respectively deal with cooperative and noncooperative interactions among multiple players/agents. They provide a natural framework for road pricing design, since each motorist may myopically optimize his or her own utility as a function of road price and collectively communicate with his or her friends and neighbors on traffic situation at the same time. This paper considers the road pricing design by using game theory and consensus theory. For the case where a system supervisor broadcasts information on the overall system to each agent, we present a variant of standard fictitious play called average strategy fictitious play(ASFP) for large-scale repeated congestion games.Only a weighted running average of all other players actions is assumed to be available to each player. The ASFP reduces the burden of both information gathering and information processing for each player. Compared to the joint strategy fictitious play(JSFP) studied in the literature, the updating process of utility functions for each player is avoided. We prove that there exists at least one pure strategy Nash equilibrium for the congestion game under investigation, and the players actions generated by the ASFP with inertia(players reluctance to change their previous actions) converge to a Nash equilibrium almost surely. For the case without broadcasting, a consensus protocol is introduced for individual agents to estimate the percentage of players choosing each resource, and the convergence property of players action profile is still ensured. The results are applied to road pricing design to achieve socially local optimal trip timing. Simulation results are provided based on the real traffic data for the Singapore case study. 展开更多
关键词 AVERAGE strategy fictitious play(ASFP) gametheory multi-agent CONSENSUS ROAD PRICING
暂未订购
Multi-Agent Reinforcement Learning for Moving Target Defense Temporal Decision-Making Approach Based on Stackelberg-FlipIt Games
11
作者 Rongbo Sun Jinlong Fei +1 位作者 Yuefei Zhu Zhongyu Guo 《Computers, Materials & Continua》 2025年第8期3765-3786,共22页
Moving Target Defense(MTD)necessitates scientifically effective decision-making methodologies for defensive technology implementation.While most MTD decision studies focus on accurately identifying optimal strategies,... Moving Target Defense(MTD)necessitates scientifically effective decision-making methodologies for defensive technology implementation.While most MTD decision studies focus on accurately identifying optimal strategies,the issue of optimal defense timing remains underexplored.Current default approaches—periodic or overly frequent MTD triggers—lead to suboptimal trade-offs among system security,performance,and cost.The timing of MTD strategy activation critically impacts both defensive efficacy and operational overhead,yet existing frameworks inadequately address this temporal dimension.To bridge this gap,this paper proposes a Stackelberg-FlipIt game model that formalizes asymmetric cyber conflicts as alternating control over attack surfaces,thereby capturing the dynamic security state evolution of MTD systems.We introduce a belief factor to quantify information asymmetry during adversarial interactions,enhancing the precision of MTD trigger timing.Leveraging this game-theoretic foundation,we employMulti-Agent Reinforcement Learning(MARL)to derive adaptive temporal strategies,optimized via a novel four-dimensional reward function that holistically balances security,performance,cost,and timing.Experimental validation using IP addressmutation against scanning attacks demonstrates stable strategy convergence and accelerated defense response,significantly improving cybersecurity affordability and effectiveness. 展开更多
关键词 Cyber security moving target defense multi-agent reinforcement learning security metrics game theory
在线阅读 下载PDF
Nonconvex Constrained Consensus of Discrete-Time Heterogeneous Multi-Agent Systems with Arbitrarily Switching Topologies
12
作者 Honghao Wu 《Journal of Electronic Research and Application》 2025年第1期14-22,共9页
This paper mainly focuses on the velocity-constrained consensus problem of discrete-time heterogeneous multi-agent systems with nonconvex constraints and arbitrarily switching topologies,where each agent has first-ord... This paper mainly focuses on the velocity-constrained consensus problem of discrete-time heterogeneous multi-agent systems with nonconvex constraints and arbitrarily switching topologies,where each agent has first-order or second-order dynamics.To solve this problem,a distributed algorithm is proposed based on a contraction operator.By employing the properties of the stochastic matrix,it is shown that all agents’position states could converge to a common point and second-order agents’velocity states could remain in corresponding nonconvex constraint sets and converge to zero as long as the joint communication topology has one directed spanning tree.Finally,the numerical simulation results are provided to verify the effectiveness of the proposed algorithms. 展开更多
关键词 HETEROGENEOUS multi-agent systems Nonconvex constraint CONSENSUS
在线阅读 下载PDF
Multi-agent System Cooperative Control of Autonomous Vehicle Chassis Based on Scenario-driven Hybrid-DMPC with Variable Topology
13
作者 Yuxing Li Yingfeng Cai +2 位作者 Yubo Lian Xiaoqiang Sun Long Chen 《Chinese Journal of Mechanical Engineering》 2025年第5期156-175,共20页
The development of chassis active safety control technology has improved vehicle stability under extreme conditions.However,its cross-system and multi-functional characteristics make the controller difficult to achiev... The development of chassis active safety control technology has improved vehicle stability under extreme conditions.However,its cross-system and multi-functional characteristics make the controller difficult to achieve cooperative goals.In addition,the chassis system,which has high complexity,numerous subsystems,and strong coupling,will also lead to low computing efficiency and poor control effect of the controller.Therefore,this paper proposes a scenario-driven hybrid distributed model predictive control algorithm with variable control topology.This algorithm divides multiple stability regions based on the vehicle’s β−γ phase plane,forming a mapping relationship between the control structure and the vehicle’s state.A control input fusion mechanism within the transition domain is designed to mitigate the problems of system state oscillation and control input jitter caused by switching control structures.Then,a distributed state-space equation with state coupling and input coupling characteristics is constructed,and a weighted local agent cost function in quadratic programming is derived.Through cost coupling,local agents can coordinate global performance goals.Finally,through Simulink/CarSim joint simulation and hardware-in-the-loop(HIL)test,the proposed algorithm is validated to improve vehicle stability while ensuring trajectory tracking accuracy and has good applicability for multi-objective coordinated control.This paper combines the advantages of distributed MPC and decentralized MPC,achieving a balance between approximating the global optimal results and the solution’s efficiency. 展开更多
关键词 Autonomous vehicle Distributed control multi-agent system Hybrid-DMPC Variable topology
在线阅读 下载PDF
Leader-Following Consensus for a Class of Nonlinear Cascaded Multi-Agent Systems
14
作者 LI Xianda KANG Jianling 《Journal of Donghua University(English Edition)》 2025年第2期213-218,共6页
This paper focuses on the problem of leaderfollowing consensus for nonlinear cascaded multi-agent systems.The control strategies for these systems are transformed into successive control problem schemes for lower-orde... This paper focuses on the problem of leaderfollowing consensus for nonlinear cascaded multi-agent systems.The control strategies for these systems are transformed into successive control problem schemes for lower-order error subsystems.A distributed consensus analysis for the corresponding error systems is conducted by employing recursive methods and virtual controllers,accompanied by a series of Lyapunov functions devised throughout the iterative process,which solves the leaderfollowing consensus problem of a class of nonlinear cascaded multi-agent systems.Specific simulation examples illustrate the effectiveness of the proposed control algorithm. 展开更多
关键词 cascaded multi-agent system distributed control CONSENSUS recursive method
在线阅读 下载PDF
Group formation tracking for heterogeneous linear multi-agent systems under switching topologies
15
作者 Shiyu Zhou Dong Sun 《Journal of Automation and Intelligence》 2025年第2期108-114,共7页
This article investigates the time-varying output group formation tracking control(GFTC)problem for heterogeneous multi-agent systems(HMASs)under switching topologies.The objective is to design a distributed control s... This article investigates the time-varying output group formation tracking control(GFTC)problem for heterogeneous multi-agent systems(HMASs)under switching topologies.The objective is to design a distributed control strategy that enables the outputs of the followers to form the desired sub-formations and track the outputs of the leader in each subgroup.Firstly,novel distributed observers are developed to estimate the states of the leaders under switching topologies.Then,GFTC protocols are designed based on the proposed observers.It is shown that with the distributed protocol,the GFTC problem for HMASs under switching topologies is solved if the average dwell time associated with the switching topologies is larger than a fixed threshold.Finally,an example is provided to illustrate the effectiveness of the proposed control strategy. 展开更多
关键词 Formation tracking Group division Switching topologies multi-agent systems
在线阅读 下载PDF
Multi-Agent Autonomous Collaborative Detection Method for Multi-Targets in Complex Fire Environments
16
作者 Ke Li Haosheng Ye +4 位作者 Huairong Lin Runhan Xiao Biao Xu Bing Li Yao Yao 《Journal of Beijing Institute of Technology》 2025年第5期526-534,共9页
When a fire breaks out in a high-rise building,the occlusion of smoke and obstacles results in dearth of crucial information concerning people in distress,thereby creating a challenge in their detection.Given the rest... When a fire breaks out in a high-rise building,the occlusion of smoke and obstacles results in dearth of crucial information concerning people in distress,thereby creating a challenge in their detection.Given the restricted sensing range of a single unmanned aerial vehicle(UAV)cam-era,enhancing the target recognition rate becomes challenging without target information.To tackle this issue,this paper proposes a multi-agent autonomous collaborative detection method for multi-targets in complex fire environments.The objective is to achieve the fusion of multi-angle visual information,effectively increasing the target’s information dimension,and ultimately address-ing the problem of low target recognition rate caused by the lack of target information.The method steps are as follows:first,the you only look once version5(YOLOv5)is used to detect the target in the image;second,the detected targets are tracked to monitor their movements and trajectories;third,the person re-identification(ReID)model is employed to extract the appearance features of targets;finally,by fusing the visual information from multi-angle cameras,the method achieves multi-agent autonomous collaborative detection.The experimental results show that the method effectively combines the visual information from multi-angle cameras,resulting in improved detec-tion efficiency for people in distress. 展开更多
关键词 target detection multi-agent system fire environments detection
在线阅读 下载PDF
Dynamic Decoupling-Driven Cooperative Pursuit for Multi-UAV Systems:A Multi-Agent Reinforcement Learning Policy Optimization Approach
17
作者 Lei Lei Chengfu Wu Huaimin Chen 《Computers, Materials & Continua》 2025年第10期1339-1363,共25页
This paper proposes a Multi-Agent Attention Proximal Policy Optimization(MA2PPO)algorithm aiming at the problems such as credit assignment,low collaboration efficiency and weak strategy generalization ability existing... This paper proposes a Multi-Agent Attention Proximal Policy Optimization(MA2PPO)algorithm aiming at the problems such as credit assignment,low collaboration efficiency and weak strategy generalization ability existing in the cooperative pursuit tasks of multiple unmanned aerial vehicles(UAVs).Traditional algorithms often fail to effectively identify critical cooperative relationships in such tasks,leading to low capture efficiency and a significant decline in performance when the scale expands.To tackle these issues,based on the proximal policy optimization(PPO)algorithm,MA2PPO adopts the centralized training with decentralized execution(CTDE)framework and introduces a dynamic decoupling mechanism,that is,sharing the multi-head attention(MHA)mechanism for critics during centralized training to solve the credit assignment problem.This method enables the pursuers to identify highly correlated interactions with their teammates,effectively eliminate irrelevant and weakly relevant interactions,and decompose large-scale cooperation problems into decoupled sub-problems,thereby enhancing the collaborative efficiency and policy stability among multiple agents.Furthermore,a reward function has been devised to facilitate the pursuers to encircle the escapee by combining a formation reward with a distance reward,which incentivizes UAVs to develop sophisticated cooperative pursuit strategies.Experimental results demonstrate the effectiveness of the proposed algorithm in achieving multi-UAV cooperative pursuit and inducing diverse cooperative pursuit behaviors among UAVs.Moreover,experiments on scalability have demonstrated that the algorithm is suitable for large-scale multi-UAV systems. 展开更多
关键词 multi-agent reinforcement learning multi-UAV systems pursuit-evasion games
在线阅读 下载PDF
Recent Advancement in Formation Control of Multi-Agent Systems:A Review
18
作者 Aamir Farooq Zhengrong Xiang +1 位作者 Wen-Jer Chang Muhammad Shamrooz Aslam 《Computers, Materials & Continua》 2025年第6期3623-3674,共52页
Formation control in multi-agent systems has become a critical area of interest due to its wide-ranging applications in robotics,autonomous transportation,and surveillance.While various studies have explored distribut... Formation control in multi-agent systems has become a critical area of interest due to its wide-ranging applications in robotics,autonomous transportation,and surveillance.While various studies have explored distributed cooperative control,this review focuses on the theoretical foundations and recent developments in formation control strategies.The paper categorizes and analyzes key formation types,including formation maintenance,group or cluster formation,bipartite formations,event-triggered formations,finite-time convergence,and constrained formations.A significant portion of the review addresses formation control under constrained dynamics,presenting both modelbased and model-free approaches that consider practical limitations such as actuator bounds,communication delays,and nonholonomic constraints.Additionally,the paper discusses emerging trends,including the integration of eventdriven mechanisms and AI-enhanced coordination strategies.Comparative evaluations highlight the trade-offs among various methodologies regarding scalability,robustness,and real-world feasibility.Practical implementations are reviewed across diverse platforms,and the review identifies the current achievements and unresolved challenges in the field.The paper concludes by outlining promising research directions,such as adaptive control for dynamic environments,energy-efficient coordination,and using learning-based control under uncertainty.This review synthesizes the current state of the art and provides a road map for future investigation,making it a valuable reference for researchers and practitioners aiming to advance formation control in multi-agent systems. 展开更多
关键词 Cooperative control multi-agent systems formation control formation containment group formation bipartite formation
在线阅读 下载PDF
Sufficient and Necessary Conditions for Leader-Following Consensus of Second-Order Multi-Agent Systems via Intermittent Sampled Control
19
作者 Ziyang Wang Yuanzhen Feng +1 位作者 Zhengxin Wang Cong Zheng 《Computers, Materials & Continua》 2025年第6期4835-4853,共19页
Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To de... Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To decrease the control cost,based on ISC,several LFC problems are investigated for second-order MASs without and with time delay,respectively.Firstly,an intermittent sampled controller is designed,and a sufficient and necessary condition is derived,under which state errors between the leader and all the followers approach zero asymptotically.Considering that time delay is inevitable,a new protocol is proposed to deal with the time-delay situation.The error system’s stability is analyzed using the Schur stability theorem,and sufficient and necessary conditions for LFC are obtained,which are closely associated with the coupling gain,the system parameters,and the network structure.Furthermore,for the case where the current position and velocity information are not available,a distributed protocol is designed that depends only on the sampled position information.The sufficient and necessary conditions for LFC are also given.The results show that second-order MASs can achieve the LFC if and only if the system parameters satisfy the inequalities proposed in the paper.Finally,the correctness of the obtained results is verified by numerical simulations. 展开更多
关键词 Intermittent sampled control leader-following consensus time delay second-order multi-agent system
在线阅读 下载PDF
Achievement of Fish School Milling Motion Based on Distributed Multi-agent Reinforcement Learning
20
作者 Jincun Liu Yinjie Ren +3 位作者 Yang Liu Yan Meng Dong An Yaoguang Wei 《Journal of Bionic Engineering》 2025年第4期1683-1701,共19页
In recent years,significant research attention has been directed towards swarm intelligence.The Milling behavior of fish schools,a prime example of swarm intelligence,shows how simple rules followed by individual agen... In recent years,significant research attention has been directed towards swarm intelligence.The Milling behavior of fish schools,a prime example of swarm intelligence,shows how simple rules followed by individual agents lead to complex collective behaviors.This paper studies Multi-Agent Reinforcement Learning to simulate fish schooling behavior,overcoming the challenges of tuning parameters in traditional models and addressing the limitations of single-agent methods in multi-agent environments.Based on this foundation,a novel Graph Convolutional Networks(GCN)-Critic MADDPG algorithm leveraging GCN is proposed to enhance cooperation among agents in a multi-agent system.Simulation experiments demonstrate that,compared to traditional single-agent algorithms,the proposed method not only exhibits significant advantages in terms of convergence speed and stability but also achieves tighter group formations and more naturally aligned Milling behavior.Additionally,a fish school self-organizing behavior research platform based on an event-triggered mechanism has been developed,providing a robust tool for exploring dynamic behavioral changes under various conditions. 展开更多
关键词 Collective motion Collective behavior SELF-ORGANIZATION Fish school multi-agent reinforcement learning
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部