This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary obj...This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary objective is to explore the unknown environments to locate and track targets effectively. To address this problem, we propose a novel Multi-Agent Reinforcement Learning (MARL) method based on Graph Neural Network (GNN). Firstly, a method is introduced for encoding continuous-space multi-UAV problem data into spatial graphs which establish essential relationships among agents, obstacles, and targets. Secondly, a Graph AttenTion network (GAT) model is presented, which focuses exclusively on adjacent nodes, learns attention weights adaptively and allows agents to better process information in dynamic environments. Reward functions are specifically designed to tackle exploration challenges in environments with sparse rewards. By introducing a framework that integrates centralized training and distributed execution, the advancement of models is facilitated. Simulation results show that the proposed method outperforms the existing MARL method in search rate and tracking performance with less collisions. The experiments show that the proposed method can be extended to applications with a larger number of agents, which provides a potential solution to the challenging problem of multi-UAV autonomous tracking in dynamic unknown environments.展开更多
Cooperative multi-agent reinforcement learning(MARL)is a key technology for enabling cooperation in complex multi-agent systems.It has achieved remarkable progress in areas such as gaming,autonomous driving,and multi-...Cooperative multi-agent reinforcement learning(MARL)is a key technology for enabling cooperation in complex multi-agent systems.It has achieved remarkable progress in areas such as gaming,autonomous driving,and multi-robot control.Empowering cooperative MARL with multi-task decision-making capabilities is expected to further broaden its application scope.In multi-task scenarios,cooperative MARL algorithms need to address 3 types of multi-task problems:reward-related multi-task,arising from different reward functions;multi-domain multi-task,caused by differences in state and action spaces,state transition functions;and scalability-related multi-task,resulting from the dynamic variation in the number of agents.Most existing studies focus on scalability-related multitask problems.However,with the increasing integration between large language models(LLMs)and multi-agent systems,a growing number of LLM-based multi-agent systems have emerged,enabling more complex multi-task cooperation.This paper provides a comprehensive review of the latest advances in this field.By combining multi-task reinforcement learning with cooperative MARL,we categorize and analyze the 3 major types of multi-task problems under multi-agent settings,offering more fine-grained classifications and summarizing key insights for each.In addition,we summarize commonly used benchmarks and discuss future directions of research in this area,which hold promise for further enhancing the multi-task cooperation capabilities of multi-agent systems and expanding their practical applications in the real world.展开更多
In recent years,significant research attention has been directed towards swarm intelligence.The Milling behavior of fish schools,a prime example of swarm intelligence,shows how simple rules followed by individual agen...In recent years,significant research attention has been directed towards swarm intelligence.The Milling behavior of fish schools,a prime example of swarm intelligence,shows how simple rules followed by individual agents lead to complex collective behaviors.This paper studies Multi-Agent Reinforcement Learning to simulate fish schooling behavior,overcoming the challenges of tuning parameters in traditional models and addressing the limitations of single-agent methods in multi-agent environments.Based on this foundation,a novel Graph Convolutional Networks(GCN)-Critic MADDPG algorithm leveraging GCN is proposed to enhance cooperation among agents in a multi-agent system.Simulation experiments demonstrate that,compared to traditional single-agent algorithms,the proposed method not only exhibits significant advantages in terms of convergence speed and stability but also achieves tighter group formations and more naturally aligned Milling behavior.Additionally,a fish school self-organizing behavior research platform based on an event-triggered mechanism has been developed,providing a robust tool for exploring dynamic behavioral changes under various conditions.展开更多
Moving Target Defense(MTD)necessitates scientifically effective decision-making methodologies for defensive technology implementation.While most MTD decision studies focus on accurately identifying optimal strategies,...Moving Target Defense(MTD)necessitates scientifically effective decision-making methodologies for defensive technology implementation.While most MTD decision studies focus on accurately identifying optimal strategies,the issue of optimal defense timing remains underexplored.Current default approaches—periodic or overly frequent MTD triggers—lead to suboptimal trade-offs among system security,performance,and cost.The timing of MTD strategy activation critically impacts both defensive efficacy and operational overhead,yet existing frameworks inadequately address this temporal dimension.To bridge this gap,this paper proposes a Stackelberg-FlipIt game model that formalizes asymmetric cyber conflicts as alternating control over attack surfaces,thereby capturing the dynamic security state evolution of MTD systems.We introduce a belief factor to quantify information asymmetry during adversarial interactions,enhancing the precision of MTD trigger timing.Leveraging this game-theoretic foundation,we employMulti-Agent Reinforcement Learning(MARL)to derive adaptive temporal strategies,optimized via a novel four-dimensional reward function that holistically balances security,performance,cost,and timing.Experimental validation using IP addressmutation against scanning attacks demonstrates stable strategy convergence and accelerated defense response,significantly improving cybersecurity affordability and effectiveness.展开更多
Policy training against diverse opponents remains a challenge when using Multi-Agent Reinforcement Learning(MARL)in multiple Unmanned Combat Aerial Vehicle(UCAV)air combat scenarios.In view of this,this paper proposes...Policy training against diverse opponents remains a challenge when using Multi-Agent Reinforcement Learning(MARL)in multiple Unmanned Combat Aerial Vehicle(UCAV)air combat scenarios.In view of this,this paper proposes a novel Dominant and Non-dominant strategy sample selection(DoNot)mechanism and a Local Observation Enhanced Multi-Agent Proximal Policy Optimization(LOE-MAPPO)algorithm to train the multi-UCAV air combat policy and improve its generalization.Specifically,the LOE-MAPPO algorithm adopts a mixed state that concatenates the global state and individual agent's local observation to enable efficient value function learning in multi-UCAV air combat.The DoNot mechanism classifies opponents into dominant or non-dominant strategy opponents,and samples from easier to more challenging opponents to form an adaptive training curriculum.Empirical results demonstrate that the proposed LOE-MAPPO algorithm outperforms baseline MARL algorithms in multi-UCAV air combat scenarios,and the DoNot mechanism leads to stronger policy generalization when facing diverse opponents.The results pave the way for the fast generation of cooperative strategies for air combat agents with MARLalgorithms.展开更多
This paper presents a novel approach to dynamic pricing and distributed energy management in virtual power plant(VPP)networks using multi-agent reinforcement learning(MARL).As the energy landscape evolves towards grea...This paper presents a novel approach to dynamic pricing and distributed energy management in virtual power plant(VPP)networks using multi-agent reinforcement learning(MARL).As the energy landscape evolves towards greater decentralization and renewable integration,traditional optimization methods struggle to address the inherent complexities and uncertainties.Our proposed MARL framework enables adaptive,decentralized decision-making for both the distribution system operator and individual VPPs,optimizing economic efficiency while maintaining grid stability.We formulate the problem as a Markov decision process and develop a custom MARL algorithm that leverages actor-critic architectures and experience replay.Extensive simulations across diverse scenarios demonstrate that our approach consistently outperforms baseline methods,including Stackelberg game models and model predictive control,achieving an 18.73%reduction in costs and a 22.46%increase in VPP profits.The MARL framework shows particular strength in scenarios with high renewable energy penetration,where it improves system performance by 11.95%compared with traditional methods.Furthermore,our approach demonstrates superior adaptability to unexpected events and mis-predictions,highlighting its potential for real-world implementation.展开更多
Due to the characteristics of line-of-sight(LoS)communication in unmanned aerial vehicle(UAV)networks,these systems are highly susceptible to eavesdropping and surveillance.To effectively address the security concerns...Due to the characteristics of line-of-sight(LoS)communication in unmanned aerial vehicle(UAV)networks,these systems are highly susceptible to eavesdropping and surveillance.To effectively address the security concerns in UAV communication,covert communication methods have been adopted.This paper explores the joint optimization problem of trajectory and transmission power in a multi-hop UAV relay covert communication system.Considering the communication covertness,power constraints,and trajectory limitations,an algorithm based on multi-agent proximal policy optimization(MAPPO),named covert-MAPPO(C-MAPPO),is proposed.The proposed method leverages the strengths of both optimization algorithms and reinforcement learning to analyze and make joint decisions on the transmission power and flight trajectory strategies for UAVs to achieve cooperation.Simulation results demonstrate that the proposed method can maximize the system throughput while satisfying covertness constraints,and it outperforms benchmark algorithms in terms of system throughput and reward convergence speed.展开更多
The Internet of Unmanned Aerial Vehicles(I-UAVs)is expected to execute latency-sensitive tasks,but limited by co-channel interference and malicious jamming.In the face of unknown prior environmental knowledge,defendin...The Internet of Unmanned Aerial Vehicles(I-UAVs)is expected to execute latency-sensitive tasks,but limited by co-channel interference and malicious jamming.In the face of unknown prior environmental knowledge,defending against jamming and interference through spectrum allocation becomes challenging,especially when each UAV pair makes decisions independently.In this paper,we propose a cooperative multi-agent reinforcement learning(MARL)-based anti-jamming framework for I-UAVs,enabling UAV pairs to learn their own policies cooperatively.Specifically,we first model the problem as a modelfree multi-agent Markov decision process(MAMDP)to maximize the long-term expected system throughput.Then,for improving the exploration of the optimal policy,we resort to optimizing a MARL objective function with a mutual-information(MI)regularizer between states and actions,which can dynamically assign the probability for actions frequently used by the optimal policy.Next,through sharing their current channel selections and local learning experience(their soft Q-values),the UAV pairs can learn their own policies cooperatively relying on only preceding observed information and predicting others’actions.Our simulation results show that for both sweep jamming and Markov jamming patterns,the proposed scheme outperforms the benchmarkers in terms of throughput,convergence and stability for different numbers of jammers,channels and UAV pairs.展开更多
The rapid development of the Internet of Vehicles(IoVs)underscores the importance of Vehicle-to-Everything(V2X)communication for ensuring driving safety.V2X supports control systems by providing reliable and real-time...The rapid development of the Internet of Vehicles(IoVs)underscores the importance of Vehicle-to-Everything(V2X)communication for ensuring driving safety.V2X supports control systems by providing reliable and real-time information,while the control system's decisions,in turn,affect the communication topology and channel state.Depending on the coupling between communication and control,radio resource allocation(RRA)should be controlaware.However,current RRA methods often focus on optimizing communication metrics,neglecting the needs of the control system.To promote the co-design of communication and control,this paper proposes a novel RRA method that integrates both communication and control considerations.From the communication perspective,the Age of Information(AoI)is introduced to measure the freshness of packets.From the control perspective,a weighted utility function based on Time-to-Collision(TTC)and driving distance is designed,emphasizing the neighboring importance and potentially dangerous vehicles.By synthesizing these two metrics,an optimization objective minimizing weighted AoI based on TTC and driving distance is formulated.The RRA process is modeled as a partially observable Markov decision process,and a multi-agent reinforcement learning algorithm incorporating positional encoding and attention mechanisms(PAMARL)is proposed.Simulation results show that PAMARL can reduce Collision Risk(CR)with better Packet Delivery Ratio(PDR)than others.展开更多
Conflict resolution(CR)is a fundamental component of air traffic management,where recent progress in artificial intelligence has led to the effective application of deep reinforcement learning(DRL)techniques to enhanc...Conflict resolution(CR)is a fundamental component of air traffic management,where recent progress in artificial intelligence has led to the effective application of deep reinforcement learning(DRL)techniques to enhance CR strategies.However,existing DRL models applied to CR are often limited to simple scenarios.This approach frequently leads to the neglect of the high risks associated with multiple intersections in the high-density and multi-airport system terminal area(MAS-TMA),and suffers from poor interpretability.This paper addresses the aforementioned gap by introducing an improved multi-agent DRL model that adopted to autonomous CR(AutoCR)within MAS-TMA.Specifically,dynamic weather conditions are incorporated into the state space to enhance adaptability.In the action space,the flight intent is considered and transformed into optimal maneuvers according to overload,thus improving interpretability.On these bases,the deep Q-network(DQN)algorithm is further improved to address the AutoCR problem in MAS-TMA.Simulation experiments conducted in the“Guangdong-Hong Kong-Macao”greater bay area(GBA)MAS-TMA demonstrate the effectiveness of the proposed method,successfully resolving over eight potential conflicts and performing robustly across various air traffic densities.展开更多
This paper proposes a Multi-Agent Attention Proximal Policy Optimization(MA2PPO)algorithm aiming at the problems such as credit assignment,low collaboration efficiency and weak strategy generalization ability existing...This paper proposes a Multi-Agent Attention Proximal Policy Optimization(MA2PPO)algorithm aiming at the problems such as credit assignment,low collaboration efficiency and weak strategy generalization ability existing in the cooperative pursuit tasks of multiple unmanned aerial vehicles(UAVs).Traditional algorithms often fail to effectively identify critical cooperative relationships in such tasks,leading to low capture efficiency and a significant decline in performance when the scale expands.To tackle these issues,based on the proximal policy optimization(PPO)algorithm,MA2PPO adopts the centralized training with decentralized execution(CTDE)framework and introduces a dynamic decoupling mechanism,that is,sharing the multi-head attention(MHA)mechanism for critics during centralized training to solve the credit assignment problem.This method enables the pursuers to identify highly correlated interactions with their teammates,effectively eliminate irrelevant and weakly relevant interactions,and decompose large-scale cooperation problems into decoupled sub-problems,thereby enhancing the collaborative efficiency and policy stability among multiple agents.Furthermore,a reward function has been devised to facilitate the pursuers to encircle the escapee by combining a formation reward with a distance reward,which incentivizes UAVs to develop sophisticated cooperative pursuit strategies.Experimental results demonstrate the effectiveness of the proposed algorithm in achieving multi-UAV cooperative pursuit and inducing diverse cooperative pursuit behaviors among UAVs.Moreover,experiments on scalability have demonstrated that the algorithm is suitable for large-scale multi-UAV systems.展开更多
Cybertwin-enabled 6th Generation(6G)network is envisioned to support artificial intelligence-native management to meet changing demands of 6G applications.Multi-Agent Deep Reinforcement Learning(MADRL)technologies dri...Cybertwin-enabled 6th Generation(6G)network is envisioned to support artificial intelligence-native management to meet changing demands of 6G applications.Multi-Agent Deep Reinforcement Learning(MADRL)technologies driven by Cybertwins have been proposed for adaptive task offloading strategies.However,the existence of random transmission delay between Cybertwin-driven agents and underlying networks is not considered in related works,which destroys the standard Markov property and increases the decision reaction time to reduce the task offloading strategy performance.In order to address this problem,we propose a pipelining task offloading method to lower the decision reaction time and model it as a delay-aware Markov Decision Process(MDP).Then,we design a delay-aware MADRL algorithm to minimize the weighted sum of task execution latency and energy consumption.Firstly,the state space is augmented using the lastly-received state and historical actions to rebuild the Markov property.Secondly,Gate Transformer-XL is introduced to capture historical actions'importance and maintain the consistent input dimension dynamically changed due to random transmission delays.Thirdly,a sampling method and a new loss function with the difference between the current and target state value and the difference between real state-action value and augmented state-action value are designed to obtain state transition trajectories close to the real ones.Numerical results demonstrate that the proposed methods are effective in reducing reaction time and improving the task offloading performance in the random-delay Cybertwin-enabled 6G networks.展开更多
Aiming at the problem of mobile data traffic surge in 5G networks,this paper proposes an effective solution combining massive multiple-input multiple-output techniques with Ultra-Dense Network(UDN)and focuses on solvi...Aiming at the problem of mobile data traffic surge in 5G networks,this paper proposes an effective solution combining massive multiple-input multiple-output techniques with Ultra-Dense Network(UDN)and focuses on solving the resulting challenge of increased energy consumption.A base station control algorithm based on Multi-Agent Proximity Policy Optimization(MAPPO)is designed.In the constructed 5G UDN model,each base station is considered as an agent,and the MAPPO algorithm enables inter-base station collaboration and interference management to optimize the network performance.To reduce the extra power consumption due to frequent sleep mode switching of base stations,a sleep mode switching decision algorithm is proposed.The algorithm reduces unnecessary power consumption by evaluating the network state similarity and intelligently adjusting the agent’s action strategy.Simulation results show that the proposed algorithm reduces the power consumption by 24.61% compared to the no-sleep strategy and further reduces the power consumption by 5.36% compared to the traditional MAPPO algorithm under the premise of guaranteeing the quality of service of users.展开更多
To support popular Internet of Things(IoT)applications such as virtual reality and mobile games,edge computing provides a front-end distributed computing archetype of centralized cloud computing with low latency and d...To support popular Internet of Things(IoT)applications such as virtual reality and mobile games,edge computing provides a front-end distributed computing archetype of centralized cloud computing with low latency and distributed data processing.However,it is challenging for multiple users to offload their computation tasks because they are competing for spectrum and computation as well as Radio Access Technologies(RAT)resources.In this paper,we investigate computation offloading mechanism of multiple selfish users with resource allocation in IoT edge computing networks by formulating it as a stochastic game.Each user is a learning agent observing its local network environment to learn optimal decisions on either local computing or edge computing with a goal of minimizing long term system cost by choosing its transmit power level,RAT and sub-channel without knowing any information of the other users.Since users’decisions are coupling at the gateway,we define the reward function of each user by considering the aggregated effect of other users.Therefore,a multi-agent reinforcement learning framework is developed to solve the game with the proposed Independent Learners based Multi-Agent Q-learning(IL-based MA-Q)algorithm.Simulations demonstrate that the proposed IL-based MA-Q algorithm is feasible to solve the formulated problem and is more energy efficient without extra cost on channel estimation at the centralized gateway.Finally,compared with the other three benchmark algorithms,it has better system cost performance and achieves distributed computation offloading.展开更多
Multi-agent reinforcement learning(MARL)has been a rapidly evolving field.This paper presents a comprehensive survey of MARL and its applications.We trace the historical evolution of MARL,highlight its progress,and di...Multi-agent reinforcement learning(MARL)has been a rapidly evolving field.This paper presents a comprehensive survey of MARL and its applications.We trace the historical evolution of MARL,highlight its progress,and discuss related survey works.Then,we review the existing works addressing inherent challenges and those focusing on diverse applications.Some representative stochastic games,MARL means,spatial forms of MARL,and task classification are revisited.We then conduct an in-depth exploration of a variety of challenges encountered in MARL applications.We also address critical operational aspects,such as hyperparameter tuning and computational complexity,which are pivotal in practical implementations of MARL.Afterward,we make a thorough overview of the applications of MARL to intelligent machines and devices,chemical engineering,biotechnology,healthcare,and societal issues,which highlights the extensive potential and relevance of MARL within both current and future technological contexts.Our survey also encompasses a detailed examination of benchmark environments used in MARL research,which are instrumental in evaluating MARL algorithms and demonstrate the adaptability of MARL to diverse application scenarios.In the end,we give our prospect for MARL and discuss their related techniques and potential future applications.展开更多
In this paper, the reinforcement learning method for cooperative multi-agent systems(MAS) with incremental number of agents is studied. The existing multi-agent reinforcement learning approaches deal with the MAS with...In this paper, the reinforcement learning method for cooperative multi-agent systems(MAS) with incremental number of agents is studied. The existing multi-agent reinforcement learning approaches deal with the MAS with a specific number of agents, and can learn well-performed policies. However, if there is an increasing number of agents, the previously learned in may not perform well in the current scenario. The new agents need to learn from scratch to find optimal policies with others,which may slow down the learning speed of the whole team. To solve that problem, in this paper, we propose a new algorithm to take full advantage of the historical knowledge which was learned before, and transfer it from the previous agents to the new agents. Since the previous agents have been trained well in the source environment, they are treated as teacher agents in the target environment. Correspondingly, the new agents are called student agents. To enable the student agents to learn from the teacher agents, we first modify the input nodes of the networks for teacher agents to adapt to the current environment. Then, the teacher agents take the observations of the student agents as input, and output the advised actions and values as supervising information. Finally, the student agents combine the reward from the environment and the supervising information from the teacher agents, and learn the optimal policies with modified loss functions. By taking full advantage of the knowledge of teacher agents, the search space for the student agents will be reduced significantly, which can accelerate the learning speed of the holistic system. The proposed algorithm is verified in some multi-agent simulation environments, and its efficiency has been demonstrated by the experiment results.展开更多
To guarantee the heterogeneous delay requirements of the diverse vehicular services,it is necessary to design a full cooperative policy for both Vehicle to Infrastructure(V2I)and Vehicle to Vehicle(V2V)links.This pape...To guarantee the heterogeneous delay requirements of the diverse vehicular services,it is necessary to design a full cooperative policy for both Vehicle to Infrastructure(V2I)and Vehicle to Vehicle(V2V)links.This paper investigates the reduction of the delay in edge information sharing for V2V links while satisfying the delay requirements of the V2I links.Specifically,a mean delay minimization problem and a maximum individual delay minimization problem are formulated to improve the global network performance and ensure the fairness of a single user,respectively.A multi-agent reinforcement learning framework is designed to solve these two problems,where a new reward function is proposed to evaluate the utilities of the two optimization objectives in a unified framework.Thereafter,a proximal policy optimization approach is proposed to enable each V2V user to learn its policy using the shared global network reward.The effectiveness of the proposed approach is finally validated by comparing the obtained results with those of the other baseline approaches through extensive simulation experiments.展开更多
Reinforcement Learning(RL)techniques are being studied to solve the Demand and Capacity Balancing(DCB)problems to fully exploit their computational performance.A locally gen-eralised Multi-Agent Reinforcement Learning...Reinforcement Learning(RL)techniques are being studied to solve the Demand and Capacity Balancing(DCB)problems to fully exploit their computational performance.A locally gen-eralised Multi-Agent Reinforcement Learning(MARL)for real-world DCB problems is proposed.The proposed method can deploy trained agents directly to unseen scenarios in a specific Air Traffic Flow Management(ATFM)region to quickly obtain a satisfactory solution.In this method,agents of all flights in a scenario form a multi-agent decision-making system based on partial observation.The trained agent with the customised neural network can be deployed directly on the corresponding flight,allowing it to solve the DCB problem jointly.A cooperation coefficient is introduced in the reward function,which is used to adjust the agent’s cooperation preference in a multi-agent system,thereby controlling the distribution of flight delay time allocation.A multi-iteration mechanism is designed for the DCB decision-making framework to deal with problems arising from non-stationarity in MARL and to ensure that all hotspots are eliminated.Experiments based on large-scale high-complexity real-world scenarios are conducted to verify the effectiveness and efficiency of the method.From a statis-tical point of view,it is proven that the proposed method is generalised within the scope of the flights and sectors of interest,and its optimisation performance outperforms the standard computer-assisted slot allocation and state-of-the-art RL-based DCB methods.The sensitivity analysis preliminarily reveals the effect of the cooperation coefficient on delay time allocation.展开更多
Highly intelligent Unmanned Combat Aerial Vehicle(UCAV)formation is expected to bring out strengths in Beyond-Visual-Range(BVR)air combat.Although Multi-Agent Reinforcement Learning(MARL)shows outstanding performance ...Highly intelligent Unmanned Combat Aerial Vehicle(UCAV)formation is expected to bring out strengths in Beyond-Visual-Range(BVR)air combat.Although Multi-Agent Reinforcement Learning(MARL)shows outstanding performance in cooperative decision-making,it is challenging for existing MARL algorithms to quickly converge to an optimal strategy for UCAV formation in BVR air combat where confrontation is complicated and reward is extremely sparse and delayed.Aiming to solve this problem,this paper proposes an Advantage Highlight Multi-Agent Proximal Policy Optimization(AHMAPPO)algorithm.First,at every step,the AHMAPPO records the degree to which the best formation exceeds the average of formations in parallel environments and carries out additional advantage sampling according to it.Then,the sampling result is introduced into the updating process of the actor network to improve its optimization efficiency.Finally,the simulation results reveal that compared with some state-of-the-art MARL algorithms,the AHMAPPO can obtain a more excellent strategy utilizing fewer sample episodes in the UCAV formation BVR air combat simulation environment built in this paper,which can reflect the critical features of BVR air combat.The AHMAPPO can significantly increase the convergence efficiency of the strategy for UCAV formation in BVR air combat,with a maximum increase of 81.5%relative to other algorithms.展开更多
In multi-agent confrontation scenarios, a jammer is constrained by the single limited performance and inefficiency of practical application. To cope with these issues, this paper aims to investigate the multi-agent ja...In multi-agent confrontation scenarios, a jammer is constrained by the single limited performance and inefficiency of practical application. To cope with these issues, this paper aims to investigate the multi-agent jamming problem in a multi-user scenario, where the coordination between the jammers is considered. Firstly, a multi-agent Markov decision process (MDP) framework is used to model and analyze the multi-agent jamming problem. Secondly, a collaborative multi-agent jamming algorithm (CMJA) based on reinforcement learning is proposed. Finally, an actual intelligent jamming system is designed and built based on software-defined radio (SDR) platform for simulation and platform verification. The simulation and platform verification results show that the proposed CMJA algorithm outperforms the independent Q-learning method and provides a better jamming effect.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12272104,U22B2013).
文摘This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary objective is to explore the unknown environments to locate and track targets effectively. To address this problem, we propose a novel Multi-Agent Reinforcement Learning (MARL) method based on Graph Neural Network (GNN). Firstly, a method is introduced for encoding continuous-space multi-UAV problem data into spatial graphs which establish essential relationships among agents, obstacles, and targets. Secondly, a Graph AttenTion network (GAT) model is presented, which focuses exclusively on adjacent nodes, learns attention weights adaptively and allows agents to better process information in dynamic environments. Reward functions are specifically designed to tackle exploration challenges in environments with sparse rewards. By introducing a framework that integrates centralized training and distributed execution, the advancement of models is facilitated. Simulation results show that the proposed method outperforms the existing MARL method in search rate and tracking performance with less collisions. The experiments show that the proposed method can be extended to applications with a larger number of agents, which provides a potential solution to the challenging problem of multi-UAV autonomous tracking in dynamic unknown environments.
基金The National Natural Science Foundation of China(62136008,62293541)The Beijing Natural Science Foundation(4232056)The Beijing Nova Program(20240484514).
文摘Cooperative multi-agent reinforcement learning(MARL)is a key technology for enabling cooperation in complex multi-agent systems.It has achieved remarkable progress in areas such as gaming,autonomous driving,and multi-robot control.Empowering cooperative MARL with multi-task decision-making capabilities is expected to further broaden its application scope.In multi-task scenarios,cooperative MARL algorithms need to address 3 types of multi-task problems:reward-related multi-task,arising from different reward functions;multi-domain multi-task,caused by differences in state and action spaces,state transition functions;and scalability-related multi-task,resulting from the dynamic variation in the number of agents.Most existing studies focus on scalability-related multitask problems.However,with the increasing integration between large language models(LLMs)and multi-agent systems,a growing number of LLM-based multi-agent systems have emerged,enabling more complex multi-task cooperation.This paper provides a comprehensive review of the latest advances in this field.By combining multi-task reinforcement learning with cooperative MARL,we categorize and analyze the 3 major types of multi-task problems under multi-agent settings,offering more fine-grained classifications and summarizing key insights for each.In addition,we summarize commonly used benchmarks and discuss future directions of research in this area,which hold promise for further enhancing the multi-task cooperation capabilities of multi-agent systems and expanding their practical applications in the real world.
基金supported by the National Natural Science Foundation of China under Grant 62273351 and Grant 62303020.
文摘In recent years,significant research attention has been directed towards swarm intelligence.The Milling behavior of fish schools,a prime example of swarm intelligence,shows how simple rules followed by individual agents lead to complex collective behaviors.This paper studies Multi-Agent Reinforcement Learning to simulate fish schooling behavior,overcoming the challenges of tuning parameters in traditional models and addressing the limitations of single-agent methods in multi-agent environments.Based on this foundation,a novel Graph Convolutional Networks(GCN)-Critic MADDPG algorithm leveraging GCN is proposed to enhance cooperation among agents in a multi-agent system.Simulation experiments demonstrate that,compared to traditional single-agent algorithms,the proposed method not only exhibits significant advantages in terms of convergence speed and stability but also achieves tighter group formations and more naturally aligned Milling behavior.Additionally,a fish school self-organizing behavior research platform based on an event-triggered mechanism has been developed,providing a robust tool for exploring dynamic behavioral changes under various conditions.
基金funded by National Natural Science Foundation of China No.62302520.
文摘Moving Target Defense(MTD)necessitates scientifically effective decision-making methodologies for defensive technology implementation.While most MTD decision studies focus on accurately identifying optimal strategies,the issue of optimal defense timing remains underexplored.Current default approaches—periodic or overly frequent MTD triggers—lead to suboptimal trade-offs among system security,performance,and cost.The timing of MTD strategy activation critically impacts both defensive efficacy and operational overhead,yet existing frameworks inadequately address this temporal dimension.To bridge this gap,this paper proposes a Stackelberg-FlipIt game model that formalizes asymmetric cyber conflicts as alternating control over attack surfaces,thereby capturing the dynamic security state evolution of MTD systems.We introduce a belief factor to quantify information asymmetry during adversarial interactions,enhancing the precision of MTD trigger timing.Leveraging this game-theoretic foundation,we employMulti-Agent Reinforcement Learning(MARL)to derive adaptive temporal strategies,optimized via a novel four-dimensional reward function that holistically balances security,performance,cost,and timing.Experimental validation using IP addressmutation against scanning attacks demonstrates stable strategy convergence and accelerated defense response,significantly improving cybersecurity affordability and effectiveness.
文摘Policy training against diverse opponents remains a challenge when using Multi-Agent Reinforcement Learning(MARL)in multiple Unmanned Combat Aerial Vehicle(UCAV)air combat scenarios.In view of this,this paper proposes a novel Dominant and Non-dominant strategy sample selection(DoNot)mechanism and a Local Observation Enhanced Multi-Agent Proximal Policy Optimization(LOE-MAPPO)algorithm to train the multi-UCAV air combat policy and improve its generalization.Specifically,the LOE-MAPPO algorithm adopts a mixed state that concatenates the global state and individual agent's local observation to enable efficient value function learning in multi-UCAV air combat.The DoNot mechanism classifies opponents into dominant or non-dominant strategy opponents,and samples from easier to more challenging opponents to form an adaptive training curriculum.Empirical results demonstrate that the proposed LOE-MAPPO algorithm outperforms baseline MARL algorithms in multi-UCAV air combat scenarios,and the DoNot mechanism leads to stronger policy generalization when facing diverse opponents.The results pave the way for the fast generation of cooperative strategies for air combat agents with MARLalgorithms.
基金supported by the Science and Technology Project of State Grid Sichuan Electric Power Company Chengdu Power Supply Company under Grant No.521904240005.
文摘This paper presents a novel approach to dynamic pricing and distributed energy management in virtual power plant(VPP)networks using multi-agent reinforcement learning(MARL).As the energy landscape evolves towards greater decentralization and renewable integration,traditional optimization methods struggle to address the inherent complexities and uncertainties.Our proposed MARL framework enables adaptive,decentralized decision-making for both the distribution system operator and individual VPPs,optimizing economic efficiency while maintaining grid stability.We formulate the problem as a Markov decision process and develop a custom MARL algorithm that leverages actor-critic architectures and experience replay.Extensive simulations across diverse scenarios demonstrate that our approach consistently outperforms baseline methods,including Stackelberg game models and model predictive control,achieving an 18.73%reduction in costs and a 22.46%increase in VPP profits.The MARL framework shows particular strength in scenarios with high renewable energy penetration,where it improves system performance by 11.95%compared with traditional methods.Furthermore,our approach demonstrates superior adaptability to unexpected events and mis-predictions,highlighting its potential for real-world implementation.
基金supported by the Natural Science Foundation of Jiangsu Province,China(No.BK20240200)in part by the National Natural Science Foundation of China(Nos.62271501,62071488,62471489 and U22B2002)+1 种基金in part by the Key Technologies R&D Program of Jiangsu,China(Prospective and Key Technologies for Industry)(Nos.BE2023022 and BE2023022-4)in part by the Post-doctoral Fellowship Program of CPSF,China(No.GZB20240996).
文摘Due to the characteristics of line-of-sight(LoS)communication in unmanned aerial vehicle(UAV)networks,these systems are highly susceptible to eavesdropping and surveillance.To effectively address the security concerns in UAV communication,covert communication methods have been adopted.This paper explores the joint optimization problem of trajectory and transmission power in a multi-hop UAV relay covert communication system.Considering the communication covertness,power constraints,and trajectory limitations,an algorithm based on multi-agent proximal policy optimization(MAPPO),named covert-MAPPO(C-MAPPO),is proposed.The proposed method leverages the strengths of both optimization algorithms and reinforcement learning to analyze and make joint decisions on the transmission power and flight trajectory strategies for UAVs to achieve cooperation.Simulation results demonstrate that the proposed method can maximize the system throughput while satisfying covertness constraints,and it outperforms benchmark algorithms in terms of system throughput and reward convergence speed.
基金supported in part by the National Natural Science Foundation of China under Grants 62001225,62071236,62071234 and U22A2002in part by the Major Science and Technology plan of Hainan Province under Grant ZDKJ2021022+1 种基金in part by the Scientific Research Fund Project of Hainan University under Grant KYQD(ZR)-21008in part by the Key Technologies R&D Program of Jiangsu(Prospective and Key Technologies for Industry)under Grants BE2023022 and BE2023022-2.
文摘The Internet of Unmanned Aerial Vehicles(I-UAVs)is expected to execute latency-sensitive tasks,but limited by co-channel interference and malicious jamming.In the face of unknown prior environmental knowledge,defending against jamming and interference through spectrum allocation becomes challenging,especially when each UAV pair makes decisions independently.In this paper,we propose a cooperative multi-agent reinforcement learning(MARL)-based anti-jamming framework for I-UAVs,enabling UAV pairs to learn their own policies cooperatively.Specifically,we first model the problem as a modelfree multi-agent Markov decision process(MAMDP)to maximize the long-term expected system throughput.Then,for improving the exploration of the optimal policy,we resort to optimizing a MARL objective function with a mutual-information(MI)regularizer between states and actions,which can dynamically assign the probability for actions frequently used by the optimal policy.Next,through sharing their current channel selections and local learning experience(their soft Q-values),the UAV pairs can learn their own policies cooperatively relying on only preceding observed information and predicting others’actions.Our simulation results show that for both sweep jamming and Markov jamming patterns,the proposed scheme outperforms the benchmarkers in terms of throughput,convergence and stability for different numbers of jammers,channels and UAV pairs.
基金supported by Beijing Natural Science Foundation under Grant L202018the National Natural Science Foundation of China under Grant 61931005+1 种基金the Key Laboratory of Internet of Vehicle Technical Innovation and Testing(CAICT),Ministry of Industry and Information Technology under Grant No.KL-2023-001the High-performance Computing Platform of BUPT。
文摘The rapid development of the Internet of Vehicles(IoVs)underscores the importance of Vehicle-to-Everything(V2X)communication for ensuring driving safety.V2X supports control systems by providing reliable and real-time information,while the control system's decisions,in turn,affect the communication topology and channel state.Depending on the coupling between communication and control,radio resource allocation(RRA)should be controlaware.However,current RRA methods often focus on optimizing communication metrics,neglecting the needs of the control system.To promote the co-design of communication and control,this paper proposes a novel RRA method that integrates both communication and control considerations.From the communication perspective,the Age of Information(AoI)is introduced to measure the freshness of packets.From the control perspective,a weighted utility function based on Time-to-Collision(TTC)and driving distance is designed,emphasizing the neighboring importance and potentially dangerous vehicles.By synthesizing these two metrics,an optimization objective minimizing weighted AoI based on TTC and driving distance is formulated.The RRA process is modeled as a partially observable Markov decision process,and a multi-agent reinforcement learning algorithm incorporating positional encoding and attention mechanisms(PAMARL)is proposed.Simulation results show that PAMARL can reduce Collision Risk(CR)with better Packet Delivery Ratio(PDR)than others.
基金supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX25_0621)the Foundation of Inter-disciplinary Innovation Fund for Doctoral Students of Nanjing University of Aeronautics and Astronautics(No.KXKCXJJ202507)。
文摘Conflict resolution(CR)is a fundamental component of air traffic management,where recent progress in artificial intelligence has led to the effective application of deep reinforcement learning(DRL)techniques to enhance CR strategies.However,existing DRL models applied to CR are often limited to simple scenarios.This approach frequently leads to the neglect of the high risks associated with multiple intersections in the high-density and multi-airport system terminal area(MAS-TMA),and suffers from poor interpretability.This paper addresses the aforementioned gap by introducing an improved multi-agent DRL model that adopted to autonomous CR(AutoCR)within MAS-TMA.Specifically,dynamic weather conditions are incorporated into the state space to enhance adaptability.In the action space,the flight intent is considered and transformed into optimal maneuvers according to overload,thus improving interpretability.On these bases,the deep Q-network(DQN)algorithm is further improved to address the AutoCR problem in MAS-TMA.Simulation experiments conducted in the“Guangdong-Hong Kong-Macao”greater bay area(GBA)MAS-TMA demonstrate the effectiveness of the proposed method,successfully resolving over eight potential conflicts and performing robustly across various air traffic densities.
基金supported by the National Research and Development Program of China under Grant JCKY2018607C019in part by the Key Laboratory Fund of UAV of Northwestern Polytechnical University under Grant 2021JCJQLB0710L.
文摘This paper proposes a Multi-Agent Attention Proximal Policy Optimization(MA2PPO)algorithm aiming at the problems such as credit assignment,low collaboration efficiency and weak strategy generalization ability existing in the cooperative pursuit tasks of multiple unmanned aerial vehicles(UAVs).Traditional algorithms often fail to effectively identify critical cooperative relationships in such tasks,leading to low capture efficiency and a significant decline in performance when the scale expands.To tackle these issues,based on the proximal policy optimization(PPO)algorithm,MA2PPO adopts the centralized training with decentralized execution(CTDE)framework and introduces a dynamic decoupling mechanism,that is,sharing the multi-head attention(MHA)mechanism for critics during centralized training to solve the credit assignment problem.This method enables the pursuers to identify highly correlated interactions with their teammates,effectively eliminate irrelevant and weakly relevant interactions,and decompose large-scale cooperation problems into decoupled sub-problems,thereby enhancing the collaborative efficiency and policy stability among multiple agents.Furthermore,a reward function has been devised to facilitate the pursuers to encircle the escapee by combining a formation reward with a distance reward,which incentivizes UAVs to develop sophisticated cooperative pursuit strategies.Experimental results demonstrate the effectiveness of the proposed algorithm in achieving multi-UAV cooperative pursuit and inducing diverse cooperative pursuit behaviors among UAVs.Moreover,experiments on scalability have demonstrated that the algorithm is suitable for large-scale multi-UAV systems.
基金funded by the National Key Research and Development Program of China under Grant 2019YFB1803301Beijing Natural Science Foundation (L202002)。
文摘Cybertwin-enabled 6th Generation(6G)network is envisioned to support artificial intelligence-native management to meet changing demands of 6G applications.Multi-Agent Deep Reinforcement Learning(MADRL)technologies driven by Cybertwins have been proposed for adaptive task offloading strategies.However,the existence of random transmission delay between Cybertwin-driven agents and underlying networks is not considered in related works,which destroys the standard Markov property and increases the decision reaction time to reduce the task offloading strategy performance.In order to address this problem,we propose a pipelining task offloading method to lower the decision reaction time and model it as a delay-aware Markov Decision Process(MDP).Then,we design a delay-aware MADRL algorithm to minimize the weighted sum of task execution latency and energy consumption.Firstly,the state space is augmented using the lastly-received state and historical actions to rebuild the Markov property.Secondly,Gate Transformer-XL is introduced to capture historical actions'importance and maintain the consistent input dimension dynamically changed due to random transmission delays.Thirdly,a sampling method and a new loss function with the difference between the current and target state value and the difference between real state-action value and augmented state-action value are designed to obtain state transition trajectories close to the real ones.Numerical results demonstrate that the proposed methods are effective in reducing reaction time and improving the task offloading performance in the random-delay Cybertwin-enabled 6G networks.
基金supported by National Natural Science Foundation of China(62271096,U20A20157)Natural Science Foundation of Chongqing,China(CSTB2023NSCQ-LZX0134)+3 种基金University Innovation Research Group of Chongqing(CXQT20017)Youth Innovation Group Support Program of ICE Discipline of CQUPT(SCIE-QN-2022-04)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300632)the Chongqing Postdoctoral Special Funding Project(2022CQBSHTB2057).
文摘Aiming at the problem of mobile data traffic surge in 5G networks,this paper proposes an effective solution combining massive multiple-input multiple-output techniques with Ultra-Dense Network(UDN)and focuses on solving the resulting challenge of increased energy consumption.A base station control algorithm based on Multi-Agent Proximity Policy Optimization(MAPPO)is designed.In the constructed 5G UDN model,each base station is considered as an agent,and the MAPPO algorithm enables inter-base station collaboration and interference management to optimize the network performance.To reduce the extra power consumption due to frequent sleep mode switching of base stations,a sleep mode switching decision algorithm is proposed.The algorithm reduces unnecessary power consumption by evaluating the network state similarity and intelligently adjusting the agent’s action strategy.Simulation results show that the proposed algorithm reduces the power consumption by 24.61% compared to the no-sleep strategy and further reduces the power consumption by 5.36% compared to the traditional MAPPO algorithm under the premise of guaranteeing the quality of service of users.
文摘To support popular Internet of Things(IoT)applications such as virtual reality and mobile games,edge computing provides a front-end distributed computing archetype of centralized cloud computing with low latency and distributed data processing.However,it is challenging for multiple users to offload their computation tasks because they are competing for spectrum and computation as well as Radio Access Technologies(RAT)resources.In this paper,we investigate computation offloading mechanism of multiple selfish users with resource allocation in IoT edge computing networks by formulating it as a stochastic game.Each user is a learning agent observing its local network environment to learn optimal decisions on either local computing or edge computing with a goal of minimizing long term system cost by choosing its transmit power level,RAT and sub-channel without knowing any information of the other users.Since users’decisions are coupling at the gateway,we define the reward function of each user by considering the aggregated effect of other users.Therefore,a multi-agent reinforcement learning framework is developed to solve the game with the proposed Independent Learners based Multi-Agent Q-learning(IL-based MA-Q)algorithm.Simulations demonstrate that the proposed IL-based MA-Q algorithm is feasible to solve the formulated problem and is more energy efficient without extra cost on channel estimation at the centralized gateway.Finally,compared with the other three benchmark algorithms,it has better system cost performance and achieves distributed computation offloading.
基金Ministry of Education,Singapore,under AcRF TIER 1 Grant RG64/23the Eric and Wendy Schmidt AI in Science Postdoctoral Fellowship,a Schmidt Futures program,USA.
文摘Multi-agent reinforcement learning(MARL)has been a rapidly evolving field.This paper presents a comprehensive survey of MARL and its applications.We trace the historical evolution of MARL,highlight its progress,and discuss related survey works.Then,we review the existing works addressing inherent challenges and those focusing on diverse applications.Some representative stochastic games,MARL means,spatial forms of MARL,and task classification are revisited.We then conduct an in-depth exploration of a variety of challenges encountered in MARL applications.We also address critical operational aspects,such as hyperparameter tuning and computational complexity,which are pivotal in practical implementations of MARL.Afterward,we make a thorough overview of the applications of MARL to intelligent machines and devices,chemical engineering,biotechnology,healthcare,and societal issues,which highlights the extensive potential and relevance of MARL within both current and future technological contexts.Our survey also encompasses a detailed examination of benchmark environments used in MARL research,which are instrumental in evaluating MARL algorithms and demonstrate the adaptability of MARL to diverse application scenarios.In the end,we give our prospect for MARL and discuss their related techniques and potential future applications.
基金supported by the National Key R&D Program of China (2018AAA0101400)the National Natural Science Foundation of China (62173251+3 种基金61921004U1713209)the Natural Science Foundation of Jiangsu Province of China (BK20202006)the Guangdong Provincial Key Laboratory of Intelligent Decision and Cooperative Control。
文摘In this paper, the reinforcement learning method for cooperative multi-agent systems(MAS) with incremental number of agents is studied. The existing multi-agent reinforcement learning approaches deal with the MAS with a specific number of agents, and can learn well-performed policies. However, if there is an increasing number of agents, the previously learned in may not perform well in the current scenario. The new agents need to learn from scratch to find optimal policies with others,which may slow down the learning speed of the whole team. To solve that problem, in this paper, we propose a new algorithm to take full advantage of the historical knowledge which was learned before, and transfer it from the previous agents to the new agents. Since the previous agents have been trained well in the source environment, they are treated as teacher agents in the target environment. Correspondingly, the new agents are called student agents. To enable the student agents to learn from the teacher agents, we first modify the input nodes of the networks for teacher agents to adapt to the current environment. Then, the teacher agents take the observations of the student agents as input, and output the advised actions and values as supervising information. Finally, the student agents combine the reward from the environment and the supervising information from the teacher agents, and learn the optimal policies with modified loss functions. By taking full advantage of the knowledge of teacher agents, the search space for the student agents will be reduced significantly, which can accelerate the learning speed of the holistic system. The proposed algorithm is verified in some multi-agent simulation environments, and its efficiency has been demonstrated by the experiment results.
基金supported in part by the National Natural Science Foundation of China under grants 61901078,61771082,61871062,and U20A20157in part by the Science and Technology Research Program of Chongqing Municipal Education Commission under grant KJQN201900609+2 种基金in part by the Natural Science Foundation of Chongqing under grant cstc2020jcyj-zdxmX0024in part by University Innovation Research Group of Chongqing under grant CXQT20017in part by the China University Industry-University-Research Collaborative Innovation Fund(Future Network Innovation Research and Application Project)under grant 2021FNA04008.
文摘To guarantee the heterogeneous delay requirements of the diverse vehicular services,it is necessary to design a full cooperative policy for both Vehicle to Infrastructure(V2I)and Vehicle to Vehicle(V2V)links.This paper investigates the reduction of the delay in edge information sharing for V2V links while satisfying the delay requirements of the V2I links.Specifically,a mean delay minimization problem and a maximum individual delay minimization problem are formulated to improve the global network performance and ensure the fairness of a single user,respectively.A multi-agent reinforcement learning framework is designed to solve these two problems,where a new reward function is proposed to evaluate the utilities of the two optimization objectives in a unified framework.Thereafter,a proximal policy optimization approach is proposed to enable each V2V user to learn its policy using the shared global network reward.The effectiveness of the proposed approach is finally validated by comparing the obtained results with those of the other baseline approaches through extensive simulation experiments.
基金co-funded by the National Natural Science Foundation of China(No.61903187)the National Key R&D Program of China(No.2021YFB1600500)+2 种基金the China Scholarship Council(No.202006830095)the Natural Science Foundation of Jiangsu Province(No.BK20190414)the Jiangsu Province Postgraduate Innovation Fund(No.KYCX20_0213).
文摘Reinforcement Learning(RL)techniques are being studied to solve the Demand and Capacity Balancing(DCB)problems to fully exploit their computational performance.A locally gen-eralised Multi-Agent Reinforcement Learning(MARL)for real-world DCB problems is proposed.The proposed method can deploy trained agents directly to unseen scenarios in a specific Air Traffic Flow Management(ATFM)region to quickly obtain a satisfactory solution.In this method,agents of all flights in a scenario form a multi-agent decision-making system based on partial observation.The trained agent with the customised neural network can be deployed directly on the corresponding flight,allowing it to solve the DCB problem jointly.A cooperation coefficient is introduced in the reward function,which is used to adjust the agent’s cooperation preference in a multi-agent system,thereby controlling the distribution of flight delay time allocation.A multi-iteration mechanism is designed for the DCB decision-making framework to deal with problems arising from non-stationarity in MARL and to ensure that all hotspots are eliminated.Experiments based on large-scale high-complexity real-world scenarios are conducted to verify the effectiveness and efficiency of the method.From a statis-tical point of view,it is proven that the proposed method is generalised within the scope of the flights and sectors of interest,and its optimisation performance outperforms the standard computer-assisted slot allocation and state-of-the-art RL-based DCB methods.The sensitivity analysis preliminarily reveals the effect of the cooperation coefficient on delay time allocation.
基金co-supported by the National Natural Science Foundation of China(No.52272382)the Aeronautical Science Foundation of China(No.20200017051001)the Fundamental Research Funds for the Central Universities,China.
文摘Highly intelligent Unmanned Combat Aerial Vehicle(UCAV)formation is expected to bring out strengths in Beyond-Visual-Range(BVR)air combat.Although Multi-Agent Reinforcement Learning(MARL)shows outstanding performance in cooperative decision-making,it is challenging for existing MARL algorithms to quickly converge to an optimal strategy for UCAV formation in BVR air combat where confrontation is complicated and reward is extremely sparse and delayed.Aiming to solve this problem,this paper proposes an Advantage Highlight Multi-Agent Proximal Policy Optimization(AHMAPPO)algorithm.First,at every step,the AHMAPPO records the degree to which the best formation exceeds the average of formations in parallel environments and carries out additional advantage sampling according to it.Then,the sampling result is introduced into the updating process of the actor network to improve its optimization efficiency.Finally,the simulation results reveal that compared with some state-of-the-art MARL algorithms,the AHMAPPO can obtain a more excellent strategy utilizing fewer sample episodes in the UCAV formation BVR air combat simulation environment built in this paper,which can reflect the critical features of BVR air combat.The AHMAPPO can significantly increase the convergence efficiency of the strategy for UCAV formation in BVR air combat,with a maximum increase of 81.5%relative to other algorithms.
基金supported by National Natural Science Foundation of China (No. 62071488 and No. 62061013)
文摘In multi-agent confrontation scenarios, a jammer is constrained by the single limited performance and inefficiency of practical application. To cope with these issues, this paper aims to investigate the multi-agent jamming problem in a multi-user scenario, where the coordination between the jammers is considered. Firstly, a multi-agent Markov decision process (MDP) framework is used to model and analyze the multi-agent jamming problem. Secondly, a collaborative multi-agent jamming algorithm (CMJA) based on reinforcement learning is proposed. Finally, an actual intelligent jamming system is designed and built based on software-defined radio (SDR) platform for simulation and platform verification. The simulation and platform verification results show that the proposed CMJA algorithm outperforms the independent Q-learning method and provides a better jamming effect.