期刊文献+
共找到543,570篇文章
< 1 2 250 >
每页显示 20 50 100
Target Tracking and Obstacle Avoidance for Multi-agent Networks with Input Constraints 被引量:3
1
作者 Jing Yan Xin-Ping Guan +1 位作者 Xiao-Yuan Luo Fu-Xiao Tan 《International Journal of Automation and computing》 EI 2011年第1期46-53,共8页
In this paper, the problems of target tracking and obstacle avoidance for multi-agent networks with input constraints are investigated. When there is a moving obstacle, the control objectives are to make the agents tr... In this paper, the problems of target tracking and obstacle avoidance for multi-agent networks with input constraints are investigated. When there is a moving obstacle, the control objectives are to make the agents track a moving target and to avoid collisions among agents. First, without considering the input constraints, a novel distributed controller can be obtained based on the potential function. Second, at each sampling time, the control algorithm is optimized. Furthermore, to solve the problem that agents cannot effectively avoid the obstacles in dynamic environment where the obstacles are moving, a new velocity repulsive potential is designed. One advantage of the designed control algorithm is that each agent only requires local knowledge of its neighboring agents. Finally, simulation results are provided to verify the effectiveness of the proposed approach. 展开更多
关键词 Target tracking obstacle avoidance multi-agent networks potential function optimal control.
在线阅读 下载PDF
Leader-following formation control of multi-agent networks based on distributed observers 被引量:4
2
作者 罗小元 韩娜妮 关新平 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第10期7-15,共9页
To investigate the leader-following formation control, in this paper we present the design problem of control protocols and distributed observers under which the agents can achieve and maintain the desired formation f... To investigate the leader-following formation control, in this paper we present the design problem of control protocols and distributed observers under which the agents can achieve and maintain the desired formation from any initial states, while the velocity converges to that of the virtual leader whose velocity cannot be measured by agents in real time. The two cases of switching topologies without communication delay and fixed topology with time-varying communication delay are both considered for multi-agent networks. By using the Lyapunov stability theory, the issue of stability is analysed for multi-agent systems with switching topologies. Then, by considering the time-varying communication delay, the sufficient condition is proposed for the multi-agent systems with fixed topology. Finally, two numerical examples are given to illustrate the effectiveness of the proposed leader-following formation control protocols. 展开更多
关键词 formation control distributed observer multi-agent system graph theory
原文传递
Consensus disturbance rejection control of directed multi-agent networks with extended state observer 被引量:2
3
作者 Shaopan GUO Zhongkui LI +1 位作者 Yifeng NIU Lizhen WU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第5期1486-1493,共8页
This paper investigates the consensus disturbance rejection problem among multiple high-order agents with directed graphs.Based on disturbance observers,distributed consensus disturbance rejection protocols are constr... This paper investigates the consensus disturbance rejection problem among multiple high-order agents with directed graphs.Based on disturbance observers,distributed consensus disturbance rejection protocols are constructed in leaderless and leader-follower consensus setups.Different from the previous related papers,the consensus protocols in this paper are developed in a fully distributed fashion,relying on only the state information of each agent and its neighbors.Sufficient conditions are provided to guarantee that the asymptotic stability of high-order multi-agent systems can be reached with matched disturbances. 展开更多
关键词 Adaptive control Consensus control Distributed control Disturbance rejection multi-agent systems
原文传递
Pinning consensus analysis of multi-agent networks with arbitrary topology 被引量:1
4
作者 纪良浩 廖晓峰 陈欣 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第9期183-189,共7页
In this paper the pinning consensus of multi-agent networks with arbitrary topology is investigated. Based on the properties of M-matrix, some criteria of pinning consensus are established for the continuous multi-age... In this paper the pinning consensus of multi-agent networks with arbitrary topology is investigated. Based on the properties of M-matrix, some criteria of pinning consensus are established for the continuous multi-agent network and the results show that the pinning consensus of the dynamical system depends on the smallest real part of the eigenvalue of the matrix which is composed of the Laplacian matrix of the multi-agent network and the pinning control gains. Meanwhile, the relevant work for the discrete-time system is studied and the corresponding criterion is also obtained. Particularly, the fundamental problem of pinning consensus, that is, what kind of node should be pinned, is investigated and the positive answers to this question are presented. Finally, the correctness of our theoretical findings is demonstrated by some numerical simulated examples. 展开更多
关键词 multi-agent pinning control CONSENSUS SYNCHRONIZATION
原文传递
Rigidity based formation tracking for multi-agent networks
5
作者 白璐 陈飞 兰维瑶 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期62-67,共6页
This paper considers the formation tracking problem under a rigidity framework, where the target formation is specified as a minimally and infinitesimally rigid formation and the desired velocity of the group is avail... This paper considers the formation tracking problem under a rigidity framework, where the target formation is specified as a minimally and infinitesimally rigid formation and the desired velocity of the group is available to only a subset of the agents. The following two cases are considered: the desired velocity is constant, and the desired velocity is timevarying. In the first case, a distributed linear estimator is constructed for each agent to estimate the desired velocity. The velocity estimation and a formation acquisition term are employed to design the control inputs for the agents, where the rigidity matrix plays a central role. In the second case, a distributed non-smooth estimator is constructed to estimate the time-varying velocity, which is shown to converge in a finite time. Theoretical analysis shows that the formation tracking problem can be solved under the proposed control algorithms and estimators. Simulation results are also provided to show the validity of the derived results. 展开更多
关键词 multi-agent system formation control graph rigidity distributed estimator
原文传递
A method for modeling and evaluating the interoperability of multi-agent systems based on hierarchical weighted networks
6
作者 DONG Jingwei TANG Wei YU Minggang 《Journal of Systems Engineering and Electronics》 2025年第3期754-767,共14页
Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weight... Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies. 展开更多
关键词 complex network agent INTEROPERABILITY susceptible-infected-recovered model dynamic Bayesian network
在线阅读 下载PDF
An Adaptive Virtual Impedance Control for Voltage and Frequency Regulation of Islanded Distribution Networks Based on Multi-Agent Consensus
7
作者 Jiran Zhu Silin He +5 位作者 Chun Chen Li Zhou Hongqing Li Di Zhang Fenglin Hua Tianhao Zhu 《Energy Engineering》 2025年第6期2465-2483,共19页
In the islanded operation of distribution networks,due to the mismatch of line impedance at the inverter output,conventional droop control leads to inaccurate power sharing according to capacity,resulting in voltage a... In the islanded operation of distribution networks,due to the mismatch of line impedance at the inverter output,conventional droop control leads to inaccurate power sharing according to capacity,resulting in voltage and frequency fluctuations under minor external disturbances.To address this issue,this paper introduces an enhanced scheme for power sharing and voltage-frequency control.First,to solve the power distribution problem,we propose an adaptive virtual impedance control based on multi-agent consensus,which allows for precise active and reactive power allocation without requiring feeder impedance knowledge.Moreover,a novel consensus-based voltage and frequency control is proposed to correct the voltage deviation inherent in droop control and virtual impedance methods.This strategy maintains voltage and frequency stability even during communication disruptions and enhances system robustness.Additionally,a small-signal model is established for system stability analysis,and the control parameters are optimized.Simulation results validate the effectiveness of the proposed control scheme. 展开更多
关键词 Active island adaptive virtual impedance power distribution multi-agent communication failure
在线阅读 下载PDF
Adaptive multi-agent reinforcement learning for dynamic pricing and distributed energy management in virtual power plant networks
8
作者 Jian-Dong Yao Wen-Bin Hao +3 位作者 Zhi-Gao Meng Bo Xie Jian-Hua Chen Jia-Qi Wei 《Journal of Electronic Science and Technology》 2025年第1期35-59,共25页
This paper presents a novel approach to dynamic pricing and distributed energy management in virtual power plant(VPP)networks using multi-agent reinforcement learning(MARL).As the energy landscape evolves towards grea... This paper presents a novel approach to dynamic pricing and distributed energy management in virtual power plant(VPP)networks using multi-agent reinforcement learning(MARL).As the energy landscape evolves towards greater decentralization and renewable integration,traditional optimization methods struggle to address the inherent complexities and uncertainties.Our proposed MARL framework enables adaptive,decentralized decision-making for both the distribution system operator and individual VPPs,optimizing economic efficiency while maintaining grid stability.We formulate the problem as a Markov decision process and develop a custom MARL algorithm that leverages actor-critic architectures and experience replay.Extensive simulations across diverse scenarios demonstrate that our approach consistently outperforms baseline methods,including Stackelberg game models and model predictive control,achieving an 18.73%reduction in costs and a 22.46%increase in VPP profits.The MARL framework shows particular strength in scenarios with high renewable energy penetration,where it improves system performance by 11.95%compared with traditional methods.Furthermore,our approach demonstrates superior adaptability to unexpected events and mis-predictions,highlighting its potential for real-world implementation. 展开更多
关键词 Distributed energy management Dynamic pricing multi-agent reinforcement learning Renewable energy integration Virtual power plants
在线阅读 下载PDF
Dynamic Multi-Target Jamming Channel Allocation and Power Decision-Making in Wireless Communication Networks:A Multi-Agent Deep Reinforcement Learning Approach
9
作者 Peng Xiang Xu Hua +4 位作者 Qi Zisen Wang Dan Zhang Yue Rao Ning Gu Wanyi 《China Communications》 2025年第5期71-91,共21页
This paper studies the problem of jamming decision-making for dynamic multiple communication links in wireless communication networks(WCNs).We propose a novel jamming channel allocation and power decision-making(JCAPD... This paper studies the problem of jamming decision-making for dynamic multiple communication links in wireless communication networks(WCNs).We propose a novel jamming channel allocation and power decision-making(JCAPD)approach based on multi-agent deep reinforcement learning(MADRL).In high-dynamic and multi-target aviation communication environments,the rapid changes in channels make it difficult for sensors to accurately capture instantaneous channel state information.This poses a challenge to make centralized jamming decisions with single-agent deep reinforcement learning(DRL)approaches.In response,we design a distributed multi-agent decision architecture(DMADA).We formulate multi-jammer resource allocation as a multiagent Markov decision process(MDP)and propose a fingerprint-based double deep Q-Network(FBDDQN)algorithm for solving it.Each jammer functions as an agent that interacts with the environment in this framework.Through the design of a reasonable reward and training mechanism,our approach enables jammers to achieve distributed cooperation,significantly improving the jamming success rate while considering jamming power cost,and reducing the transmission rate of links.Our experimental results show the FBDDQN algorithm is superior to the baseline methods. 展开更多
关键词 jamming resource allocation JCAPD MADRL wireless communication countermeasure wireless communication networks
在线阅读 下载PDF
Multi-agent SAC approach aided joint trajectory and power optimization for multi-UAV assisted wireless networks with safety constraints
10
作者 Jia SHI Zan LI +3 位作者 Wentao SUN Zixuan BAI Feng WANG Tony Q.S.QUEK 《Chinese Journal of Aeronautics》 2025年第10期19-31,共13页
Unmanned Aerial Vehicles(UAVs)have demonstrated significant potential as Aerial Base Stations(A-BSs)for providing data services to Ground Users(GUs),attributed to their flexibility,cost-effectiveness,and high likeliho... Unmanned Aerial Vehicles(UAVs)have demonstrated significant potential as Aerial Base Stations(A-BSs)for providing data services to Ground Users(GUs),attributed to their flexibility,cost-effectiveness,and high likelihood of establishing line-of-sight links.In this article,we formulate the joint power and trajectory optimization problem for a multi-UAV assisted wireless network with no-fly zones constrained,aiming at maximizing the Accumulated Service Data(ASD)of UAVs and minimizing the Average End Age of Information(AEAoI)of GUs.Specifically,this paper proposes the Multi-Agent worst-case Soft Actor Critic(MA-wcSAC)algorithm with a distributional safety-critic.The simulation results demonstrate that,compared to the Multi-Agent Soft Actor Critic(MA-SAC)algorithm,the proposed algorithm exhibits comparable data service performance while reducing security risks by at least 30%at different risk levels. 展开更多
关键词 Unmanned Aerial Vehicle(UAV) Age of Information(AoI) Safety constraint Trajectory design Power allocation multi-agent worst-case soft actor critic(MA-wcSAC)
原文传递
Time-Varying Formation Tracking Control of Heterogeneous Multi-Agent Systems With Intermittent Communications and Directed Switching Networks
11
作者 Yuhan Wang Zhuping Wang +1 位作者 Hao Zhang Huaicheng Yan 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期294-296,共3页
Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present so... Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems. 展开更多
关键词 switched systems time varying formation tracking directed switching networks heterogeneous multi agent systems intermittent communications exponential stability
在线阅读 下载PDF
Improved Event-Triggered Adaptive Neural Network Control for Multi-agent Systems Under Denial-of-Service Attacks 被引量:1
12
作者 Huiyan ZHANG Yu HUANG +1 位作者 Ning ZHAO Peng SHI 《Artificial Intelligence Science and Engineering》 2025年第2期122-133,共12页
This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method... This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system. 展开更多
关键词 multi-agent systems neural network DoS attacks memory-based adaptive event-triggered mechanism
在线阅读 下载PDF
Artificial Intelligence (AI)-Enabled Unmanned Aerial Vehicle (UAV) Systems for Optimizing User Connectivity in Sixth-Generation (6G) Ubiquitous Networks
13
作者 Zeeshan Ali Haider Inam Ullah +2 位作者 Ahmad Abu Shareha Rashid Nasimov Sufyan Ali Memon 《Computers, Materials & Continua》 2026年第1期534-549,共16页
The advent of sixth-generation(6G)networks introduces unprecedented challenges in achieving seamless connectivity,ultra-low latency,and efficient resource management in highly dynamic environments.Although fifth-gener... The advent of sixth-generation(6G)networks introduces unprecedented challenges in achieving seamless connectivity,ultra-low latency,and efficient resource management in highly dynamic environments.Although fifth-generation(5G)networks transformed mobile broadband and machine-type communications at massive scales,their properties of scaling,interference management,and latency remain a limitation in dense high mobility settings.To overcome these limitations,artificial intelligence(AI)and unmanned aerial vehicles(UAVs)have emerged as potential solutions to develop versatile,dynamic,and energy-efficient communication systems.The study proposes an AI-based UAV architecture that utilizes cooperative reinforcement learning(CoRL)to manage an autonomous network.The UAVs collaborate by sharing local observations and real-time state exchanges to optimize user connectivity,movement directions,allocate power,and resource distribution.Unlike conventional centralized or autonomous methods,CoRL involves joint state sharing and conflict-sensitive reward shaping,which ensures fair coverage,less interference,and enhanced adaptability in a dynamic urban environment.Simulations conducted in smart city scenarios with 10 UAVs and 50 ground users demonstrate that the proposed CoRL-based UAV system increases user coverage by up to 10%,achieves convergence 40%faster,and reduces latency and energy consumption by 30%compared with centralized and decentralized baselines.Furthermore,the distributed nature of the algorithm ensures scalability and flexibility,making it well-suited for future large-scale 6G deployments.The results highlighted that AI-enabled UAV systems enhance connectivity,support ultra-reliable low-latency communications(URLLC),and improve 6G network efficiency.Future work will extend the framework with adaptive modulation,beamforming-aware positioning,and real-world testbed deployment. 展开更多
关键词 6G networks UAV-based communication cooperative reinforcement learning network optimization user connectivity energy efficiency
在线阅读 下载PDF
Recurrent MAPPO for Joint UAV Trajectory and Traffic Offloading in Space-Air-Ground Integrated Networks
14
作者 Zheyuan Jia Fenglin Jin +1 位作者 Jun Xie Yuan He 《Computers, Materials & Continua》 2026年第1期447-461,共15页
This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks(SAGIN)through a novel Recursive Multi-Agent Proximal Policy Optimization(RMAPPO)algorithm.The exponential g... This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks(SAGIN)through a novel Recursive Multi-Agent Proximal Policy Optimization(RMAPPO)algorithm.The exponential growth of mobile devices and data traffic has substantially increased network congestion,particularly in urban areas and regions with limited terrestrial infrastructure.Our approach jointly optimizes unmanned aerial vehicle(UAV)trajectories and satellite-assisted offloading strategies to simultaneously maximize data throughput,minimize energy consumption,and maintain equitable resource distribution.The proposed RMAPPO framework incorporates recurrent neural networks(RNNs)to model temporal dependencies in UAV mobility patterns and utilizes a decentralized multi-agent reinforcement learning architecture to reduce communication overhead while improving system robustness.The proposed RMAPPO algorithm was evaluated through simulation experiments,with the results indicating that it significantly enhances the cumulative traffic offloading rate of nodes and reduces the energy consumption of UAVs. 展开更多
关键词 Space-air-ground integrated networks UAV traffic offloading reinforcement learning
在线阅读 下载PDF
Graph Attention Networks for Skin Lesion Classification with CNN-Driven Node Features
15
作者 Ghadah Naif Alwakid Samabia Tehsin +3 位作者 Mamoona Humayun Asad Farooq Ibrahim Alrashdi Amjad Alsirhani 《Computers, Materials & Continua》 2026年第1期1964-1984,共21页
Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and ... Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance,and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks(CNNs).We frame skin lesion recognition as graph-based reasoning and,to ensure fair evaluation and avoid data leakage,adopt a strict lesion-level partitioning strategy.Each image is first over-segmented using SLIC(Simple Linear Iterative Clustering)to produce perceptually homogeneous superpixels.These superpixels form the nodes of a region-adjacency graph whose edges encode spatial continuity.Node attributes are 1280-dimensional embeddings extracted with a lightweight yet expressive EfficientNet-B0 backbone,providing strong representational power at modest computational cost.The resulting graphs are processed by a five-layer Graph Attention Network(GAT)that learns to weight inter-node relationships dynamically and aggregates multi-hop context before classifying lesions into seven classes with a log-softmax output.Extensive experiments on the DermaMNIST benchmark show the proposed pipeline achieves 88.35%accuracy and 98.04%AUC,outperforming contemporary CNNs,AutoML approaches,and alternative graph neural networks.An ablation study indicates EfficientNet-B0 produces superior node descriptors compared with ResNet-18 and DenseNet,and that roughly five GAT layers strike a good balance between being too shallow and over-deep while avoiding oversmoothing.The method requires no data augmentation or external metadata,making it a drop-in upgrade for clinical computer-aided diagnosis systems. 展开更多
关键词 Graph neural network image classification DermaMNIST dataset graph representation
在线阅读 下载PDF
P4LoF: Scheduling Loop-Free Multi-Flow Updates in Programmable Networks
16
作者 Jiqiang Xia Qi Zhan +2 位作者 Le Tian Yuxiang Hu Jianhua Peng 《Computers, Materials & Continua》 2026年第1期1236-1254,共19页
The rapid growth of distributed data-centric applications and AI workloads increases demand for low-latency,high-throughput communication,necessitating frequent and flexible updates to network routing configurations.H... The rapid growth of distributed data-centric applications and AI workloads increases demand for low-latency,high-throughput communication,necessitating frequent and flexible updates to network routing configurations.However,maintaining consistent forwarding states during these updates is challenging,particularly when rerouting multiple flows simultaneously.Existing approaches pay little attention to multi-flow update,where improper update sequences across data plane nodes may construct deadlock dependencies.Moreover,these methods typically involve excessive control-data plane interactions,incurring significant resource overhead and performance degradation.This paper presents P4LoF,an efficient loop-free update approach that enables the controller to reroute multiple flows through minimal interactions.P4LoF first utilizes a greedy-based algorithm to generate the shortest update dependency chain for the single-flow update.These chains are then dynamically merged into a dependency graph and resolved as a Shortest Common Super-sequence(SCS)problem to produce the update sequence of multi-flow update.To address deadlock dependencies in multi-flow updates,P4LoF builds a deadlock-fix forwarding model that leverages the flexible packet processing capabilities of the programmable data plane.Experimental results show that P4LoF reduces control-data plane interactions by at least 32.6%with modest overhead,while effectively guaranteeing loop-free consistency. 展开更多
关键词 network management update consistency programmable data plane P4
在线阅读 下载PDF
Multi-Objective Evolutionary Framework for High-Precision Community Detection in Complex Networks
17
作者 Asal Jameel Khudhair Amenah Dahim Abbood 《Computers, Materials & Continua》 2026年第1期1453-1483,共31页
Community detection is one of the most fundamental applications in understanding the structure of complicated networks.Furthermore,it is an important approach to identifying closely linked clusters of nodes that may r... Community detection is one of the most fundamental applications in understanding the structure of complicated networks.Furthermore,it is an important approach to identifying closely linked clusters of nodes that may represent underlying patterns and relationships.Networking structures are highly sensitive in social networks,requiring advanced techniques to accurately identify the structure of these communities.Most conventional algorithms for detecting communities perform inadequately with complicated networks.In addition,they miss out on accurately identifying clusters.Since single-objective optimization cannot always generate accurate and comprehensive results,as multi-objective optimization can.Therefore,we utilized two objective functions that enable strong connections between communities and weak connections between them.In this study,we utilized the intra function,which has proven effective in state-of-the-art research studies.We proposed a new inter-function that has demonstrated its effectiveness by making the objective of detecting external connections between communities is to make them more distinct and sparse.Furthermore,we proposed a Multi-Objective community strength enhancement algorithm(MOCSE).The proposed algorithm is based on the framework of the Multi-Objective Evolutionary Algorithm with Decomposition(MOEA/D),integrated with a new heuristic mutation strategy,community strength enhancement(CSE).The results demonstrate that the model is effective in accurately identifying community structures while also being computationally efficient.The performance measures used to evaluate the MOEA/D algorithm in our work are normalized mutual information(NMI)and modularity(Q).It was tested using five state-of-the-art algorithms on social networks,comprising real datasets(Zachary,Dolphin,Football,Krebs,SFI,Jazz,and Netscience),as well as twenty synthetic datasets.These results provide the robustness and practical value of the proposed algorithm in multi-objective community identification. 展开更多
关键词 Multi-objective optimization evolutionary algorithms community detection HEURISTIC METAHEURISTIC hybrid social network MODELS
在线阅读 下载PDF
Distributed Consensus-Based K-Means Algorithm in Switching Multi-Agent Networks 被引量:3
18
作者 LIN Peng WANG Yinghui +1 位作者 QI Hongsheng HONG Yiguang 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2018年第5期1128-1145,共18页
This paper discusses a distributed design for clustering based on the K-means algorithm in a switching multi-agent network, for the case when data are decentralized stored and unavailable to all agents. The authors pr... This paper discusses a distributed design for clustering based on the K-means algorithm in a switching multi-agent network, for the case when data are decentralized stored and unavailable to all agents. The authors propose a consensus-based algorithm in distributed case, that is, the double- clock consensus-based K-means algorithm (DCKA). With mild connectivity conditions, the authors show convergence of DCKA to guarantee a distributed solution to the clustering problem, even though the network topology is time-varying. Moreover, the authors provide experimental results on vari- ous clustering datasets to illustrate the effectiveness of the fully distributed algorithm DCKA, whose performance may be better than that of the centralized K-means algorithm. 展开更多
关键词 Consensus-based algorithm distributed K-means clustering multi-agent network switching topology.
原文传递
Multi-agent cooperative intrusion response in mobile adhoc networks 被引量:6
19
作者 Yi Ping Zou Futai +1 位作者 Jiang Xinghao Li Jianhua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第4期785-794,共10页
The nature of adhoc networks makes them vulnerable to security attacks. Many security technologies such as intrusion prevention and intrusion detection are passive in response to intrusions in that their countermea- s... The nature of adhoc networks makes them vulnerable to security attacks. Many security technologies such as intrusion prevention and intrusion detection are passive in response to intrusions in that their countermea- sures are only to protect the networks, and there is no automated network-wide counteraction against detected intrusions, the architecture of cooperation intrusion response based multi-agent is propose. The architecture is composed of mobile agents. Monitor agent resides on every node and monitors its neighbor nodes. Decision agent collects information from monitor nodes and detects an intrusion by security policies. When an intruder is found in the architecture, the block agents will get to the neighbor nodes of the intruder and form the mobile firewall to isolate the intruder. In the end, we evaluate it by simulation. 展开更多
关键词 computer networks SECURITY mobile agent mobile adhoc networks intrusion detection intrusion response
在线阅读 下载PDF
Multi-agent reinforcement learning for edge information sharing in vehicular networks 被引量:3
20
作者 Ruyan Wang Xue Jiang +5 位作者 Yujie Zhou Zhidu Li Dapeng Wu Tong Tang Alexander Fedotov Vladimir Badenko 《Digital Communications and Networks》 SCIE CSCD 2022年第3期267-277,共11页
To guarantee the heterogeneous delay requirements of the diverse vehicular services,it is necessary to design a full cooperative policy for both Vehicle to Infrastructure(V2I)and Vehicle to Vehicle(V2V)links.This pape... To guarantee the heterogeneous delay requirements of the diverse vehicular services,it is necessary to design a full cooperative policy for both Vehicle to Infrastructure(V2I)and Vehicle to Vehicle(V2V)links.This paper investigates the reduction of the delay in edge information sharing for V2V links while satisfying the delay requirements of the V2I links.Specifically,a mean delay minimization problem and a maximum individual delay minimization problem are formulated to improve the global network performance and ensure the fairness of a single user,respectively.A multi-agent reinforcement learning framework is designed to solve these two problems,where a new reward function is proposed to evaluate the utilities of the two optimization objectives in a unified framework.Thereafter,a proximal policy optimization approach is proposed to enable each V2V user to learn its policy using the shared global network reward.The effectiveness of the proposed approach is finally validated by comparing the obtained results with those of the other baseline approaches through extensive simulation experiments. 展开更多
关键词 Vehicular networks Edge information sharing Delay guarantee multi-agent reinforcement learning Proximal policy optimization
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部