In this paper, the finite-time consensus of a leader-following multi-agent network with non-identical nonlinear dynamics and time-varying topologies is investigated. All the agents, especially the leaders, have non-id...In this paper, the finite-time consensus of a leader-following multi-agent network with non-identical nonlinear dynamics and time-varying topologies is investigated. All the agents, especially the leaders, have non-identical and nonlinear dynamics. According to the algebraic graph theory, Lyapunov stability theory and Kronecker product, a control strategy strategy is established to guarantee the finite-time consensus of multi-agent network with multiple leaders. Furthermore, several numerical simulations illustrate the effectiveness and feasibility of the proposed method.展开更多
This paper investigates the differentially private problem of the average consensus for a class of discrete-time multi-agent network systems(MANSs). Based on the MANSs,a new distributed differentially private consensu...This paper investigates the differentially private problem of the average consensus for a class of discrete-time multi-agent network systems(MANSs). Based on the MANSs,a new distributed differentially private consensus algorithm(DPCA) is developed. To avoid continuous communication between neighboring agents, a kind of intermittent communication strategy depending on an event-triggered function is established in our DPCA. Based on our algorithm, we carry out the detailed analysis including its convergence, its accuracy, its privacy and the trade-off between the accuracy and the privacy level, respectively. It is found that our algorithm preserves the privacy of initial states of all agents in the whole process of consensus computation. The trade-off motivates us to find the best achievable accuracy of our algorithm under the free parameters and the fixed privacy level. Finally, numerical experiment results testify the validity of our theoretical analysis.展开更多
In this paper, the problems of target tracking and obstacle avoidance for multi-agent networks with input constraints are investigated. When there is a moving obstacle, the control objectives are to make the agents tr...In this paper, the problems of target tracking and obstacle avoidance for multi-agent networks with input constraints are investigated. When there is a moving obstacle, the control objectives are to make the agents track a moving target and to avoid collisions among agents. First, without considering the input constraints, a novel distributed controller can be obtained based on the potential function. Second, at each sampling time, the control algorithm is optimized. Furthermore, to solve the problem that agents cannot effectively avoid the obstacles in dynamic environment where the obstacles are moving, a new velocity repulsive potential is designed. One advantage of the designed control algorithm is that each agent only requires local knowledge of its neighboring agents. Finally, simulation results are provided to verify the effectiveness of the proposed approach.展开更多
The synchronization of time-delayed multi-agent networks with connected and directed topology is studied. Based on the correlative work about the agent synchronization, a modified model is presented, in which each com...The synchronization of time-delayed multi-agent networks with connected and directed topology is studied. Based on the correlative work about the agent synchronization, a modified model is presented, in which each communication receiver is distributed a delay 7. In addition, a proportional term k is introduced to modulate the delay range and to guarantee the synchronization of each agent. Two new parameters mentioned above are only correlative to the network topology, and a theorem about their connections is derived by both frequency domain method and geometric method. Finally, the theoretical result is illustrated by numerical simulations.展开更多
Inspired by the immune theory and multi-agent systems, an immune multi-agent active defense model for network intrusion is established. The concept of immune agent is introduced, and its running mechanism is establish...Inspired by the immune theory and multi-agent systems, an immune multi-agent active defense model for network intrusion is established. The concept of immune agent is introduced, and its running mechanism is established. The method, which uses antibody concentration to quantitatively describe the degree of intrusion danger, is presented. This model implements the multi-layer and distributed active defense mechanism for network intrusion. The experiment results show that this model is a good solution to the network security defense.展开更多
Two protocols are presented,which can make agents reach consensus while achieving and preserving the desired formation in fixed topology with and without communication timedelay for multi-agent network.First,the proto...Two protocols are presented,which can make agents reach consensus while achieving and preserving the desired formation in fixed topology with and without communication timedelay for multi-agent network.First,the protocol without considering the communication time-delay is presented,and by using Lyapunov stability theory,the sufficient condition of stability for this multi-agent system is presented.Further,considering the communication time-delay,the effectiveness of the protocol based on Lyapunov-Krasovskii function is demonstrated.The main contribution of the proposed protocols is that,as well as the velocity consensus is considered,the formation control is concerned for multi-agent systems described as the second-order equations.Finally,numerical examples are presented to illustrate the effectiveness of the proposed protocols.展开更多
To investigate the leader-following formation control, in this paper we present the design problem of control protocols and distributed observers under which the agents can achieve and maintain the desired formation f...To investigate the leader-following formation control, in this paper we present the design problem of control protocols and distributed observers under which the agents can achieve and maintain the desired formation from any initial states, while the velocity converges to that of the virtual leader whose velocity cannot be measured by agents in real time. The two cases of switching topologies without communication delay and fixed topology with time-varying communication delay are both considered for multi-agent networks. By using the Lyapunov stability theory, the issue of stability is analysed for multi-agent systems with switching topologies. Then, by considering the time-varying communication delay, the sufficient condition is proposed for the multi-agent systems with fixed topology. Finally, two numerical examples are given to illustrate the effectiveness of the proposed leader-following formation control protocols.展开更多
This paper investigates the consensus disturbance rejection problem among multiple high-order agents with directed graphs.Based on disturbance observers,distributed consensus disturbance rejection protocols are constr...This paper investigates the consensus disturbance rejection problem among multiple high-order agents with directed graphs.Based on disturbance observers,distributed consensus disturbance rejection protocols are constructed in leaderless and leader-follower consensus setups.Different from the previous related papers,the consensus protocols in this paper are developed in a fully distributed fashion,relying on only the state information of each agent and its neighbors.Sufficient conditions are provided to guarantee that the asymptotic stability of high-order multi-agent systems can be reached with matched disturbances.展开更多
This paper studies a novel distributed optimization problem that aims to minimize the sum of the non-convex objective functionals of the multi-agent network under privacy protection, which means that the local objecti...This paper studies a novel distributed optimization problem that aims to minimize the sum of the non-convex objective functionals of the multi-agent network under privacy protection, which means that the local objective of each agent is unknown to others. The above problem involves complexity simultaneously in the time and space aspects. Yet existing works about distributed optimization mainly consider privacy protection in the space aspect where the decision variable is a vector with finite dimensions. In contrast, when the time aspect is considered in this paper, the decision variable is a continuous function concerning time. Hence, the minimization of the overall functional belongs to the calculus of variations. Traditional works usually aim to seek the optimal decision function. Due to privacy protection and non-convexity, the Euler-Lagrange equation of the proposed problem is a complicated partial differential equation.Hence, we seek the optimal decision derivative function rather than the decision function. This manner can be regarded as seeking the control input for an optimal control problem, for which we propose a centralized reinforcement learning(RL) framework. In the space aspect, we further present a distributed reinforcement learning framework to deal with the impact of privacy protection. Finally, rigorous theoretical analysis and simulation validate the effectiveness of our framework.展开更多
In this paper the pinning consensus of multi-agent networks with arbitrary topology is investigated. Based on the properties of M-matrix, some criteria of pinning consensus are established for the continuous multi-age...In this paper the pinning consensus of multi-agent networks with arbitrary topology is investigated. Based on the properties of M-matrix, some criteria of pinning consensus are established for the continuous multi-agent network and the results show that the pinning consensus of the dynamical system depends on the smallest real part of the eigenvalue of the matrix which is composed of the Laplacian matrix of the multi-agent network and the pinning control gains. Meanwhile, the relevant work for the discrete-time system is studied and the corresponding criterion is also obtained. Particularly, the fundamental problem of pinning consensus, that is, what kind of node should be pinned, is investigated and the positive answers to this question are presented. Finally, the correctness of our theoretical findings is demonstrated by some numerical simulated examples.展开更多
This paper considers the formation tracking problem under a rigidity framework, where the target formation is specified as a minimally and infinitesimally rigid formation and the desired velocity of the group is avail...This paper considers the formation tracking problem under a rigidity framework, where the target formation is specified as a minimally and infinitesimally rigid formation and the desired velocity of the group is available to only a subset of the agents. The following two cases are considered: the desired velocity is constant, and the desired velocity is timevarying. In the first case, a distributed linear estimator is constructed for each agent to estimate the desired velocity. The velocity estimation and a formation acquisition term are employed to design the control inputs for the agents, where the rigidity matrix plays a central role. In the second case, a distributed non-smooth estimator is constructed to estimate the time-varying velocity, which is shown to converge in a finite time. Theoretical analysis shows that the formation tracking problem can be solved under the proposed control algorithms and estimators. Simulation results are also provided to show the validity of the derived results.展开更多
This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method...This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system.展开更多
Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weight...Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies.展开更多
In the islanded operation of distribution networks,due to the mismatch of line impedance at the inverter output,conventional droop control leads to inaccurate power sharing according to capacity,resulting in voltage a...In the islanded operation of distribution networks,due to the mismatch of line impedance at the inverter output,conventional droop control leads to inaccurate power sharing according to capacity,resulting in voltage and frequency fluctuations under minor external disturbances.To address this issue,this paper introduces an enhanced scheme for power sharing and voltage-frequency control.First,to solve the power distribution problem,we propose an adaptive virtual impedance control based on multi-agent consensus,which allows for precise active and reactive power allocation without requiring feeder impedance knowledge.Moreover,a novel consensus-based voltage and frequency control is proposed to correct the voltage deviation inherent in droop control and virtual impedance methods.This strategy maintains voltage and frequency stability even during communication disruptions and enhances system robustness.Additionally,a small-signal model is established for system stability analysis,and the control parameters are optimized.Simulation results validate the effectiveness of the proposed control scheme.展开更多
Cybertwin-enabled 6th Generation(6G)network is envisioned to support artificial intelligence-native management to meet changing demands of 6G applications.Multi-Agent Deep Reinforcement Learning(MADRL)technologies dri...Cybertwin-enabled 6th Generation(6G)network is envisioned to support artificial intelligence-native management to meet changing demands of 6G applications.Multi-Agent Deep Reinforcement Learning(MADRL)technologies driven by Cybertwins have been proposed for adaptive task offloading strategies.However,the existence of random transmission delay between Cybertwin-driven agents and underlying networks is not considered in related works,which destroys the standard Markov property and increases the decision reaction time to reduce the task offloading strategy performance.In order to address this problem,we propose a pipelining task offloading method to lower the decision reaction time and model it as a delay-aware Markov Decision Process(MDP).Then,we design a delay-aware MADRL algorithm to minimize the weighted sum of task execution latency and energy consumption.Firstly,the state space is augmented using the lastly-received state and historical actions to rebuild the Markov property.Secondly,Gate Transformer-XL is introduced to capture historical actions'importance and maintain the consistent input dimension dynamically changed due to random transmission delays.Thirdly,a sampling method and a new loss function with the difference between the current and target state value and the difference between real state-action value and augmented state-action value are designed to obtain state transition trajectories close to the real ones.Numerical results demonstrate that the proposed methods are effective in reducing reaction time and improving the task offloading performance in the random-delay Cybertwin-enabled 6G networks.展开更多
This paper presents a novel approach to dynamic pricing and distributed energy management in virtual power plant(VPP)networks using multi-agent reinforcement learning(MARL).As the energy landscape evolves towards grea...This paper presents a novel approach to dynamic pricing and distributed energy management in virtual power plant(VPP)networks using multi-agent reinforcement learning(MARL).As the energy landscape evolves towards greater decentralization and renewable integration,traditional optimization methods struggle to address the inherent complexities and uncertainties.Our proposed MARL framework enables adaptive,decentralized decision-making for both the distribution system operator and individual VPPs,optimizing economic efficiency while maintaining grid stability.We formulate the problem as a Markov decision process and develop a custom MARL algorithm that leverages actor-critic architectures and experience replay.Extensive simulations across diverse scenarios demonstrate that our approach consistently outperforms baseline methods,including Stackelberg game models and model predictive control,achieving an 18.73%reduction in costs and a 22.46%increase in VPP profits.The MARL framework shows particular strength in scenarios with high renewable energy penetration,where it improves system performance by 11.95%compared with traditional methods.Furthermore,our approach demonstrates superior adaptability to unexpected events and mis-predictions,highlighting its potential for real-world implementation.展开更多
This paper studies the problem of jamming decision-making for dynamic multiple communication links in wireless communication networks(WCNs).We propose a novel jamming channel allocation and power decision-making(JCAPD...This paper studies the problem of jamming decision-making for dynamic multiple communication links in wireless communication networks(WCNs).We propose a novel jamming channel allocation and power decision-making(JCAPD)approach based on multi-agent deep reinforcement learning(MADRL).In high-dynamic and multi-target aviation communication environments,the rapid changes in channels make it difficult for sensors to accurately capture instantaneous channel state information.This poses a challenge to make centralized jamming decisions with single-agent deep reinforcement learning(DRL)approaches.In response,we design a distributed multi-agent decision architecture(DMADA).We formulate multi-jammer resource allocation as a multiagent Markov decision process(MDP)and propose a fingerprint-based double deep Q-Network(FBDDQN)algorithm for solving it.Each jammer functions as an agent that interacts with the environment in this framework.Through the design of a reasonable reward and training mechanism,our approach enables jammers to achieve distributed cooperation,significantly improving the jamming success rate while considering jamming power cost,and reducing the transmission rate of links.Our experimental results show the FBDDQN algorithm is superior to the baseline methods.展开更多
Aiming at the problem of mobile data traffic surge in 5G networks,this paper proposes an effective solution combining massive multiple-input multiple-output techniques with Ultra-Dense Network(UDN)and focuses on solvi...Aiming at the problem of mobile data traffic surge in 5G networks,this paper proposes an effective solution combining massive multiple-input multiple-output techniques with Ultra-Dense Network(UDN)and focuses on solving the resulting challenge of increased energy consumption.A base station control algorithm based on Multi-Agent Proximity Policy Optimization(MAPPO)is designed.In the constructed 5G UDN model,each base station is considered as an agent,and the MAPPO algorithm enables inter-base station collaboration and interference management to optimize the network performance.To reduce the extra power consumption due to frequent sleep mode switching of base stations,a sleep mode switching decision algorithm is proposed.The algorithm reduces unnecessary power consumption by evaluating the network state similarity and intelligently adjusting the agent’s action strategy.Simulation results show that the proposed algorithm reduces the power consumption by 24.61% compared to the no-sleep strategy and further reduces the power consumption by 5.36% compared to the traditional MAPPO algorithm under the premise of guaranteeing the quality of service of users.展开更多
Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present so...Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems.展开更多
基金Supported by the National Natural Science Foundation of China(6147333861304164)
文摘In this paper, the finite-time consensus of a leader-following multi-agent network with non-identical nonlinear dynamics and time-varying topologies is investigated. All the agents, especially the leaders, have non-identical and nonlinear dynamics. According to the algebraic graph theory, Lyapunov stability theory and Kronecker product, a control strategy strategy is established to guarantee the finite-time consensus of multi-agent network with multiple leaders. Furthermore, several numerical simulations illustrate the effectiveness and feasibility of the proposed method.
基金supported in part by the National Key Research and Development Program of China (2016YFB0800601)
文摘This paper investigates the differentially private problem of the average consensus for a class of discrete-time multi-agent network systems(MANSs). Based on the MANSs,a new distributed differentially private consensus algorithm(DPCA) is developed. To avoid continuous communication between neighboring agents, a kind of intermittent communication strategy depending on an event-triggered function is established in our DPCA. Based on our algorithm, we carry out the detailed analysis including its convergence, its accuracy, its privacy and the trade-off between the accuracy and the privacy level, respectively. It is found that our algorithm preserves the privacy of initial states of all agents in the whole process of consensus computation. The trade-off motivates us to find the best achievable accuracy of our algorithm under the free parameters and the fixed privacy level. Finally, numerical experiment results testify the validity of our theoretical analysis.
基金supported by National Basic Research Program of China (973 Program) (No. 2010CB731800)Key Project of National Science Foundation of China (No. 60934003)+2 种基金National Nature Science Foundation of China (No. 61074065)Key Project for Natural Science Research of Hebei Education Department, PRC(No. ZD200908)Key Project for Shanghai Committee of Science and Technology (No. 08511501600)
文摘In this paper, the problems of target tracking and obstacle avoidance for multi-agent networks with input constraints are investigated. When there is a moving obstacle, the control objectives are to make the agents track a moving target and to avoid collisions among agents. First, without considering the input constraints, a novel distributed controller can be obtained based on the potential function. Second, at each sampling time, the control algorithm is optimized. Furthermore, to solve the problem that agents cannot effectively avoid the obstacles in dynamic environment where the obstacles are moving, a new velocity repulsive potential is designed. One advantage of the designed control algorithm is that each agent only requires local knowledge of its neighboring agents. Finally, simulation results are provided to verify the effectiveness of the proposed approach.
基金the National Natural Science Foundation of China (No. 70571017)the Research Foundation from Provincial Education Department of Zhejiang of China (No. 20070928)
文摘The synchronization of time-delayed multi-agent networks with connected and directed topology is studied. Based on the correlative work about the agent synchronization, a modified model is presented, in which each communication receiver is distributed a delay 7. In addition, a proportional term k is introduced to modulate the delay range and to guarantee the synchronization of each agent. Two new parameters mentioned above are only correlative to the network topology, and a theorem about their connections is derived by both frequency domain method and geometric method. Finally, the theoretical result is illustrated by numerical simulations.
基金Supported by the National Natural Science Foundation of China (60373110, 60573130, 60502011)
文摘Inspired by the immune theory and multi-agent systems, an immune multi-agent active defense model for network intrusion is established. The concept of immune agent is introduced, and its running mechanism is established. The method, which uses antibody concentration to quantitatively describe the degree of intrusion danger, is presented. This model implements the multi-layer and distributed active defense mechanism for network intrusion. The experiment results show that this model is a good solution to the network security defense.
基金supported by the National Natural Science Foundation of China (6093400361074065)+1 种基金the National Basic Research Program of China (973 Program) (2010CB731800)the Key Project for Natural Science Research of Hebei Education Department (ZD200908)
文摘Two protocols are presented,which can make agents reach consensus while achieving and preserving the desired formation in fixed topology with and without communication timedelay for multi-agent network.First,the protocol without considering the communication time-delay is presented,and by using Lyapunov stability theory,the sufficient condition of stability for this multi-agent system is presented.Further,considering the communication time-delay,the effectiveness of the protocol based on Lyapunov-Krasovskii function is demonstrated.The main contribution of the proposed protocols is that,as well as the velocity consensus is considered,the formation control is concerned for multi-agent systems described as the second-order equations.Finally,numerical examples are presented to illustrate the effectiveness of the proposed protocols.
基金Project supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 60525303)the National Natural Science Foundation of China (Grant No. 60704009)+1 种基金the Key Project for Natural Science Research of the Hebei Educational Department (Grant No. ZD200908)the Doctorial Fund of Yanshan University (Grant No. B203)
文摘To investigate the leader-following formation control, in this paper we present the design problem of control protocols and distributed observers under which the agents can achieve and maintain the desired formation from any initial states, while the velocity converges to that of the virtual leader whose velocity cannot be measured by agents in real time. The two cases of switching topologies without communication delay and fixed topology with time-varying communication delay are both considered for multi-agent networks. By using the Lyapunov stability theory, the issue of stability is analysed for multi-agent systems with switching topologies. Then, by considering the time-varying communication delay, the sufficient condition is proposed for the multi-agent systems with fixed topology. Finally, two numerical examples are given to illustrate the effectiveness of the proposed leader-following formation control protocols.
基金supported by the National Natural Science Foundation of China (Nos. U1713223 and 61876187)by the Beijing Nova Program (No. 2018047)by the Joint Fund of Ministry of Education of China for Equipment Preresearch
文摘This paper investigates the consensus disturbance rejection problem among multiple high-order agents with directed graphs.Based on disturbance observers,distributed consensus disturbance rejection protocols are constructed in leaderless and leader-follower consensus setups.Different from the previous related papers,the consensus protocols in this paper are developed in a fully distributed fashion,relying on only the state information of each agent and its neighbors.Sufficient conditions are provided to guarantee that the asymptotic stability of high-order multi-agent systems can be reached with matched disturbances.
基金supported in part by the National Natural Science Foundation of China(NSFC)(61773260)the Ministry of Science and Technology (2018YFB130590)。
文摘This paper studies a novel distributed optimization problem that aims to minimize the sum of the non-convex objective functionals of the multi-agent network under privacy protection, which means that the local objective of each agent is unknown to others. The above problem involves complexity simultaneously in the time and space aspects. Yet existing works about distributed optimization mainly consider privacy protection in the space aspect where the decision variable is a vector with finite dimensions. In contrast, when the time aspect is considered in this paper, the decision variable is a continuous function concerning time. Hence, the minimization of the overall functional belongs to the calculus of variations. Traditional works usually aim to seek the optimal decision function. Due to privacy protection and non-convexity, the Euler-Lagrange equation of the proposed problem is a complicated partial differential equation.Hence, we seek the optimal decision derivative function rather than the decision function. This manner can be regarded as seeking the control input for an optimal control problem, for which we propose a centralized reinforcement learning(RL) framework. In the space aspect, we further present a distributed reinforcement learning framework to deal with the impact of privacy protection. Finally, rigorous theoretical analysis and simulation validate the effectiveness of our framework.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60973114 and 61170249)the Natural Science Foundation of Chongqing Science and Technology Commission, China (Grant Nos. 2009BA2024, cstc2011jjA40045, and cstc2013jcyjA0906)the State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, China (Grant No. 2007DA10512711206)
文摘In this paper the pinning consensus of multi-agent networks with arbitrary topology is investigated. Based on the properties of M-matrix, some criteria of pinning consensus are established for the continuous multi-agent network and the results show that the pinning consensus of the dynamical system depends on the smallest real part of the eigenvalue of the matrix which is composed of the Laplacian matrix of the multi-agent network and the pinning control gains. Meanwhile, the relevant work for the discrete-time system is studied and the corresponding criterion is also obtained. Particularly, the fundamental problem of pinning consensus, that is, what kind of node should be pinned, is investigated and the positive answers to this question are presented. Finally, the correctness of our theoretical findings is demonstrated by some numerical simulated examples.
基金Project supported by the National Natural Science Foundation of China(Grant No.61473240)
文摘This paper considers the formation tracking problem under a rigidity framework, where the target formation is specified as a minimally and infinitesimally rigid formation and the desired velocity of the group is available to only a subset of the agents. The following two cases are considered: the desired velocity is constant, and the desired velocity is timevarying. In the first case, a distributed linear estimator is constructed for each agent to estimate the desired velocity. The velocity estimation and a formation acquisition term are employed to design the control inputs for the agents, where the rigidity matrix plays a central role. In the second case, a distributed non-smooth estimator is constructed to estimate the time-varying velocity, which is shown to converge in a finite time. Theoretical analysis shows that the formation tracking problem can be solved under the proposed control algorithms and estimators. Simulation results are also provided to show the validity of the derived results.
基金The National Natural Science Foundation of China(W2431048)The Science and Technology Research Program of Chongqing Municipal Education Commission,China(KJZDK202300807)The Chongqing Natural Science Foundation,China(CSTB2024NSCQQCXMX0052).
文摘This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system.
基金supported by the Key R&D Projects in Jiangsu Province(BE2021729)the Key Primary Research Project of Primary Strengthening Program(KYZYJKKCJC23001).
文摘Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies.
基金supported by the National Natural Science Foundation of China(52007009)Natural Science Foundation of Excellent Youth Project of Hunan Province of China(2023JJ20039)Science and Technology Projects of State Grid Hunan Provincial Electric Power Co.,Ltd.(5216A522001K,SGHNDK00PWJS2310173).
文摘In the islanded operation of distribution networks,due to the mismatch of line impedance at the inverter output,conventional droop control leads to inaccurate power sharing according to capacity,resulting in voltage and frequency fluctuations under minor external disturbances.To address this issue,this paper introduces an enhanced scheme for power sharing and voltage-frequency control.First,to solve the power distribution problem,we propose an adaptive virtual impedance control based on multi-agent consensus,which allows for precise active and reactive power allocation without requiring feeder impedance knowledge.Moreover,a novel consensus-based voltage and frequency control is proposed to correct the voltage deviation inherent in droop control and virtual impedance methods.This strategy maintains voltage and frequency stability even during communication disruptions and enhances system robustness.Additionally,a small-signal model is established for system stability analysis,and the control parameters are optimized.Simulation results validate the effectiveness of the proposed control scheme.
基金funded by the National Key Research and Development Program of China under Grant 2019YFB1803301Beijing Natural Science Foundation (L202002)。
文摘Cybertwin-enabled 6th Generation(6G)network is envisioned to support artificial intelligence-native management to meet changing demands of 6G applications.Multi-Agent Deep Reinforcement Learning(MADRL)technologies driven by Cybertwins have been proposed for adaptive task offloading strategies.However,the existence of random transmission delay between Cybertwin-driven agents and underlying networks is not considered in related works,which destroys the standard Markov property and increases the decision reaction time to reduce the task offloading strategy performance.In order to address this problem,we propose a pipelining task offloading method to lower the decision reaction time and model it as a delay-aware Markov Decision Process(MDP).Then,we design a delay-aware MADRL algorithm to minimize the weighted sum of task execution latency and energy consumption.Firstly,the state space is augmented using the lastly-received state and historical actions to rebuild the Markov property.Secondly,Gate Transformer-XL is introduced to capture historical actions'importance and maintain the consistent input dimension dynamically changed due to random transmission delays.Thirdly,a sampling method and a new loss function with the difference between the current and target state value and the difference between real state-action value and augmented state-action value are designed to obtain state transition trajectories close to the real ones.Numerical results demonstrate that the proposed methods are effective in reducing reaction time and improving the task offloading performance in the random-delay Cybertwin-enabled 6G networks.
基金supported by the Science and Technology Project of State Grid Sichuan Electric Power Company Chengdu Power Supply Company under Grant No.521904240005.
文摘This paper presents a novel approach to dynamic pricing and distributed energy management in virtual power plant(VPP)networks using multi-agent reinforcement learning(MARL).As the energy landscape evolves towards greater decentralization and renewable integration,traditional optimization methods struggle to address the inherent complexities and uncertainties.Our proposed MARL framework enables adaptive,decentralized decision-making for both the distribution system operator and individual VPPs,optimizing economic efficiency while maintaining grid stability.We formulate the problem as a Markov decision process and develop a custom MARL algorithm that leverages actor-critic architectures and experience replay.Extensive simulations across diverse scenarios demonstrate that our approach consistently outperforms baseline methods,including Stackelberg game models and model predictive control,achieving an 18.73%reduction in costs and a 22.46%increase in VPP profits.The MARL framework shows particular strength in scenarios with high renewable energy penetration,where it improves system performance by 11.95%compared with traditional methods.Furthermore,our approach demonstrates superior adaptability to unexpected events and mis-predictions,highlighting its potential for real-world implementation.
基金supported in part by the National Natural Science Foundation of China(No.61906156).
文摘This paper studies the problem of jamming decision-making for dynamic multiple communication links in wireless communication networks(WCNs).We propose a novel jamming channel allocation and power decision-making(JCAPD)approach based on multi-agent deep reinforcement learning(MADRL).In high-dynamic and multi-target aviation communication environments,the rapid changes in channels make it difficult for sensors to accurately capture instantaneous channel state information.This poses a challenge to make centralized jamming decisions with single-agent deep reinforcement learning(DRL)approaches.In response,we design a distributed multi-agent decision architecture(DMADA).We formulate multi-jammer resource allocation as a multiagent Markov decision process(MDP)and propose a fingerprint-based double deep Q-Network(FBDDQN)algorithm for solving it.Each jammer functions as an agent that interacts with the environment in this framework.Through the design of a reasonable reward and training mechanism,our approach enables jammers to achieve distributed cooperation,significantly improving the jamming success rate while considering jamming power cost,and reducing the transmission rate of links.Our experimental results show the FBDDQN algorithm is superior to the baseline methods.
基金supported by National Natural Science Foundation of China(62271096,U20A20157)Natural Science Foundation of Chongqing,China(CSTB2023NSCQ-LZX0134)+3 种基金University Innovation Research Group of Chongqing(CXQT20017)Youth Innovation Group Support Program of ICE Discipline of CQUPT(SCIE-QN-2022-04)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300632)the Chongqing Postdoctoral Special Funding Project(2022CQBSHTB2057).
文摘Aiming at the problem of mobile data traffic surge in 5G networks,this paper proposes an effective solution combining massive multiple-input multiple-output techniques with Ultra-Dense Network(UDN)and focuses on solving the resulting challenge of increased energy consumption.A base station control algorithm based on Multi-Agent Proximity Policy Optimization(MAPPO)is designed.In the constructed 5G UDN model,each base station is considered as an agent,and the MAPPO algorithm enables inter-base station collaboration and interference management to optimize the network performance.To reduce the extra power consumption due to frequent sleep mode switching of base stations,a sleep mode switching decision algorithm is proposed.The algorithm reduces unnecessary power consumption by evaluating the network state similarity and intelligently adjusting the agent’s action strategy.Simulation results show that the proposed algorithm reduces the power consumption by 24.61% compared to the no-sleep strategy and further reduces the power consumption by 5.36% compared to the traditional MAPPO algorithm under the premise of guaranteeing the quality of service of users.
基金supported in part by the National Natural Science Foundation of China(62273255,62350003,62088101)the Shanghai Science and Technology Cooperation Project(22510712000,21550760900)+1 种基金the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities
文摘Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems.