Aiming at the problem on cooperative air-defense of surface warship formation, this paper maps the cooperative airdefense system of systems (SoS) for surface warship formation (CASoSSWF) to the biological immune s...Aiming at the problem on cooperative air-defense of surface warship formation, this paper maps the cooperative airdefense system of systems (SoS) for surface warship formation (CASoSSWF) to the biological immune system (BIS) according to the similarity of the defense mechanism and characteristics between the CASoSSWF and the BIS, and then designs the models of components and the architecture for a monitoring agent, a regulating agent, a killer agent, a pre-warning agent and a communicating agent by making use of the theories and methods of the artificial immune system, the multi-agent system (MAS), the vaccine and the danger theory (DT). Moreover a new immune multi-agent model using vaccine based on DT (IMMUVBDT) for the cooperative air-defense SoS is advanced. The immune response and immune mechanism of the CASoSSWF are analyzed. The model has a capability of memory, evolution, commendable dynamic environment adaptability and self-learning, and embodies adequately the cooperative air-defense mechanism for the CASoSSWF. Therefore it shows a novel idea for the CASoSSWF which can provide conception models for a surface warship formation operation simulation system.展开更多
In this paper,the multi-agent model about shop logistics is set up. This model has 8 agents: raw materials stock agent,process agent,testing agent,transition agent,production information agent,scheduling agent,process...In this paper,the multi-agent model about shop logistics is set up. This model has 8 agents: raw materials stock agent,process agent,testing agent,transition agent,production information agent,scheduling agent,process agent and stock agent. The scheduling agent has three subagents: manager agent (MA),resource agent (RA) and part agent (PA). MA,PA and RA are communicating equally that guarantees agility of the whole MAS system. The part tasks pass between MA,RA and PA as an integer,which can guarantee the consistency of the data. We use a detailed example about shop logistics scheduling in a semiconductor company to explain the principle. In this example,we use two scheduling strategies: FCFS and SPT. The result data indicates that the average flow time and lingering ratio are changed using different strategy. It is proves that the multi-agent scheduling is useful.展开更多
In this study, three-phase satellite images were used to define rules for the allocation of time and space in construction land resources based on a complex adaptive system and game theory. The decision behavior and r...In this study, three-phase satellite images were used to define rules for the allocation of time and space in construction land resources based on a complex adaptive system and game theory. The decision behavior and rules of government agent, enterprise agent and resident agent in construction land growth were explored. A distinctive and dynamic simulation model of construction land growth was built, which integrated multi-agent, GIS technology and RS data and described the interaction among influencing agents, Taking Fuyang City in the Changjiang River Delta as an example, an assessment process for the remote sensing data in construction land and scenario planning was constructed. Repast and ArcGIS were used as simulation platforms. A simulation of the spatial pattern in land-use planning and the setting of scenario planning were conducted by using the incomplete active game, which was based on different natural, social and economic levels. Through this model, a simulation of urban planning space and decision-making for Fuyang City was created. Relevant non-structured problems arising from urban planning management could be identified, and the process and logic of urban planning spatial decision-making could thus be improved. Cell-by-cell comparison showed that the simulation accuracy was over 72%. This model has great potential for use by government and town planners in decision support and technique support in the policy-making process.展开更多
Because of the anonymity and openness of online transactions and the richness of network resources, the problems of the credibility of the online trading and the exact selection of network resources have become acute....Because of the anonymity and openness of online transactions and the richness of network resources, the problems of the credibility of the online trading and the exact selection of network resources have become acute. For this reason, a reputation-based multi-agent model for network resource selection (RMNRS) is presented. The model divides the network into numbers of trust domains. Each domain has one domain-agent and several entity-agents. The model prevents the inconsistency of information that is maintained by differ-ent agents through the periodically communication between the agents. The model enables the consumers to receive responses from agents significantly quicker than that of traditional models, because the global reputation values of service providers and consumers are evaluated and updated dynamically after each transaction. And the model allocates two global reputation values to each entity and takes the recognition value that how much the service provider knows the service into account. In order to make users choose the best matching services and give users with trusted services, the model also takes the similarity between services into account and uses the similarity degree to amend the integration reputation value with harmonic-mean. Finally, the effectiveness and feasibility of this model is illustrated by the experiment.展开更多
Because of the anonymity and openness of E-commerce, the on-line transaction and the selection of network resources meet new challenges. For this reason, a trust domain-based multi-agent model for network resource sel...Because of the anonymity and openness of E-commerce, the on-line transaction and the selection of network resources meet new challenges. For this reason, a trust domain-based multi-agent model for network resource selection is presented. The model divides the network into numbers of trust domains and prevents the inconsistency of information maintained by different agents through the periodical communication among the agents. The model enables consumers to receive the response from the agents much quicker because the trust values of participators are evalUated and updated dynamically and timely after the completion of each transaction. In order to make users choose the best matching services and give users with trusted services, the model takes into account the similarity between services and the service providers' recognition to the services. Finally, the model illustrates the effectiveness and feasibility according to the experiment.展开更多
Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weight...Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies.展开更多
Cooperative multi-agent reinforcement learning(MARL)is a key technology for enabling cooperation in complex multi-agent systems.It has achieved remarkable progress in areas such as gaming,autonomous driving,and multi-...Cooperative multi-agent reinforcement learning(MARL)is a key technology for enabling cooperation in complex multi-agent systems.It has achieved remarkable progress in areas such as gaming,autonomous driving,and multi-robot control.Empowering cooperative MARL with multi-task decision-making capabilities is expected to further broaden its application scope.In multi-task scenarios,cooperative MARL algorithms need to address 3 types of multi-task problems:reward-related multi-task,arising from different reward functions;multi-domain multi-task,caused by differences in state and action spaces,state transition functions;and scalability-related multi-task,resulting from the dynamic variation in the number of agents.Most existing studies focus on scalability-related multitask problems.However,with the increasing integration between large language models(LLMs)and multi-agent systems,a growing number of LLM-based multi-agent systems have emerged,enabling more complex multi-task cooperation.This paper provides a comprehensive review of the latest advances in this field.By combining multi-task reinforcement learning with cooperative MARL,we categorize and analyze the 3 major types of multi-task problems under multi-agent settings,offering more fine-grained classifications and summarizing key insights for each.In addition,we summarize commonly used benchmarks and discuss future directions of research in this area,which hold promise for further enhancing the multi-task cooperation capabilities of multi-agent systems and expanding their practical applications in the real world.展开更多
This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method...This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system.展开更多
This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary obj...This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary objective is to explore the unknown environments to locate and track targets effectively. To address this problem, we propose a novel Multi-Agent Reinforcement Learning (MARL) method based on Graph Neural Network (GNN). Firstly, a method is introduced for encoding continuous-space multi-UAV problem data into spatial graphs which establish essential relationships among agents, obstacles, and targets. Secondly, a Graph AttenTion network (GAT) model is presented, which focuses exclusively on adjacent nodes, learns attention weights adaptively and allows agents to better process information in dynamic environments. Reward functions are specifically designed to tackle exploration challenges in environments with sparse rewards. By introducing a framework that integrates centralized training and distributed execution, the advancement of models is facilitated. Simulation results show that the proposed method outperforms the existing MARL method in search rate and tracking performance with less collisions. The experiments show that the proposed method can be extended to applications with a larger number of agents, which provides a potential solution to the challenging problem of multi-UAV autonomous tracking in dynamic unknown environments.展开更多
This article investigates the problem of robust adaptive leaderless consensus for heterogeneous uncertain nonminimumphase linear multi-agent systems over directed communication graphs. Each agent is assumed tobe of un...This article investigates the problem of robust adaptive leaderless consensus for heterogeneous uncertain nonminimumphase linear multi-agent systems over directed communication graphs. Each agent is assumed tobe of unknown nominal dynamics and also subject to external disturbances and/or unmodeled dynamics. Anovel distributed robust adaptive control strategy is proposed. It is shown that the robust adaptive leaderlessconsensus problem is solved with the proposed control strategy under some sufficient conditions. Two examplesare provided to demonstrate the efficacy of the proposed control strategy.展开更多
An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and coll...An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and collision avoidance.However,inherent nonlinearities and uncertainties present in practical control systems contribute to the challenge of achieving precise control performance.Based on the IT-2 Takagi-Sugeno Fuzzy Model(T-SFM),the fuzzy control approach can offer a more effective solution for NMASs facing uncertainties.Unlike existing control methods for NMASs,the Formation and Containment(F-and-C)control problem with collision avoidance capability under uncertainties based on the IT-2 T-SFM is discussed for the first time.Moreover,an IT-2 fuzzy tracking control approach is proposed to solve the formation task for leaders in NMASs without requiring communication.This control scheme makes the design process of the IT-2 fuzzy Formation Controller(FC)more straightforward and effective.According to the communication interaction protocol,the IT-2 Containment Controller(CC)design approach is proposed for followers to ensure convergence into the region defined by the leaders.Leveraging the IT-2 T-SFM representation,the analysis methods developed for linear Multi-Agent Systems(MASs)are successfully extended to perform containment analysis without requiring the additional assumptions imposed in existing research.Notably,the IT-2 fuzzy tracking controller can also be applied in collision avoidance situations to track the desired trajectories calculated by the avoidance algorithm under the Artificial Potential Field(APF).Benefiting from the combination of vortex and source APFs,the leaders can properly adjust the system dynamics to prevent potential collision risk.Integrating the fuzzy theory and APFs avoidance algorithm,an IT-2 fuzzy controller design approach is proposed to achieve the F-and-C purposewhile ensuring collision avoidance capability.Finally,amulti-ship simulation is conducted to validate the feasibility and effectiveness of the designed IT-2 fuzzy controller.展开更多
This paper mainly focuses on the velocity-constrained consensus problem of discrete-time heterogeneous multi-agent systems with nonconvex constraints and arbitrarily switching topologies,where each agent has first-ord...This paper mainly focuses on the velocity-constrained consensus problem of discrete-time heterogeneous multi-agent systems with nonconvex constraints and arbitrarily switching topologies,where each agent has first-order or second-order dynamics.To solve this problem,a distributed algorithm is proposed based on a contraction operator.By employing the properties of the stochastic matrix,it is shown that all agents’position states could converge to a common point and second-order agents’velocity states could remain in corresponding nonconvex constraint sets and converge to zero as long as the joint communication topology has one directed spanning tree.Finally,the numerical simulation results are provided to verify the effectiveness of the proposed algorithms.展开更多
This paper focuses on the problem of leaderfollowing consensus for nonlinear cascaded multi-agent systems.The control strategies for these systems are transformed into successive control problem schemes for lower-orde...This paper focuses on the problem of leaderfollowing consensus for nonlinear cascaded multi-agent systems.The control strategies for these systems are transformed into successive control problem schemes for lower-order error subsystems.A distributed consensus analysis for the corresponding error systems is conducted by employing recursive methods and virtual controllers,accompanied by a series of Lyapunov functions devised throughout the iterative process,which solves the leaderfollowing consensus problem of a class of nonlinear cascaded multi-agent systems.Specific simulation examples illustrate the effectiveness of the proposed control algorithm.展开更多
This article investigates the time-varying output group formation tracking control(GFTC)problem for heterogeneous multi-agent systems(HMASs)under switching topologies.The objective is to design a distributed control s...This article investigates the time-varying output group formation tracking control(GFTC)problem for heterogeneous multi-agent systems(HMASs)under switching topologies.The objective is to design a distributed control strategy that enables the outputs of the followers to form the desired sub-formations and track the outputs of the leader in each subgroup.Firstly,novel distributed observers are developed to estimate the states of the leaders under switching topologies.Then,GFTC protocols are designed based on the proposed observers.It is shown that with the distributed protocol,the GFTC problem for HMASs under switching topologies is solved if the average dwell time associated with the switching topologies is larger than a fixed threshold.Finally,an example is provided to illustrate the effectiveness of the proposed control strategy.展开更多
This paper proposes a Multi-Agent Attention Proximal Policy Optimization(MA2PPO)algorithm aiming at the problems such as credit assignment,low collaboration efficiency and weak strategy generalization ability existing...This paper proposes a Multi-Agent Attention Proximal Policy Optimization(MA2PPO)algorithm aiming at the problems such as credit assignment,low collaboration efficiency and weak strategy generalization ability existing in the cooperative pursuit tasks of multiple unmanned aerial vehicles(UAVs).Traditional algorithms often fail to effectively identify critical cooperative relationships in such tasks,leading to low capture efficiency and a significant decline in performance when the scale expands.To tackle these issues,based on the proximal policy optimization(PPO)algorithm,MA2PPO adopts the centralized training with decentralized execution(CTDE)framework and introduces a dynamic decoupling mechanism,that is,sharing the multi-head attention(MHA)mechanism for critics during centralized training to solve the credit assignment problem.This method enables the pursuers to identify highly correlated interactions with their teammates,effectively eliminate irrelevant and weakly relevant interactions,and decompose large-scale cooperation problems into decoupled sub-problems,thereby enhancing the collaborative efficiency and policy stability among multiple agents.Furthermore,a reward function has been devised to facilitate the pursuers to encircle the escapee by combining a formation reward with a distance reward,which incentivizes UAVs to develop sophisticated cooperative pursuit strategies.Experimental results demonstrate the effectiveness of the proposed algorithm in achieving multi-UAV cooperative pursuit and inducing diverse cooperative pursuit behaviors among UAVs.Moreover,experiments on scalability have demonstrated that the algorithm is suitable for large-scale multi-UAV systems.展开更多
Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as s...Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.展开更多
Formation control in multi-agent systems has become a critical area of interest due to its wide-ranging applications in robotics,autonomous transportation,and surveillance.While various studies have explored distribut...Formation control in multi-agent systems has become a critical area of interest due to its wide-ranging applications in robotics,autonomous transportation,and surveillance.While various studies have explored distributed cooperative control,this review focuses on the theoretical foundations and recent developments in formation control strategies.The paper categorizes and analyzes key formation types,including formation maintenance,group or cluster formation,bipartite formations,event-triggered formations,finite-time convergence,and constrained formations.A significant portion of the review addresses formation control under constrained dynamics,presenting both modelbased and model-free approaches that consider practical limitations such as actuator bounds,communication delays,and nonholonomic constraints.Additionally,the paper discusses emerging trends,including the integration of eventdriven mechanisms and AI-enhanced coordination strategies.Comparative evaluations highlight the trade-offs among various methodologies regarding scalability,robustness,and real-world feasibility.Practical implementations are reviewed across diverse platforms,and the review identifies the current achievements and unresolved challenges in the field.The paper concludes by outlining promising research directions,such as adaptive control for dynamic environments,energy-efficient coordination,and using learning-based control under uncertainty.This review synthesizes the current state of the art and provides a road map for future investigation,making it a valuable reference for researchers and practitioners aiming to advance formation control in multi-agent systems.展开更多
Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To de...Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To decrease the control cost,based on ISC,several LFC problems are investigated for second-order MASs without and with time delay,respectively.Firstly,an intermittent sampled controller is designed,and a sufficient and necessary condition is derived,under which state errors between the leader and all the followers approach zero asymptotically.Considering that time delay is inevitable,a new protocol is proposed to deal with the time-delay situation.The error system’s stability is analyzed using the Schur stability theorem,and sufficient and necessary conditions for LFC are obtained,which are closely associated with the coupling gain,the system parameters,and the network structure.Furthermore,for the case where the current position and velocity information are not available,a distributed protocol is designed that depends only on the sampled position information.The sufficient and necessary conditions for LFC are also given.The results show that second-order MASs can achieve the LFC if and only if the system parameters satisfy the inequalities proposed in the paper.Finally,the correctness of the obtained results is verified by numerical simulations.展开更多
In recent years,significant research attention has been directed towards swarm intelligence.The Milling behavior of fish schools,a prime example of swarm intelligence,shows how simple rules followed by individual agen...In recent years,significant research attention has been directed towards swarm intelligence.The Milling behavior of fish schools,a prime example of swarm intelligence,shows how simple rules followed by individual agents lead to complex collective behaviors.This paper studies Multi-Agent Reinforcement Learning to simulate fish schooling behavior,overcoming the challenges of tuning parameters in traditional models and addressing the limitations of single-agent methods in multi-agent environments.Based on this foundation,a novel Graph Convolutional Networks(GCN)-Critic MADDPG algorithm leveraging GCN is proposed to enhance cooperation among agents in a multi-agent system.Simulation experiments demonstrate that,compared to traditional single-agent algorithms,the proposed method not only exhibits significant advantages in terms of convergence speed and stability but also achieves tighter group formations and more naturally aligned Milling behavior.Additionally,a fish school self-organizing behavior research platform based on an event-triggered mechanism has been developed,providing a robust tool for exploring dynamic behavioral changes under various conditions.展开更多
文摘Aiming at the problem on cooperative air-defense of surface warship formation, this paper maps the cooperative airdefense system of systems (SoS) for surface warship formation (CASoSSWF) to the biological immune system (BIS) according to the similarity of the defense mechanism and characteristics between the CASoSSWF and the BIS, and then designs the models of components and the architecture for a monitoring agent, a regulating agent, a killer agent, a pre-warning agent and a communicating agent by making use of the theories and methods of the artificial immune system, the multi-agent system (MAS), the vaccine and the danger theory (DT). Moreover a new immune multi-agent model using vaccine based on DT (IMMUVBDT) for the cooperative air-defense SoS is advanced. The immune response and immune mechanism of the CASoSSWF are analyzed. The model has a capability of memory, evolution, commendable dynamic environment adaptability and self-learning, and embodies adequately the cooperative air-defense mechanism for the CASoSSWF. Therefore it shows a novel idea for the CASoSSWF which can provide conception models for a surface warship formation operation simulation system.
基金Supported by the Zhejiang Province Science Foundation of China( M703022)
文摘In this paper,the multi-agent model about shop logistics is set up. This model has 8 agents: raw materials stock agent,process agent,testing agent,transition agent,production information agent,scheduling agent,process agent and stock agent. The scheduling agent has three subagents: manager agent (MA),resource agent (RA) and part agent (PA). MA,PA and RA are communicating equally that guarantees agility of the whole MAS system. The part tasks pass between MA,RA and PA as an integer,which can guarantee the consistency of the data. We use a detailed example about shop logistics scheduling in a semiconductor company to explain the principle. In this example,we use two scheduling strategies: FCFS and SPT. The result data indicates that the average flow time and lingering ratio are changed using different strategy. It is proves that the multi-agent scheduling is useful.
基金Under the auspices of National Science and Technology Support Program of China(No.2012BAH29B04-00)
文摘In this study, three-phase satellite images were used to define rules for the allocation of time and space in construction land resources based on a complex adaptive system and game theory. The decision behavior and rules of government agent, enterprise agent and resident agent in construction land growth were explored. A distinctive and dynamic simulation model of construction land growth was built, which integrated multi-agent, GIS technology and RS data and described the interaction among influencing agents, Taking Fuyang City in the Changjiang River Delta as an example, an assessment process for the remote sensing data in construction land and scenario planning was constructed. Repast and ArcGIS were used as simulation platforms. A simulation of the spatial pattern in land-use planning and the setting of scenario planning were conducted by using the incomplete active game, which was based on different natural, social and economic levels. Through this model, a simulation of urban planning space and decision-making for Fuyang City was created. Relevant non-structured problems arising from urban planning management could be identified, and the process and logic of urban planning spatial decision-making could thus be improved. Cell-by-cell comparison showed that the simulation accuracy was over 72%. This model has great potential for use by government and town planners in decision support and technique support in the policy-making process.
文摘Because of the anonymity and openness of online transactions and the richness of network resources, the problems of the credibility of the online trading and the exact selection of network resources have become acute. For this reason, a reputation-based multi-agent model for network resource selection (RMNRS) is presented. The model divides the network into numbers of trust domains. Each domain has one domain-agent and several entity-agents. The model prevents the inconsistency of information that is maintained by differ-ent agents through the periodically communication between the agents. The model enables the consumers to receive responses from agents significantly quicker than that of traditional models, because the global reputation values of service providers and consumers are evaluated and updated dynamically after each transaction. And the model allocates two global reputation values to each entity and takes the recognition value that how much the service provider knows the service into account. In order to make users choose the best matching services and give users with trusted services, the model also takes the similarity between services into account and uses the similarity degree to amend the integration reputation value with harmonic-mean. Finally, the effectiveness and feasibility of this model is illustrated by the experiment.
基金Supported by the National Natural Science Foundation of China (No. 60873203 ), the Natural Science Foundation of Hebei Province (No F2008000646) and the Guidance Program of the Department of Science and Technology in Hebei Province (No. 72135192).
文摘Because of the anonymity and openness of E-commerce, the on-line transaction and the selection of network resources meet new challenges. For this reason, a trust domain-based multi-agent model for network resource selection is presented. The model divides the network into numbers of trust domains and prevents the inconsistency of information maintained by different agents through the periodical communication among the agents. The model enables consumers to receive the response from the agents much quicker because the trust values of participators are evalUated and updated dynamically and timely after the completion of each transaction. In order to make users choose the best matching services and give users with trusted services, the model takes into account the similarity between services and the service providers' recognition to the services. Finally, the model illustrates the effectiveness and feasibility according to the experiment.
基金supported by the Key R&D Projects in Jiangsu Province(BE2021729)the Key Primary Research Project of Primary Strengthening Program(KYZYJKKCJC23001).
文摘Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies.
基金The National Natural Science Foundation of China(62136008,62293541)The Beijing Natural Science Foundation(4232056)The Beijing Nova Program(20240484514).
文摘Cooperative multi-agent reinforcement learning(MARL)is a key technology for enabling cooperation in complex multi-agent systems.It has achieved remarkable progress in areas such as gaming,autonomous driving,and multi-robot control.Empowering cooperative MARL with multi-task decision-making capabilities is expected to further broaden its application scope.In multi-task scenarios,cooperative MARL algorithms need to address 3 types of multi-task problems:reward-related multi-task,arising from different reward functions;multi-domain multi-task,caused by differences in state and action spaces,state transition functions;and scalability-related multi-task,resulting from the dynamic variation in the number of agents.Most existing studies focus on scalability-related multitask problems.However,with the increasing integration between large language models(LLMs)and multi-agent systems,a growing number of LLM-based multi-agent systems have emerged,enabling more complex multi-task cooperation.This paper provides a comprehensive review of the latest advances in this field.By combining multi-task reinforcement learning with cooperative MARL,we categorize and analyze the 3 major types of multi-task problems under multi-agent settings,offering more fine-grained classifications and summarizing key insights for each.In addition,we summarize commonly used benchmarks and discuss future directions of research in this area,which hold promise for further enhancing the multi-task cooperation capabilities of multi-agent systems and expanding their practical applications in the real world.
基金The National Natural Science Foundation of China(W2431048)The Science and Technology Research Program of Chongqing Municipal Education Commission,China(KJZDK202300807)The Chongqing Natural Science Foundation,China(CSTB2024NSCQQCXMX0052).
文摘This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system.
基金supported by the National Natural Science Foundation of China(Nos.12272104,U22B2013).
文摘This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary objective is to explore the unknown environments to locate and track targets effectively. To address this problem, we propose a novel Multi-Agent Reinforcement Learning (MARL) method based on Graph Neural Network (GNN). Firstly, a method is introduced for encoding continuous-space multi-UAV problem data into spatial graphs which establish essential relationships among agents, obstacles, and targets. Secondly, a Graph AttenTion network (GAT) model is presented, which focuses exclusively on adjacent nodes, learns attention weights adaptively and allows agents to better process information in dynamic environments. Reward functions are specifically designed to tackle exploration challenges in environments with sparse rewards. By introducing a framework that integrates centralized training and distributed execution, the advancement of models is facilitated. Simulation results show that the proposed method outperforms the existing MARL method in search rate and tracking performance with less collisions. The experiments show that the proposed method can be extended to applications with a larger number of agents, which provides a potential solution to the challenging problem of multi-UAV autonomous tracking in dynamic unknown environments.
基金Research Grants Council of Hong Kong under Grant CityU-11205221.
文摘This article investigates the problem of robust adaptive leaderless consensus for heterogeneous uncertain nonminimumphase linear multi-agent systems over directed communication graphs. Each agent is assumed tobe of unknown nominal dynamics and also subject to external disturbances and/or unmodeled dynamics. Anovel distributed robust adaptive control strategy is proposed. It is shown that the robust adaptive leaderlessconsensus problem is solved with the proposed control strategy under some sufficient conditions. Two examplesare provided to demonstrate the efficacy of the proposed control strategy.
基金founded by the National Science and Technology Council of the Republic of China under contract NSTC113-2221-E-019-032.
文摘An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and collision avoidance.However,inherent nonlinearities and uncertainties present in practical control systems contribute to the challenge of achieving precise control performance.Based on the IT-2 Takagi-Sugeno Fuzzy Model(T-SFM),the fuzzy control approach can offer a more effective solution for NMASs facing uncertainties.Unlike existing control methods for NMASs,the Formation and Containment(F-and-C)control problem with collision avoidance capability under uncertainties based on the IT-2 T-SFM is discussed for the first time.Moreover,an IT-2 fuzzy tracking control approach is proposed to solve the formation task for leaders in NMASs without requiring communication.This control scheme makes the design process of the IT-2 fuzzy Formation Controller(FC)more straightforward and effective.According to the communication interaction protocol,the IT-2 Containment Controller(CC)design approach is proposed for followers to ensure convergence into the region defined by the leaders.Leveraging the IT-2 T-SFM representation,the analysis methods developed for linear Multi-Agent Systems(MASs)are successfully extended to perform containment analysis without requiring the additional assumptions imposed in existing research.Notably,the IT-2 fuzzy tracking controller can also be applied in collision avoidance situations to track the desired trajectories calculated by the avoidance algorithm under the Artificial Potential Field(APF).Benefiting from the combination of vortex and source APFs,the leaders can properly adjust the system dynamics to prevent potential collision risk.Integrating the fuzzy theory and APFs avoidance algorithm,an IT-2 fuzzy controller design approach is proposed to achieve the F-and-C purposewhile ensuring collision avoidance capability.Finally,amulti-ship simulation is conducted to validate the feasibility and effectiveness of the designed IT-2 fuzzy controller.
基金2024 Jiangsu Province Youth Science and Technology Talent Support Project2024 Yancheng Key Research and Development Plan(Social Development)projects,“Research and Application of Multi Agent Offline Distributed Trust Perception Virtual Wireless Sensor Network Algorithm”and“Research and Application of a New Type of Fishery Ship Safety Production Monitoring Equipment”。
文摘This paper mainly focuses on the velocity-constrained consensus problem of discrete-time heterogeneous multi-agent systems with nonconvex constraints and arbitrarily switching topologies,where each agent has first-order or second-order dynamics.To solve this problem,a distributed algorithm is proposed based on a contraction operator.By employing the properties of the stochastic matrix,it is shown that all agents’position states could converge to a common point and second-order agents’velocity states could remain in corresponding nonconvex constraint sets and converge to zero as long as the joint communication topology has one directed spanning tree.Finally,the numerical simulation results are provided to verify the effectiveness of the proposed algorithms.
基金National Natural Science Foundation of China(No.12071370)。
文摘This paper focuses on the problem of leaderfollowing consensus for nonlinear cascaded multi-agent systems.The control strategies for these systems are transformed into successive control problem schemes for lower-order error subsystems.A distributed consensus analysis for the corresponding error systems is conducted by employing recursive methods and virtual controllers,accompanied by a series of Lyapunov functions devised throughout the iterative process,which solves the leaderfollowing consensus problem of a class of nonlinear cascaded multi-agent systems.Specific simulation examples illustrate the effectiveness of the proposed control algorithm.
文摘This article investigates the time-varying output group formation tracking control(GFTC)problem for heterogeneous multi-agent systems(HMASs)under switching topologies.The objective is to design a distributed control strategy that enables the outputs of the followers to form the desired sub-formations and track the outputs of the leader in each subgroup.Firstly,novel distributed observers are developed to estimate the states of the leaders under switching topologies.Then,GFTC protocols are designed based on the proposed observers.It is shown that with the distributed protocol,the GFTC problem for HMASs under switching topologies is solved if the average dwell time associated with the switching topologies is larger than a fixed threshold.Finally,an example is provided to illustrate the effectiveness of the proposed control strategy.
基金supported by the National Research and Development Program of China under Grant JCKY2018607C019in part by the Key Laboratory Fund of UAV of Northwestern Polytechnical University under Grant 2021JCJQLB0710L.
文摘This paper proposes a Multi-Agent Attention Proximal Policy Optimization(MA2PPO)algorithm aiming at the problems such as credit assignment,low collaboration efficiency and weak strategy generalization ability existing in the cooperative pursuit tasks of multiple unmanned aerial vehicles(UAVs).Traditional algorithms often fail to effectively identify critical cooperative relationships in such tasks,leading to low capture efficiency and a significant decline in performance when the scale expands.To tackle these issues,based on the proximal policy optimization(PPO)algorithm,MA2PPO adopts the centralized training with decentralized execution(CTDE)framework and introduces a dynamic decoupling mechanism,that is,sharing the multi-head attention(MHA)mechanism for critics during centralized training to solve the credit assignment problem.This method enables the pursuers to identify highly correlated interactions with their teammates,effectively eliminate irrelevant and weakly relevant interactions,and decompose large-scale cooperation problems into decoupled sub-problems,thereby enhancing the collaborative efficiency and policy stability among multiple agents.Furthermore,a reward function has been devised to facilitate the pursuers to encircle the escapee by combining a formation reward with a distance reward,which incentivizes UAVs to develop sophisticated cooperative pursuit strategies.Experimental results demonstrate the effectiveness of the proposed algorithm in achieving multi-UAV cooperative pursuit and inducing diverse cooperative pursuit behaviors among UAVs.Moreover,experiments on scalability have demonstrated that the algorithm is suitable for large-scale multi-UAV systems.
基金The work is partially supported by Natural Science Foundation of Ningxia(Grant No.AAC03300)National Natural Science Foundation of China(Grant No.61962001)Graduate Innovation Project of North Minzu University(Grant No.YCX23152).
文摘Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.
基金supported in part by the National Natural Science Foundation of China under Grant 6237319in part by the Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grant KYCX230479.
文摘Formation control in multi-agent systems has become a critical area of interest due to its wide-ranging applications in robotics,autonomous transportation,and surveillance.While various studies have explored distributed cooperative control,this review focuses on the theoretical foundations and recent developments in formation control strategies.The paper categorizes and analyzes key formation types,including formation maintenance,group or cluster formation,bipartite formations,event-triggered formations,finite-time convergence,and constrained formations.A significant portion of the review addresses formation control under constrained dynamics,presenting both modelbased and model-free approaches that consider practical limitations such as actuator bounds,communication delays,and nonholonomic constraints.Additionally,the paper discusses emerging trends,including the integration of eventdriven mechanisms and AI-enhanced coordination strategies.Comparative evaluations highlight the trade-offs among various methodologies regarding scalability,robustness,and real-world feasibility.Practical implementations are reviewed across diverse platforms,and the review identifies the current achievements and unresolved challenges in the field.The paper concludes by outlining promising research directions,such as adaptive control for dynamic environments,energy-efficient coordination,and using learning-based control under uncertainty.This review synthesizes the current state of the art and provides a road map for future investigation,making it a valuable reference for researchers and practitioners aiming to advance formation control in multi-agent systems.
基金supported by the National Natural Science Foundation of China under Grants 62476138 and 42375016.
文摘Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To decrease the control cost,based on ISC,several LFC problems are investigated for second-order MASs without and with time delay,respectively.Firstly,an intermittent sampled controller is designed,and a sufficient and necessary condition is derived,under which state errors between the leader and all the followers approach zero asymptotically.Considering that time delay is inevitable,a new protocol is proposed to deal with the time-delay situation.The error system’s stability is analyzed using the Schur stability theorem,and sufficient and necessary conditions for LFC are obtained,which are closely associated with the coupling gain,the system parameters,and the network structure.Furthermore,for the case where the current position and velocity information are not available,a distributed protocol is designed that depends only on the sampled position information.The sufficient and necessary conditions for LFC are also given.The results show that second-order MASs can achieve the LFC if and only if the system parameters satisfy the inequalities proposed in the paper.Finally,the correctness of the obtained results is verified by numerical simulations.
基金supported by the National Natural Science Foundation of China under Grant 62273351 and Grant 62303020.
文摘In recent years,significant research attention has been directed towards swarm intelligence.The Milling behavior of fish schools,a prime example of swarm intelligence,shows how simple rules followed by individual agents lead to complex collective behaviors.This paper studies Multi-Agent Reinforcement Learning to simulate fish schooling behavior,overcoming the challenges of tuning parameters in traditional models and addressing the limitations of single-agent methods in multi-agent environments.Based on this foundation,a novel Graph Convolutional Networks(GCN)-Critic MADDPG algorithm leveraging GCN is proposed to enhance cooperation among agents in a multi-agent system.Simulation experiments demonstrate that,compared to traditional single-agent algorithms,the proposed method not only exhibits significant advantages in terms of convergence speed and stability but also achieves tighter group formations and more naturally aligned Milling behavior.Additionally,a fish school self-organizing behavior research platform based on an event-triggered mechanism has been developed,providing a robust tool for exploring dynamic behavioral changes under various conditions.