期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Distributed optimization of electricity-Gas-Heat integrated energy system with multi-agent deep reinforcement learning 被引量:5
1
作者 Lei Dong Jing Wei +1 位作者 Hao Lin Xinying Wang 《Global Energy Interconnection》 EI CAS CSCD 2022年第6期604-617,共14页
The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high co... The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high cost of communication and complex modeling.Meanwhile,the traditional numerical iterative solution cannot deal with uncertainty and solution efficiency,which is difficult to apply online.For the coordinated optimization problem of the electricity-gas-heat IES in this study,we constructed a model for the distributed IES with a dynamic distribution factor and transformed the centralized optimization problem into a distributed optimization problem in the multi-agent reinforcement learning environment using multi-agent deep deterministic policy gradient.Introducing the dynamic distribution factor allows the system to consider the impact of changes in real-time supply and demand on system optimization,dynamically coordinating different energy sources for complementary utilization and effectively improving the system economy.Compared with centralized optimization,the distributed model with multiple decision centers can achieve similar results while easing the pressure on system communication.The proposed method considers the dual uncertainty of renewable energy and load in the training.Compared with the traditional iterative solution method,it can better cope with uncertainty and realize real-time decision making of the system,which is conducive to the online application.Finally,we verify the effectiveness of the proposed method using an example of an IES coupled with three energy hub agents. 展开更多
关键词 Integrated energy system multi-agent system Distributed optimization multi-agent deep deterministic policy gradient Real-time optimization decision
在线阅读 下载PDF
基于深度强化学习的电力系统紧急切机稳控策略生成方法 被引量:3
2
作者 高琴 徐光虎 +3 位作者 夏尚学 杨欢欢 赵青春 黄河 《电力科学与技术学报》 北大核心 2025年第1期39-46,共8页
电力系统快速发展的同时也改变着电力系统的结构,使得系统稳定机理变得更加复杂。为解决新能源电力系统存在的功角稳定问题,提出基于深度强化学习的电力系统紧急切机稳控策略生成方法。首先,归纳并提出电力系统紧急控制切机动作策略以... 电力系统快速发展的同时也改变着电力系统的结构,使得系统稳定机理变得更加复杂。为解决新能源电力系统存在的功角稳定问题,提出基于深度强化学习的电力系统紧急切机稳控策略生成方法。首先,归纳并提出电力系统紧急控制切机动作策略以及涉及的安全约束,并将电力系统稳控模型转换为马尔科夫决策过程,再采用特征评估与斯皮尔曼(Spearman)等级相关系数方法筛选出最典型的特征数据;随后,为提高稳控策略智能体的训练效率,提出基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法的稳控策略训练框架;最后,在IEEE 39节点系统和某实际电网中进行测试验证。研究结果显示,所提方法能够根据系统的运行状态和对故障的响应,自动调整生成切机稳控策略,在决策效果和效率方面都表现出更好的性能。 展开更多
关键词 新能源电力系统 稳控策略 强化学习 深度确定性策略梯度算法 马尔科夫模型
在线阅读 下载PDF
深度强化学习下的管道气动软体机器人控制 被引量:1
3
作者 江雨霏 朱其新 《西安工程大学学报》 2025年第2期65-74,共10页
在复杂的管道环境中,与刚性机器人相比,软体机器人更适合执行操作任务。然而,由于具有无限自由度和非线性变形的特点,软体机器人的控制是一个较大的挑战。根据管道气动软体机器人变形方式进行动力学建模,提出一种结合预测奖励技术的深... 在复杂的管道环境中,与刚性机器人相比,软体机器人更适合执行操作任务。然而,由于具有无限自由度和非线性变形的特点,软体机器人的控制是一个较大的挑战。根据管道气动软体机器人变形方式进行动力学建模,提出一种结合预测奖励技术的深度确定性策略梯度(predictive reward-deep deterministic policy gradient,PR-DDPG)算法,将其应用于管道气动软体机器人的连续运动控制,为其动态的弯曲运动控制问题设计自主运动控制器。实验结果表明:PR-DDPG算法能够有效控制管道气动软体机器人在三维空间中进行自主连续运动,且可控制其前端到达目标点与目标方向。与深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法相比,PR-DDPG算法的收敛时间减少了约17%,奖励值提高了约20%,提高了管道气动软体机器人的连续运动控制性能。 展开更多
关键词 管道软体机器人 运动控制 深度强化学习 深度确定性策略梯度算法
在线阅读 下载PDF
基于MADDPG的多无人战车协同突防决策方法研究 被引量:1
4
作者 殷宇维 王凡 +1 位作者 丁录顺 边金宁 《指挥控制与仿真》 2025年第3期40-49,共10页
针对多无人战车陆上突防作战时如何根据实时态势进行协同智能决策这一问题,结合多智能体无人战车突防作战过程建立马尔可夫(MDP)模型,并基于多智能体深度确定性策略梯度算法(Multi-agent Deep Deterministic Policy Gradient,MADDPG)提... 针对多无人战车陆上突防作战时如何根据实时态势进行协同智能决策这一问题,结合多智能体无人战车突防作战过程建立马尔可夫(MDP)模型,并基于多智能体深度确定性策略梯度算法(Multi-agent Deep Deterministic Policy Gradient,MADDPG)提出多无人战车协同突防决策方法。针对多智能体决策时智能体策略变化互相影响的问题,通过在算法的AC结构中引入自注意力机制,使每个智能体进行决策和策略评估时更加关注那些对其影响较大的智能体;并采用自注意力机制计算每个智能体的回报权值,按照每个智能体自身贡献进行回报分配,提升了战车间的协同性;最后通过在想定环境中进行实验,验证了多战车协同突防决策方法的有效性。 展开更多
关键词 深度强化学习 多无人战车协同突防 多智能体深度确定性策略梯度 自注意力机制
在线阅读 下载PDF
Joint offloading decision and resource allocation in vehicular edge computing networks
5
作者 Shumo Wang Xiaoqin Song +3 位作者 Han Xu Tiecheng Song Guowei Zhang Yang Yang 《Digital Communications and Networks》 2025年第1期71-82,共12页
With the rapid development of Intelligent Transportation Systems(ITS),many new applications for Intelligent Connected Vehicles(ICVs)have sprung up.In order to tackle the conflict between delay-sensitive applications a... With the rapid development of Intelligent Transportation Systems(ITS),many new applications for Intelligent Connected Vehicles(ICVs)have sprung up.In order to tackle the conflict between delay-sensitive applications and resource-constrained vehicles,computation offloading paradigm that transfers computation tasks from ICVs to edge computing nodes has received extensive attention.However,the dynamic network conditions caused by the mobility of vehicles and the unbalanced computing load of edge nodes make ITS face challenges.In this paper,we propose a heterogeneous Vehicular Edge Computing(VEC)architecture with Task Vehicles(TaVs),Service Vehicles(SeVs)and Roadside Units(RSUs),and propose a distributed algorithm,namely PG-MRL,which jointly optimizes offloading decision and resource allocation.In the first stage,the offloading decisions of TaVs are obtained through a potential game.In the second stage,a multi-agent Deep Deterministic Policy Gradient(DDPG),one of deep reinforcement learning algorithms,with centralized training and distributed execution is proposed to optimize the real-time transmission power and subchannel selection.The simulation results show that the proposed PG-MRL algorithm has significant improvements over baseline algorithms in terms of system delay. 展开更多
关键词 Computation offloading Resource allocation Vehicular edge computing Potential game multi-agent deep deterministic policy gradient
在线阅读 下载PDF
Dynamic Task Offloading and Resource Allocation for Air-Ground Integrated Networks Based on MADDPG
6
作者 Jianbin Xue Peipei Mao +2 位作者 Luyao Wang Qingda Yu Changwang Fan 《Journal of Beijing Institute of Technology》 2025年第3期243-267,共25页
With the rapid growth of connected devices,traditional edge-cloud systems are under overload pressure.Using mobile edge computing(MEC)to assist unmanned aerial vehicles(UAVs)as low altitude platform stations(LAPS)for ... With the rapid growth of connected devices,traditional edge-cloud systems are under overload pressure.Using mobile edge computing(MEC)to assist unmanned aerial vehicles(UAVs)as low altitude platform stations(LAPS)for communication and computation to build air-ground integrated networks(AGINs)offers a promising solution for seamless network coverage of remote internet of things(IoT)devices in the future.To address the performance demands of future mobile devices(MDs),we proposed an MEC-assisted AGIN system.The goal is to minimize the long-term computational overhead of MDs by jointly optimizing transmission power,flight trajecto-ries,resource allocation,and offloading ratios,while utilizing non-orthogonal multiple access(NOMA)to improve device connectivity of large-scale MDs and spectral efficiency.We first designed an adaptive clustering scheme based on K-Means to cluster MDs and established commu-nication links,improving efficiency and load balancing.Then,considering system dynamics,we introduced a partial computation offloading algorithm based on multi-agent deep deterministic pol-icy gradient(MADDPG),modeling the multi-UAV computation offloading problem as a Markov decision process(MDP).This algorithm optimizes resource allocation through centralized training and distributed execution,reducing computational overhead.Simulation results show that the pro-posed algorithm not only converges stably but also outperforms other benchmark algorithms in han-dling complex scenarios with multiple devices. 展开更多
关键词 air-ground integrated network(AGIN) resource allocation dynamic task offloading multi-agent deep deterministic policy gradient(MADDPG) non-orthogonal multiple access(NOMA)
暂未订购
基于改进DDPG的无人驾驶避障跟踪控制 被引量:15
7
作者 李新凯 虎晓诚 +1 位作者 马萍 张宏立 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第11期44-55,共12页
无人驾驶汽车在跟踪避障控制过程中,被控对象具有非线性特征且被控参数多变,线性模型及固定的无人驾驶车辆数学模型难以保证车辆在复杂环境下的安全性和稳定性,并且无人驾驶离散化控制过程增加了控制难度。针对此类问题,为提高无人驾驶... 无人驾驶汽车在跟踪避障控制过程中,被控对象具有非线性特征且被控参数多变,线性模型及固定的无人驾驶车辆数学模型难以保证车辆在复杂环境下的安全性和稳定性,并且无人驾驶离散化控制过程增加了控制难度。针对此类问题,为提高无人驾驶汽车实时控制跟踪轨迹的精度,同时降低整个控制过程的难度,文中提出了一种基于蒙特卡洛-深度确定性策略梯度(MC-DDPG)的无人驾驶汽车避障跟踪控制算法。该算法基于深度强化学习网络搭建控制系统模型,在策略学习采样过程中采用优秀的训练样本,使用蒙特卡洛方法优化网络训练梯度,对算法的训练样本采取优劣区分,使用优异的样本通过梯度算法寻找最优的网络参数,从而增强网络算法的学习能力,实现无人驾驶汽车的更优连续控制。在计算机模拟环境TORCS中对该算法进行仿真实验,结果表明,应用MC-DDPG算法可以有效地实现无人驾驶汽车的避障跟踪控制,其控制的无人驾驶汽车的跟踪精度及避障效果均优于深度Q网络算法和DDPG算法。 展开更多
关键词 无人驾驶 动态避障 深度确定性策略梯度 轨迹跟踪 梯度优化
在线阅读 下载PDF
基于改进DDPG算法的中短期光伏发电功率预测 被引量:4
8
作者 苏诗慧 雷勇 +1 位作者 李永凯 朱英伟 《半导体光电》 CAS 北大核心 2020年第5期717-723,共7页
针对传统仿生智能算法处理异构光伏发电功率预测精确建模问题时存在的线路多阻抗参数约束下方差波动、线损分析易陷入局部极值等不足,提出了一种基于改进深度确定性策略梯度(DDPG)的中短期光伏发电功率预测模型。首先,通过引入多智能体... 针对传统仿生智能算法处理异构光伏发电功率预测精确建模问题时存在的线路多阻抗参数约束下方差波动、线损分析易陷入局部极值等不足,提出了一种基于改进深度确定性策略梯度(DDPG)的中短期光伏发电功率预测模型。首先,通过引入多智能体机制,视发电系统涉及到的发电过程参数为独立活性的智能体,构建出具有社会属性的面向发电过程参数信息共享的全局最优协同控制体系。然后,通过改进的DDPG算法实现蓄电池储能功率自主精确调节和发电网输出功率的自动最优预测。最后,基于Tensorflow开源框架在Gym torcs环境下进行模型效能仿真并以某示范性异构光伏发电网为效能评价载体,对模型进行了工程应用合理性验证。 展开更多
关键词 异构光伏发电网 功率预测 深度确定性策略梯度 多智能体 效能仿真验证
原文传递
基于ATMADDPG算法的多水面无人航行器编队导航 被引量:2
9
作者 王思琪 关巍 +1 位作者 佟敏 赵盛烨 《吉林大学学报(信息科学版)》 CAS 2024年第4期588-599,共12页
为提高多无人船编队系统的导航能力,提出了一种基于注意力机制的多智能体深度确定性策略梯度(ATMADDPG:Attention Mechanism based Multi-Agent Deep Deterministic Policy Gradient)算法。该算法在训练阶段,通过大量试验训练出最佳策略... 为提高多无人船编队系统的导航能力,提出了一种基于注意力机制的多智能体深度确定性策略梯度(ATMADDPG:Attention Mechanism based Multi-Agent Deep Deterministic Policy Gradient)算法。该算法在训练阶段,通过大量试验训练出最佳策略,并在实验阶段直接使用训练出的最佳策略得到最佳编队路径。仿真实验将4艘相同的“百川号”无人船作为实验对象。实验结果表明,基于ATMADDPG算法的队形保持策略能实现稳定的多无人船编队导航,并在一定程度上满足队形保持的要求。相较于多智能体深度确定性策略梯度(MADDPG:Multi-Agent Depth Deterministic Policy Gradient)算法,所提出的ATMADDPG算法在收敛速度、队形保持能力和对环境变化的适应性等方面表现出更优越的性能,综合导航效率可提高约80%,具有较大的应用潜力。 展开更多
关键词 多无人船编队导航 MADDPG算法 注意力机制 深度强化学习
在线阅读 下载PDF
Approximating Nash Equilibrium in Day-ahead Electricity Market Bidding with Multi-agent Deep Reinforcement Learning 被引量:12
10
作者 Yan Du Fangxing Li +1 位作者 Helia Zandi Yaosuo Xue 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第3期534-544,共11页
In this paper,a day-ahead electricity market bidding problem with multiple strategic generation company(GEN-CO)bidders is studied.The problem is formulated as a Markov game model,where GENCO bidders interact with each... In this paper,a day-ahead electricity market bidding problem with multiple strategic generation company(GEN-CO)bidders is studied.The problem is formulated as a Markov game model,where GENCO bidders interact with each other to develop their optimal day-ahead bidding strategies.Considering unobservable information in the problem,a model-free and data-driven approach,known as multi-agent deep deterministic policy gradient(MADDPG),is applied for approximating the Nash equilibrium(NE)in the above Markov game.The MAD-DPG algorithm has the advantage of generalization due to the automatic feature extraction ability of the deep neural networks.The algorithm is tested on an IEEE 30-bus system with three competitive GENCO bidders in both an uncongested case and a congested case.Comparisons with a truthful bidding strategy and state-of-the-art deep reinforcement learning methods including deep Q network and deep deterministic policy gradient(DDPG)demonstrate that the applied MADDPG algorithm can find a superior bidding strategy for all the market participants with increased profit gains.In addition,the comparison with a conventional-model-based method shows that the MADDPG algorithm has higher computational efficiency,which is feasible for real-world applications. 展开更多
关键词 Bidding strategy day-ahead electricity market deep reinforcement learning Markov game multi-agent deterministic policy gradient(MADDPG) Nash equilibrium(NE)
原文传递
基于改进DDPG算法的复杂环境下AGV路径规划方法研究 被引量:14
11
作者 孟晨阳 郝崇清 +3 位作者 李冉 王晓博 王昭雷 赵江 《计算机应用研究》 CSCD 北大核心 2022年第3期681-687,共7页
为了提高AGV(automatic guided vehicle)在复杂未知环境下的搜索能力,提出了一种改进的深度确定性策略梯度(deep deterministic policy gradient, DDPG)算法。该算法通过构建经验回放矩阵和双层网络结构提高算法的收敛速度,并将波尔兹... 为了提高AGV(automatic guided vehicle)在复杂未知环境下的搜索能力,提出了一种改进的深度确定性策略梯度(deep deterministic policy gradient, DDPG)算法。该算法通过构建经验回放矩阵和双层网络结构提高算法的收敛速度,并将波尔兹曼引入到ε-greedy搜索策略中,解决了AGV在选择最优动作时的局部最优问题;针对深度神经网络训练速度缓慢的问题,将优先级采样应用于深度确定性策略梯度算法中;为解决普通优先级采样复杂度过高的问题,提出了利用小批量优先采样方法训练网络。为了验证方法的有效性,通过栅格法建模并在不同的复杂环境下进行仿真实验对比,比较了不同算法的损失函数、迭代次数和回报值。实验结果表明,所提改进算法与原算法相比损失函数减小、迭代次数减少、回报值增加,验证了算法的有效性,同时为AGV在复杂环境下能够更加安全且快速地完成规划任务提供了新的思路。 展开更多
关键词 深度学习 自动化导引车路径规划 深度确定性策略梯度算法 小批量优先采样
在线阅读 下载PDF
基于Shaping-DDPG模型的变压器负荷预测技术研究 被引量:2
12
作者 山宪武 宋秩行 +1 位作者 邱书琦 叶新青 《武汉理工大学学报(信息与管理工程版)》 CAS 2023年第3期377-382,396,共7页
为了协调电力系统供需平衡,降低运维风险和成本,引入Shaping技术改进了深度确定性策略梯度(DDPG)算法,得到Shaping-DDPG预测模型。加入经验回放技术和目标网络技术以消除数据间的关联性;设计变压器网络评估函数来评价变压器网络的优劣状... 为了协调电力系统供需平衡,降低运维风险和成本,引入Shaping技术改进了深度确定性策略梯度(DDPG)算法,得到Shaping-DDPG预测模型。加入经验回放技术和目标网络技术以消除数据间的关联性;设计变压器网络评估函数来评价变压器网络的优劣状态;通过数据处理模块和卷积模块提取原始数据特征,提高变压器系统的感知能力和学习效率。研究表明:与其他算法预测效果相比,Shaping-DDPG模型的RMSE误差平均值(93 MW)最低,比DDPG模型、RNN模型和SVM模型分别降低了42 MW、93 MW和145 MW。相较于非线性变压器负荷系统,Shaping-DDPG模型具有强大的反馈记忆功能,能准确获取负荷序列潜在的变化趋势,在变压器负荷曲线呈现波动时依然能够保证良好的预测能力。该研究为降低电网公司资源浪费和运维成本、协调电网公司与变压器系统之间的供需平衡提供了思路,提高了运作效益。 展开更多
关键词 变压器负荷预测 深度确定性策略梯度 Shaping技术 RMSE误差平均值 网络评估函数
在线阅读 下载PDF
基于深度确定性策略梯度的主动配电网有功-无功协调优化调度 被引量:24
13
作者 孙国强 殷岩岩 +2 位作者 卫志农 臧海祥 楚云飞 《电力建设》 CSCD 北大核心 2023年第11期33-42,共10页
为了实现主动配电网(active distribution network,ADN)的有功-无功资源协调控制,提高配电系统供电可靠性及经济性,提出一种基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)的ADN有功-无功协调优化调度策略。首先,在... 为了实现主动配电网(active distribution network,ADN)的有功-无功资源协调控制,提高配电系统供电可靠性及经济性,提出一种基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)的ADN有功-无功协调优化调度策略。首先,在避免电压和潮流越限的情况下,以ADN日运行成本最小为目标,计及可投切电容器组、有载调压变压器、微型燃气轮机和能量储存系统构建ADN有功-无功协调调度模型。其次,将ADN实时调度问题转化成马尔科夫决策过程,并定义系统的状态空间、动作空间及奖励函数。然后,为提升深度确定性策略梯度的离线训练速度和奖励回报,在算法中加入优先经验回放(priority experience replay,PER)机制,并搭建了基于优先经验回放机制的深度确定性策略梯度(PER-DDPG)ADN在线调度框架。最后,在修改的IEEE-34节点配电系统上进行仿真,算例结果表明,PER-DDPG方法通过高效的经验学习,能够为ADN提供安全、经济的调度策略。 展开更多
关键词 主动配电网 有功无功协调优化 深度确定性策略梯度(DDPG) 在线调度框架 优先经验回放机制
原文传递
Multi-UAV Collaborative Edge Computing Algorithm for Joint Task Offloading and Channel Resource Allocation 被引量:1
14
作者 Yuting Wei Sheng Wu +3 位作者 Zhe Ji Zhigang Yu Chunxiao Jiang Linling Kuang 《Journal of Communications and Information Networks》 EI CSCD 2024年第2期137-150,共14页
Unmanned aerial vehicle (UAV)-based edge computing is an emerging technology that provides fast task processing for a wider area. To address the issues of limited computation resource of a single UAV and finite commun... Unmanned aerial vehicle (UAV)-based edge computing is an emerging technology that provides fast task processing for a wider area. To address the issues of limited computation resource of a single UAV and finite communication resource in multi-UAV networks, this paper joints consideration of task offloading and wireless channel allocation on a collaborative multi-UAV computing network, where a high altitude platform station (HAPS)is adopted as the relay device for communication between UAV clusters consisting of UAV cluster heads (ch-UAVs) and mission UAVs (m-UAVs). We propose an algorithm, jointing task offloading and wireless channel allocation to maximize the average service success rate (ASSR)of a period time. In particular,the simulated annealing(SA)algorithm with random perturbations is used for optimal channel allocation,aiming to reduce interference and minimize transmission delay.A multi-agent deep deterministic policy gradient (MADDPG) is proposed to get the best task offloading strategy. Simulation results demonstrate the effectiveness of the SA algorithm in channel allocation. Meanwhile,when jointly considering computation and channel resources,the proposed scheme effectively enhances the ASSR in comparison to other benchmark algorithms. 展开更多
关键词 UAV-based edge computing multi-UAV collaboration joint task offloading and wireless channel allocation simulated annealing(SA)algorithm multi-agent deep deterministic policy gradient(MADDPG)
原文传递
MADDPG-based Active Distribution Network Dynamic Reconfiguration with Renewable Energy 被引量:4
15
作者 Changxu Jiang Zheng Lin +2 位作者 Chenxi Liu Feixiong Chen Zhenguo Shao 《Protection and Control of Modern Power Systems》 2024年第6期143-155,共13页
The integration of distributed generations(DG),such as wind turbines and photovoltaics,has a significant impact on the security,stability,and economy of the distribution network due to the randomness and fluctuations ... The integration of distributed generations(DG),such as wind turbines and photovoltaics,has a significant impact on the security,stability,and economy of the distribution network due to the randomness and fluctuations of DG output.Dynamic distribution network reconfiguration(DNR)technology has the potential to mitigate this problem effectively.However,due to the non-convex and nonlinear characteristics of the DNR model,traditional mathematical optimization algorithms face speed challenges,and heuristic algorithms struggle with both speed and accuracy.These problems hinder the effective control of existing distribution networks.To address these challenges,an active distribution network dynamic reconfiguration approach based on an improved multi-agent deep deterministic policy gradient(MADDPG)is proposed.Firstly,taking into account the uncertainties of load and DG,a dynamic DNR stochastic mathematical model is constructed.Next,the concept of fundamental loops(FLs)is defined and the coding method based on loop-coding is adopted for MADDPG action space.Then,the agents with actor and critic networks are equipped in each FL to real-time control network topology.Subsequently,a MADDPG framework for dynamic DNR is constructed.Finally,simulations are conducted on an improved IEEE 33-bus power system to validate the superiority of MADDPG.The results demonstrate that MADDPG has a shorter calculation time than the heuristic algorithm and mathematical optimization algorithm,which is useful for real-time control of DNR. 展开更多
关键词 Distribution network reconfiguration active distribution network deep deterministic policy gradient multi-agent deep reinforcement learning.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部