期刊文献+
共找到416篇文章
< 1 2 21 >
每页显示 20 50 100
MARCS:A Mobile Crowdsensing Framework Based on Data Shapley Value Enabled Multi-Agent Deep Reinforcement Learning
1
作者 Yiqin Wang Yufeng Wang +1 位作者 Jianhua Ma Qun Jin 《Computers, Materials & Continua》 2025年第3期4431-4449,共19页
Opportunistic mobile crowdsensing(MCS)non-intrusively exploits human mobility trajectories,and the participants’smart devices as sensors have become promising paradigms for various urban data acquisition tasks.Howeve... Opportunistic mobile crowdsensing(MCS)non-intrusively exploits human mobility trajectories,and the participants’smart devices as sensors have become promising paradigms for various urban data acquisition tasks.However,in practice,opportunistic MCS has several challenges from both the perspectives of MCS participants and the data platform.On the one hand,participants face uncertainties in conducting MCS tasks,including their mobility and implicit interactions among participants,and participants’economic returns given by the MCS data platform are determined by not only their own actions but also other participants’strategic actions.On the other hand,the platform can only observe the participants’uploaded sensing data that depends on the unknown effort/action exerted by participants to the platform,while,for optimizing its overall objective,the platform needs to properly reward certain participants for incentivizing them to provide high-quality data.To address the challenge of balancing individual incentives and platform objectives in MCS,this paper proposes MARCS,an online sensing policy based on multi-agent deep reinforcement learning(MADRL)with centralized training and decentralized execution(CTDE).Specifically,the interactions between MCS participants and the data platform are modeled as a partially observable Markov game,where participants,acting as agents,use DRL-based policies to make decisions based on local observations,such as task trajectories and platform payments.To align individual and platform goals effectively,the platform leverages Shapley value to estimate the contribution of each participant’s sensed data,using these estimates as immediate rewards to guide agent training.The experimental results on real mobility trajectory datasets indicate that the revenue of MARCS reaches almost 35%,53%,and 100%higher than DDPG,Actor-Critic,and model predictive control(MPC)respectively on the participant side and similar results on the platform side,which show superior performance compared to baselines. 展开更多
关键词 Mobile crowdsensing online data acquisition data Shapley value multi-agent deep reinforcement learning centralized training and decentralized execution(CTDE)
在线阅读 下载PDF
A pipelining task offloading strategy via delay-aware multi-agent reinforcement learning in Cybertwin-enabled 6G network
2
作者 Haiwen Niu Luhan Wang +3 位作者 Keliang Du Zhaoming Lu Xiangming Wen Yu Liu 《Digital Communications and Networks》 2025年第1期92-105,共14页
Cybertwin-enabled 6th Generation(6G)network is envisioned to support artificial intelligence-native management to meet changing demands of 6G applications.Multi-Agent Deep Reinforcement Learning(MADRL)technologies dri... Cybertwin-enabled 6th Generation(6G)network is envisioned to support artificial intelligence-native management to meet changing demands of 6G applications.Multi-Agent Deep Reinforcement Learning(MADRL)technologies driven by Cybertwins have been proposed for adaptive task offloading strategies.However,the existence of random transmission delay between Cybertwin-driven agents and underlying networks is not considered in related works,which destroys the standard Markov property and increases the decision reaction time to reduce the task offloading strategy performance.In order to address this problem,we propose a pipelining task offloading method to lower the decision reaction time and model it as a delay-aware Markov Decision Process(MDP).Then,we design a delay-aware MADRL algorithm to minimize the weighted sum of task execution latency and energy consumption.Firstly,the state space is augmented using the lastly-received state and historical actions to rebuild the Markov property.Secondly,Gate Transformer-XL is introduced to capture historical actions'importance and maintain the consistent input dimension dynamically changed due to random transmission delays.Thirdly,a sampling method and a new loss function with the difference between the current and target state value and the difference between real state-action value and augmented state-action value are designed to obtain state transition trajectories close to the real ones.Numerical results demonstrate that the proposed methods are effective in reducing reaction time and improving the task offloading performance in the random-delay Cybertwin-enabled 6G networks. 展开更多
关键词 Cybertwin multi-agent deep reinforcement learning(MADRL) Task offloading PIPELINING Delay-aware
在线阅读 下载PDF
UAV-Assisted Dynamic Avatar Task Migration for Vehicular Metaverse Services: A Multi-Agent Deep Reinforcement Learning Approach 被引量:1
3
作者 Jiawen Kang Junlong Chen +6 位作者 Minrui Xu Zehui Xiong Yutao Jiao Luchao Han Dusit Niyato Yongju Tong Shengli Xie 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期430-445,共16页
Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metavers... Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metaverses. However, avatar tasks include a multitude of human-to-avatar and avatar-to-avatar interactive applications, e.g., augmented reality navigation,which consumes intensive computing resources. It is inefficient and impractical for vehicles to process avatar tasks locally. Fortunately, migrating avatar tasks to the nearest roadside units(RSU)or unmanned aerial vehicles(UAV) for execution is a promising solution to decrease computation overhead and reduce task processing latency, while the high mobility of vehicles brings challenges for vehicles to independently perform avatar migration decisions depending on current and future vehicle status. To address these challenges, in this paper, we propose a novel avatar task migration system based on multi-agent deep reinforcement learning(MADRL) to execute immersive vehicular avatar tasks dynamically. Specifically, we first formulate the problem of avatar task migration from vehicles to RSUs/UAVs as a partially observable Markov decision process that can be solved by MADRL algorithms. We then design the multi-agent proximal policy optimization(MAPPO) approach as the MADRL algorithm for the avatar task migration problem. To overcome slow convergence resulting from the curse of dimensionality and non-stationary issues caused by shared parameters in MAPPO, we further propose a transformer-based MAPPO approach via sequential decision-making models for the efficient representation of relationships among agents. Finally, to motivate terrestrial or non-terrestrial edge servers(e.g., RSUs or UAVs) to share computation resources and ensure traceability of the sharing records, we apply smart contracts and blockchain technologies to achieve secure sharing management. Numerical results demonstrate that the proposed approach outperforms the MAPPO approach by around 2% and effectively reduces approximately 20% of the latency of avatar task execution in UAV-assisted vehicular Metaverses. 展开更多
关键词 AVATAR blockchain metaverses multi-agent deep reinforcement learning transformer UAVS
在线阅读 下载PDF
Unleashing the Power of Multi-Agent Reinforcement Learning for Algorithmic Trading in the Digital Financial Frontier and Enterprise Information Systems
4
作者 Saket Sarin Sunil K.Singh +4 位作者 Sudhakar Kumar Shivam Goyal Brij Bhooshan Gupta Wadee Alhalabi Varsha Arya 《Computers, Materials & Continua》 SCIE EI 2024年第8期3123-3138,共16页
In the rapidly evolving landscape of today’s digital economy,Financial Technology(Fintech)emerges as a trans-formative force,propelled by the dynamic synergy between Artificial Intelligence(AI)and Algorithmic Trading... In the rapidly evolving landscape of today’s digital economy,Financial Technology(Fintech)emerges as a trans-formative force,propelled by the dynamic synergy between Artificial Intelligence(AI)and Algorithmic Trading.Our in-depth investigation delves into the intricacies of merging Multi-Agent Reinforcement Learning(MARL)and Explainable AI(XAI)within Fintech,aiming to refine Algorithmic Trading strategies.Through meticulous examination,we uncover the nuanced interactions of AI-driven agents as they collaborate and compete within the financial realm,employing sophisticated deep learning techniques to enhance the clarity and adaptability of trading decisions.These AI-infused Fintech platforms harness collective intelligence to unearth trends,mitigate risks,and provide tailored financial guidance,fostering benefits for individuals and enterprises navigating the digital landscape.Our research holds the potential to revolutionize finance,opening doors to fresh avenues for investment and asset management in the digital age.Additionally,our statistical evaluation yields encouraging results,with metrics such as Accuracy=0.85,Precision=0.88,and F1 Score=0.86,reaffirming the efficacy of our approach within Fintech and emphasizing its reliability and innovative prowess. 展开更多
关键词 Neurodynamic Fintech multi-agent reinforcement learning algorithmic trading digital financial frontier
在线阅读 下载PDF
Combining deep reinforcement learning with heuristics to solve the traveling salesman problem
5
作者 Li Hong Yu Liu +1 位作者 Mengqiao Xu Wenhui Deng 《Chinese Physics B》 2025年第1期96-106,共11页
Recent studies employing deep learning to solve the traveling salesman problem(TSP)have mainly focused on learning construction heuristics.Such methods can improve TSP solutions,but still depend on additional programs... Recent studies employing deep learning to solve the traveling salesman problem(TSP)have mainly focused on learning construction heuristics.Such methods can improve TSP solutions,but still depend on additional programs.However,methods that focus on learning improvement heuristics to iteratively refine solutions remain insufficient.Traditional improvement heuristics are guided by a manually designed search strategy and may only achieve limited improvements.This paper proposes a novel framework for learning improvement heuristics,which automatically discovers better improvement policies for heuristics to iteratively solve the TSP.Our framework first designs a new architecture based on a transformer model to make the policy network parameterized,which introduces an action-dropout layer to prevent action selection from overfitting.It then proposes a deep reinforcement learning approach integrating a simulated annealing mechanism(named RL-SA)to learn the pairwise selected policy,aiming to improve the 2-opt algorithm's performance.The RL-SA leverages the whale optimization algorithm to generate initial solutions for better sampling efficiency and uses the Gaussian perturbation strategy to tackle the sparse reward problem of reinforcement learning.The experiment results show that the proposed approach is significantly superior to the state-of-the-art learning-based methods,and further reduces the gap between learning-based methods and highly optimized solvers in the benchmark datasets.Moreover,our pre-trained model M can be applied to guide the SA algorithm(named M-SA(ours)),which performs better than existing deep models in small-,medium-,and large-scale TSPLIB datasets.Additionally,the M-SA(ours)achieves excellent generalization performance in a real-world dataset on global liner shipping routes,with the optimization percentages in distance reduction ranging from3.52%to 17.99%. 展开更多
关键词 traveling salesman problem deep reinforcement learning simulated annealing algorithm transformer model whale optimization algorithm
原文传递
Priority-Based Scheduling and Orchestration in Edge-Cloud Computing:A Deep Reinforcement Learning-Enhanced Concurrency Control Approach
6
作者 Mohammad A Al Khaldy Ahmad Nabot +4 位作者 Ahmad Al-Qerem Mohammad Alauthman Amina Salhi Suhaila Abuowaida Naceur Chihaoui 《Computer Modeling in Engineering & Sciences》 2025年第10期673-697,共25页
The exponential growth of Internet ofThings(IoT)devices has created unprecedented challenges in data processing and resource management for time-critical applications.Traditional cloud computing paradigms cannot meet ... The exponential growth of Internet ofThings(IoT)devices has created unprecedented challenges in data processing and resource management for time-critical applications.Traditional cloud computing paradigms cannot meet the stringent latency requirements of modern IoT systems,while pure edge computing faces resource constraints that limit processing capabilities.This paper addresses these challenges by proposing a novel Deep Reinforcement Learning(DRL)-enhanced priority-based scheduling framework for hybrid edge-cloud computing environments.Our approach integrates adaptive priority assignment with a two-level concurrency control protocol that ensures both optimal performance and data consistency.The framework introduces three key innovations:(1)a DRL-based dynamic priority assignmentmechanism that learns fromsystem behavior,(2)a hybrid concurrency control protocol combining local edge validation with global cloud coordination,and(3)an integrated mathematical model that formalizes sensor-driven transactions across edge-cloud architectures.Extensive simulations across diverse workload scenarios demonstrate significant quantitative improvements:40%latency reduction,25%throughput increase,85%resource utilization(compared to 60%for heuristicmethods),40%reduction in energy consumption(300 vs.500 J per task),and 50%improvement in scalability factor(1.8 vs.1.2 for EDF)compared to state-of-the-art heuristic and meta-heuristic approaches.These results establish the framework as a robust solution for large-scale IoT and autonomous applications requiring real-time processing with consistency guarantees. 展开更多
关键词 Edge computing cloud computing scheduling algorithms orchestration strategies deep reinforcement learning concurrency control real-time systems IoT
在线阅读 下载PDF
Deep Reinforcement Learning-based Multi-Objective Scheduling for Distributed Heterogeneous Hybrid Flow Shops with Blocking Constraints
7
作者 Xueyan Sun Weiming Shen +3 位作者 Jiaxin Fan Birgit Vogel-Heuser Fandi Bi Chunjiang Zhang 《Engineering》 2025年第3期278-291,共14页
This paper investigates a distributed heterogeneous hybrid blocking flow-shop scheduling problem(DHHBFSP)designed to minimize the total tardiness and total energy consumption simultaneously,and proposes an improved pr... This paper investigates a distributed heterogeneous hybrid blocking flow-shop scheduling problem(DHHBFSP)designed to minimize the total tardiness and total energy consumption simultaneously,and proposes an improved proximal policy optimization(IPPO)method to make real-time decisions for the DHHBFSP.A multi-objective Markov decision process is modeled for the DHHBFSP,where the reward function is represented by a vector with dynamic weights instead of the common objectiverelated scalar value.A factory agent(FA)is formulated for each factory to select unscheduled jobs and is trained by the proposed IPPO to improve the decision quality.Multiple FAs work asynchronously to allocate jobs that arrive randomly at the shop.A two-stage training strategy is introduced in the IPPO,which learns from both single-and dual-policy data for better data utilization.The proposed IPPO is tested on randomly generated instances and compared with variants of the basic proximal policy optimization(PPO),dispatch rules,multi-objective metaheuristics,and multi-agent reinforcement learning methods.Extensive experimental results suggest that the proposed strategies offer significant improvements to the basic PPO,and the proposed IPPO outperforms the state-of-the-art scheduling methods in both convergence and solution quality. 展开更多
关键词 Multi-objective Markov decision process multi-agent deep reinforcement learning Proximal policy optimization Distributed hybrid flow-shop scheduling Blocking constraints
在线阅读 下载PDF
Multi-Robot Task Allocation Using Multimodal Multi-Objective Evolutionary Algorithm Based on Deep Reinforcement Learning 被引量:4
8
作者 苗镇华 黄文焘 +1 位作者 张依恋 范勤勤 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第3期377-387,共11页
The overall performance of multi-robot collaborative systems is significantly affected by the multi-robot task allocation.To improve the effectiveness,robustness,and safety of multi-robot collaborative systems,a multi... The overall performance of multi-robot collaborative systems is significantly affected by the multi-robot task allocation.To improve the effectiveness,robustness,and safety of multi-robot collaborative systems,a multimodal multi-objective evolutionary algorithm based on deep reinforcement learning is proposed in this paper.The improved multimodal multi-objective evolutionary algorithm is used to solve multi-robot task allo-cation problems.Moreover,a deep reinforcement learning strategy is used in the last generation to provide a high-quality path for each assigned robot via an end-to-end manner.Comparisons with three popular multimodal multi-objective evolutionary algorithms on three different scenarios of multi-robot task allocation problems are carried out to verify the performance of the proposed algorithm.The experimental test results show that the proposed algorithm can generate sufficient equivalent schemes to improve the availability and robustness of multi-robot collaborative systems in uncertain environments,and also produce the best scheme to improve the overall task execution efficiency of multi-robot collaborative systems. 展开更多
关键词 multi-robot task allocation multi-robot cooperation path planning multimodal multi-objective evo-lutionary algorithm deep reinforcement learning
原文传递
Reward Function Design Method for Long Episode Pursuit Tasks Under Polar Coordinate in Multi-Agent Reinforcement Learning
9
作者 DONG Yubo CUI Tao +3 位作者 ZHOU Yufan SONG Xun ZHU Yue DONG Peng 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第4期646-655,共10页
Multi-agent reinforcement learning has recently been applied to solve pursuit problems.However,it suffers from a large number of time steps per training episode,thus always struggling to converge effectively,resulting... Multi-agent reinforcement learning has recently been applied to solve pursuit problems.However,it suffers from a large number of time steps per training episode,thus always struggling to converge effectively,resulting in low rewards and an inability for agents to learn strategies.This paper proposes a deep reinforcement learning(DRL)training method that employs an ensemble segmented multi-reward function design approach to address the convergence problem mentioned before.The ensemble reward function combines the advantages of two reward functions,which enhances the training effect of agents in long episode.Then,we eliminate the non-monotonic behavior in reward function introduced by the trigonometric functions in the traditional 2D polar coordinates observation representation.Experimental results demonstrate that this method outperforms the traditional single reward function mechanism in the pursuit scenario by enhancing agents’policy scores of the task.These ideas offer a solution to the convergence challenges faced by DRL models in long episode pursuit problems,leading to an improved model training performance. 展开更多
关键词 multi-agent reinforcement learning deep reinforcement learning(DRL) long episode reward function
原文传递
Tactical reward shaping for large-scale combat by multi-agent reinforcement learning
10
作者 DUO Nanxun WANG Qinzhao +1 位作者 LYU Qiang WANG Wei 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1516-1529,共14页
Future unmanned battles desperately require intelli-gent combat policies,and multi-agent reinforcement learning offers a promising solution.However,due to the complexity of combat operations and large size of the comb... Future unmanned battles desperately require intelli-gent combat policies,and multi-agent reinforcement learning offers a promising solution.However,due to the complexity of combat operations and large size of the combat group,this task suffers from credit assignment problem more than other rein-forcement learning tasks.This study uses reward shaping to relieve the credit assignment problem and improve policy train-ing for the new generation of large-scale unmanned combat operations.We first prove that multiple reward shaping func-tions would not change the Nash Equilibrium in stochastic games,providing theoretical support for their use.According to the characteristics of combat operations,we propose tactical reward shaping(TRS)that comprises maneuver shaping advice and threat assessment-based attack shaping advice.Then,we investigate the effects of different types and combinations of shaping advice on combat policies through experiments.The results show that TRS improves both the efficiency and attack accuracy of combat policies,with the combination of maneuver reward shaping advice and ally-focused attack shaping advice achieving the best performance compared with that of the base-line strategy. 展开更多
关键词 deep reinforcement learning multi-agent reinforce-ment learning multi-agent combat unmanned battle reward shaping
在线阅读 下载PDF
Automatic depth matching method of well log based on deep reinforcement learning 被引量:3
11
作者 XIONG Wenjun XIAO Lizhi +1 位作者 YUAN Jiangru YUE Wenzheng 《Petroleum Exploration and Development》 SCIE 2024年第3期634-646,共13页
In the traditional well log depth matching tasks,manual adjustments are required,which means significantly labor-intensive for multiple wells,leading to low work efficiency.This paper introduces a multi-agent deep rei... In the traditional well log depth matching tasks,manual adjustments are required,which means significantly labor-intensive for multiple wells,leading to low work efficiency.This paper introduces a multi-agent deep reinforcement learning(MARL)method to automate the depth matching of multi-well logs.This method defines multiple top-down dual sliding windows based on the convolutional neural network(CNN)to extract and capture similar feature sequences on well logs,and it establishes an interaction mechanism between agents and the environment to control the depth matching process.Specifically,the agent selects an action to translate or scale the feature sequence based on the double deep Q-network(DDQN).Through the feedback of the reward signal,it evaluates the effectiveness of each action,aiming to obtain the optimal strategy and improve the accuracy of the matching task.Our experiments show that MARL can automatically perform depth matches for well-logs in multiple wells,and reduce manual intervention.In the application to the oil field,a comparative analysis of dynamic time warping(DTW),deep Q-learning network(DQN),and DDQN methods revealed that the DDQN algorithm,with its dual-network evaluation mechanism,significantly improves performance by identifying and aligning more details in the well log feature sequences,thus achieving higher depth matching accuracy. 展开更多
关键词 artificial intelligence machine learning depth matching well log multi-agent deep reinforcement learning convolutional neural network double deep Q-network
在线阅读 下载PDF
Obstacle Avoidance in Multi-Agent Formation Process Based on Deep Reinforcement Learning 被引量:1
12
作者 JI Xiukun HAI Jintao +4 位作者 LUO Wenguang LIN Cuixia XIONG Yu OU Zengkai WEN Jiayan 《Journal of Shanghai Jiaotong university(Science)》 EI 2021年第5期680-685,共6页
To solve the problems of difficult control law design,poor portability,and poor stability of traditional multi-agent formation obstacle avoidance algorithms,a multi-agent formation obstacle avoidance method based on d... To solve the problems of difficult control law design,poor portability,and poor stability of traditional multi-agent formation obstacle avoidance algorithms,a multi-agent formation obstacle avoidance method based on deep reinforcement learning(DRL)is proposed.This method combines the perception ability of convolutional neural networks(CNNs)with the decision-making ability of reinforcement learning in a general form and realizes direct output control from the visual perception input of the environment to the action through an end-to-end learning method.The multi-agent system(MAS)model of the follow-leader formation method was designed with the wheelbarrow as the control object.An improved deep Q netwrok(DQN)algorithm(we improved its discount factor and learning efficiency and designed a reward value function that considers the distance relationship between the agent and the obstacle and the coordination factor between the multi-agents)was designed to achieve obstacle avoidance and collision avoidance in the process of multi-agent formation into the desired formation.The simulation results show that the proposed method achieves the expected goal of multi-agent formation obstacle avoidance and has stronger portability compared with the traditional algorithm. 展开更多
关键词 wheelbarrow multi-agent deep reinforcement learning(DRL) FORMATION obstacle avoidance
原文传递
A new accelerating algorithm for multi-agent reinforcement learning 被引量:1
13
作者 张汝波 仲宇 顾国昌 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第1期48-51,共4页
In multi-agent systems, joint-action must be employed to achieve cooperation because the evaluation of the behavior of an agent often depends on the other agents’ behaviors. However, joint-action reinforcement learni... In multi-agent systems, joint-action must be employed to achieve cooperation because the evaluation of the behavior of an agent often depends on the other agents’ behaviors. However, joint-action reinforcement learning algorithms suffer the slow convergence rate because of the enormous learning space produced by joint-action. In this article, a prediction-based reinforcement learning algorithm is presented for multi-agent cooperation tasks, which demands all agents to learn predicting the probabilities of actions that other agents may execute. A multi-robot cooperation experiment is run to test the efficacy of the new algorithm, and the experiment results show that the new algorithm can achieve the cooperation policy much faster than the primitive reinforcement learning algorithm. 展开更多
关键词 distributed reinforcement learning accelerating algorithm machine learning multi-agent system
在线阅读 下载PDF
Constrained Multi-Objective Optimization With Deep Reinforcement Learning Assisted Operator Selection
14
作者 Fei Ming Wenyin Gong +1 位作者 Ling Wang Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期919-931,共13页
Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been dev... Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been developed with the use of different algorithmic strategies,evolutionary operators,and constraint-handling techniques.The performance of CMOEAs may be heavily dependent on the operators used,however,it is usually difficult to select suitable operators for the problem at hand.Hence,improving operator selection is promising and necessary for CMOEAs.This work proposes an online operator selection framework assisted by Deep Reinforcement Learning.The dynamics of the population,including convergence,diversity,and feasibility,are regarded as the state;the candidate operators are considered as actions;and the improvement of the population state is treated as the reward.By using a Q-network to learn a policy to estimate the Q-values of all actions,the proposed approach can adaptively select an operator that maximizes the improvement of the population according to the current state and thereby improve the algorithmic performance.The framework is embedded into four popular CMOEAs and assessed on 42 benchmark problems.The experimental results reveal that the proposed Deep Reinforcement Learning-assisted operator selection significantly improves the performance of these CMOEAs and the resulting algorithm obtains better versatility compared to nine state-of-the-art CMOEAs. 展开更多
关键词 Constrained multi-objective optimization deep Qlearning deep reinforcement learning(DRL) evolutionary algorithms evolutionary operator selection
在线阅读 下载PDF
Multi-Agent Deep Reinforcement Learning for Efficient Computation Offloading in Mobile Edge Computing
15
作者 Tianzhe Jiao Xiaoyue Feng +2 位作者 Chaopeng Guo Dongqi Wang Jie Song 《Computers, Materials & Continua》 SCIE EI 2023年第9期3585-3603,共19页
Mobile-edge computing(MEC)is a promising technology for the fifth-generation(5G)and sixth-generation(6G)architectures,which provides resourceful computing capabilities for Internet of Things(IoT)devices,such as virtua... Mobile-edge computing(MEC)is a promising technology for the fifth-generation(5G)and sixth-generation(6G)architectures,which provides resourceful computing capabilities for Internet of Things(IoT)devices,such as virtual reality,mobile devices,and smart cities.In general,these IoT applications always bring higher energy consumption than traditional applications,which are usually energy-constrained.To provide persistent energy,many references have studied the offloading problem to save energy consumption.However,the dynamic environment dramatically increases the optimization difficulty of the offloading decision.In this paper,we aim to minimize the energy consumption of the entireMECsystemunder the latency constraint by fully considering the dynamic environment.UnderMarkov games,we propose amulti-agent deep reinforcement learning approach based on the bi-level actorcritic learning structure to jointly optimize the offloading decision and resource allocation,which can solve the combinatorial optimization problem using an asymmetric method and compute the Stackelberg equilibrium as a better convergence point than Nash equilibrium in terms of Pareto superiority.Our method can better adapt to a dynamic environment during the data transmission than the single-agent strategy and can effectively tackle the coordination problem in the multi-agent environment.The simulation results show that the proposed method could decrease the total computational overhead by 17.8%compared to the actor-critic-based method and reduce the total computational overhead by 31.3%,36.5%,and 44.7%compared with randomoffloading,all local execution,and all offloading execution,respectively. 展开更多
关键词 Computation offloading multi-agent deep reinforcement learning mobile-edge computing latency energy efficiency
在线阅读 下载PDF
UAV Frequency-based Crowdsensing Using Grouping Multi-agent Deep Reinforcement Learning
16
作者 Cui ZHANG En WANG +2 位作者 Funing YANG Yong jian YANG Nan JIANG 《计算机科学》 CSCD 北大核心 2023年第2期57-68,共12页
Mobile CrowdSensing(MCS)is a promising sensing paradigm that recruits users to cooperatively perform sensing tasks.Recently,unmanned aerial vehicles(UAVs)as the powerful sensing devices are used to replace user partic... Mobile CrowdSensing(MCS)is a promising sensing paradigm that recruits users to cooperatively perform sensing tasks.Recently,unmanned aerial vehicles(UAVs)as the powerful sensing devices are used to replace user participation and carry out some special tasks,such as epidemic monitoring and earthquakes rescue.In this paper,we focus on scheduling UAVs to sense the task Point-of-Interests(PoIs)with different frequency coverage requirements.To accomplish the sensing task,the scheduling strategy needs to consider the coverage requirement,geographic fairness and energy charging simultaneously.We consider the complex interaction among UAVs and propose a grouping multi-agent deep reinforcement learning approach(G-MADDPG)to schedule UAVs distributively.G-MADDPG groups all UAVs into some teams by a distance-based clustering algorithm(DCA),then it regards each team as an agent.In this way,G-MADDPG solves the problem that the training time of traditional MADDPG is too long to converge when the number of UAVs is large,and the trade-off between training time and result accuracy could be controlled flexibly by adjusting the number of teams.Extensive simulation results show that our scheduling strategy has better performance compared with three baselines and is flexible in balancing training time and result accuracy. 展开更多
关键词 UAV Crowdsensing Frequency coverage Grouping multi-agent deep reinforcement learning
在线阅读 下载PDF
Cooperative multi-target hunting by unmanned surface vehicles based on multi-agent reinforcement learning 被引量:2
17
作者 Jiawei Xia Yasong Luo +3 位作者 Zhikun Liu Yalun Zhang Haoran Shi Zhong Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第11期80-94,共15页
To solve the problem of multi-target hunting by an unmanned surface vehicle(USV)fleet,a hunting algorithm based on multi-agent reinforcement learning is proposed.Firstly,the hunting environment and kinematic model wit... To solve the problem of multi-target hunting by an unmanned surface vehicle(USV)fleet,a hunting algorithm based on multi-agent reinforcement learning is proposed.Firstly,the hunting environment and kinematic model without boundary constraints are built,and the criteria for successful target capture are given.Then,the cooperative hunting problem of a USV fleet is modeled as a decentralized partially observable Markov decision process(Dec-POMDP),and a distributed partially observable multitarget hunting Proximal Policy Optimization(DPOMH-PPO)algorithm applicable to USVs is proposed.In addition,an observation model,a reward function and the action space applicable to multi-target hunting tasks are designed.To deal with the dynamic change of observational feature dimension input by partially observable systems,a feature embedding block is proposed.By combining the two feature compression methods of column-wise max pooling(CMP)and column-wise average-pooling(CAP),observational feature encoding is established.Finally,the centralized training and decentralized execution framework is adopted to complete the training of hunting strategy.Each USV in the fleet shares the same policy and perform actions independently.Simulation experiments have verified the effectiveness of the DPOMH-PPO algorithm in the test scenarios with different numbers of USVs.Moreover,the advantages of the proposed model are comprehensively analyzed from the aspects of algorithm performance,migration effect in task scenarios and self-organization capability after being damaged,the potential deployment and application of DPOMH-PPO in the real environment is verified. 展开更多
关键词 Unmanned surface vehicles multi-agent deep reinforcement learning Cooperative hunting Feature embedding Proximal policy optimization
在线阅读 下载PDF
Locally generalised multi-agent reinforcement learning for demand and capacity balancing with customised neural networks 被引量:2
18
作者 Yutong CHEN Minghua HU +1 位作者 Yan XU Lei YANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第4期338-353,共16页
Reinforcement Learning(RL)techniques are being studied to solve the Demand and Capacity Balancing(DCB)problems to fully exploit their computational performance.A locally gen-eralised Multi-Agent Reinforcement Learning... Reinforcement Learning(RL)techniques are being studied to solve the Demand and Capacity Balancing(DCB)problems to fully exploit their computational performance.A locally gen-eralised Multi-Agent Reinforcement Learning(MARL)for real-world DCB problems is proposed.The proposed method can deploy trained agents directly to unseen scenarios in a specific Air Traffic Flow Management(ATFM)region to quickly obtain a satisfactory solution.In this method,agents of all flights in a scenario form a multi-agent decision-making system based on partial observation.The trained agent with the customised neural network can be deployed directly on the corresponding flight,allowing it to solve the DCB problem jointly.A cooperation coefficient is introduced in the reward function,which is used to adjust the agent’s cooperation preference in a multi-agent system,thereby controlling the distribution of flight delay time allocation.A multi-iteration mechanism is designed for the DCB decision-making framework to deal with problems arising from non-stationarity in MARL and to ensure that all hotspots are eliminated.Experiments based on large-scale high-complexity real-world scenarios are conducted to verify the effectiveness and efficiency of the method.From a statis-tical point of view,it is proven that the proposed method is generalised within the scope of the flights and sectors of interest,and its optimisation performance outperforms the standard computer-assisted slot allocation and state-of-the-art RL-based DCB methods.The sensitivity analysis preliminarily reveals the effect of the cooperation coefficient on delay time allocation. 展开更多
关键词 Air traffic flow management Demand and capacity bal-ancing deep Q-learning network Flight delays GENERALISATION Ground delay program multi-agent reinforcement learning
原文传递
A dynamic fusion path planning algorithm for mobile robots incorporating improved IB-RRT∗and deep reinforcement learning 被引量:1
19
作者 刘安东 ZHANG Baixin +2 位作者 CUI Qi ZHANG Dan NI Hongjie 《High Technology Letters》 EI CAS 2023年第4期365-376,共12页
Dynamic path planning is crucial for mobile robots to navigate successfully in unstructured envi-ronments.To achieve globally optimal path and real-time dynamic obstacle avoidance during the movement,a dynamic path pl... Dynamic path planning is crucial for mobile robots to navigate successfully in unstructured envi-ronments.To achieve globally optimal path and real-time dynamic obstacle avoidance during the movement,a dynamic path planning algorithm incorporating improved IB-RRT∗and deep reinforce-ment learning(DRL)is proposed.Firstly,an improved IB-RRT∗algorithm is proposed for global path planning by combining double elliptic subset sampling and probabilistic central circle target bi-as.Then,to tackle the slow response to dynamic obstacles and inadequate obstacle avoidance of tra-ditional local path planning algorithms,deep reinforcement learning is utilized to predict the move-ment trend of dynamic obstacles,leading to a dynamic fusion path planning.Finally,the simulation and experiment results demonstrate that the proposed improved IB-RRT∗algorithm has higher con-vergence speed and search efficiency compared with traditional Bi-RRT∗,Informed-RRT∗,and IB-RRT∗algorithms.Furthermore,the proposed fusion algorithm can effectively perform real-time obsta-cle avoidance and navigation tasks for mobile robots in unstructured environments. 展开更多
关键词 mobile robot improved IB-RRT∗algorithm deep reinforcement learning(DRL) real-time dynamic obstacle avoidance
在线阅读 下载PDF
Multi-objective optimization of hybrid electric vehicles energy management using multi-agent deep reinforcement learning framework
20
作者 Xiaoyu Li Zaihang Zhou +2 位作者 Changyin Wei Xiao Gao Yibo Zhang 《Energy and AI》 2025年第2期287-297,共11页
Hybrid electric vehicles(HEVs)have the advantages of lower emissions and less noise pollution than traditional fuel vehicles.Developing reasonable energy management strategies(EMSs)can effectively reduce fuel consumpt... Hybrid electric vehicles(HEVs)have the advantages of lower emissions and less noise pollution than traditional fuel vehicles.Developing reasonable energy management strategies(EMSs)can effectively reduce fuel consumption and improve the fuel economy of HEVs.However,current EMSs still have problems,such as complex multi-objective optimization and poor algorithm robustness.Herein,a multi-agent reinforcement learning(MADRL)framework is proposed based on Multi-Agent Deep Deterministic Policy Gradient(MADDPG)algorithm to solve such problems.Specifically,a vehicle model and dynamics model are established,and based on this,a multi-objective EMS is developed by considering fuel economy,maintaining the battery State of Charge(SOC),and reducing battery degradation.Secondly,the proposed strategy regards the engine and battery as two agents,and the agents cooperate with each other to realize optimal power distribution and achieve the optimal control strategy.Finally,the WLTC and HWFET driving cycles are employed to verify the performances of the proposed method,the fuel consumption decreases by 26.91%and 8.41%on average compared to the other strategies.The simulation results demonstrate that the proposed strategy has remarkable superiority in multi-objective optimization. 展开更多
关键词 Energy management strategy Hybrid electric vehicle reinforcement learning multi-agent deep deterministicstrategy gradient
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部