The unmanned aerial vehicle(UAV)-assisted mobile edge computing(MEC)has been deemed a promising solution for energy-constrained devices to run smart applications with computationintensive and latency-sensitive require...The unmanned aerial vehicle(UAV)-assisted mobile edge computing(MEC)has been deemed a promising solution for energy-constrained devices to run smart applications with computationintensive and latency-sensitive requirements,especially in some infrastructure-limited areas or some emergency scenarios.However,the multi-UAVassisted MEC network remains largely unexplored.In this paper,the dynamic trajectory optimization and computation offloading are studied in a multi-UAVassisted MEC system where multiple UAVs fly over a target area with different trajectories to serve ground users.By considering the dynamic channel condition and random task arrival and jointly optimizing UAVs'trajectories,user association,and subchannel assignment,the average long-term sum of the user energy consumption minimization problem is formulated.To address the problem involving both discrete and continuous variables,a hybrid decision deep reinforcement learning(DRL)-based intelligent energyefficient resource allocation and trajectory optimization algorithm is proposed,named HDRT algorithm,where deep Q network(DQN)and deep deterministic policy gradient(DDPG)are invoked to process discrete and continuous variables,respectively.Simulation results show that the proposed HDRT algorithm converges fast and outperforms other benchmarks in the aspect of user energy consumption and latency.展开更多
This paper presents an algorithm named the dependency-aware offloading framework(DeAOff),which is designed to optimize the deployment of Gen-AI decoder models in mobile edge computing(MEC)environments.These models,suc...This paper presents an algorithm named the dependency-aware offloading framework(DeAOff),which is designed to optimize the deployment of Gen-AI decoder models in mobile edge computing(MEC)environments.These models,such as decoders,pose significant challenges due to their interlayer dependencies and high computational demands,especially under edge resource constraints.To address these challenges,we propose a two-phase optimization algorithm that first handles dependencyaware task allocation and subsequently optimizes energy consumption.By modeling the inference process using directed acyclic graphs(DAGs)and applying constraint relaxation techniques,our approach effectively reduces execution latency and energy usage.Experimental results demonstrate that our method achieves a reduction of up to 20%in task completion time and approximately 30%savings in energy consumption compared to traditional methods.These outcomes underscore our solution’s robustness in managing complex sequential dependencies and dynamic MEC conditions,enhancing quality of service.Thus,our work presents a practical and efficient resource optimization strategy for deploying models in resourceconstrained MEC scenarios.展开更多
Existing wireless networks are flooded with video data transmissions,and the demand for high-speed and low-latency video services continues to surge.This has brought with it challenges to networks in the form of conge...Existing wireless networks are flooded with video data transmissions,and the demand for high-speed and low-latency video services continues to surge.This has brought with it challenges to networks in the form of congestion as well as the need for more resources and more dedicated caching schemes.Recently,Multi-access Edge Computing(MEC)-enabled heterogeneous networks,which leverage edge caches for proximity delivery,have emerged as a promising solution to all of these problems.Designing an effective edge caching scheme is critical to its success,however,in the face of limited resources.We propose a novel Knowledge Graph(KG)-based Dueling Deep Q-Network(KG-DDQN)for cooperative caching in MEC-enabled heterogeneous networks.The KGDDQN scheme leverages a KG to uncover video relations,providing valuable insights into user preferences for the caching scheme.Specifically,the KG guides the selection of related videos as caching candidates(i.e.,actions in the DDQN),thus providing a rich reference for implementing a personalized caching scheme while also improving the decision efficiency of the DDQN.Extensive simulation results validate the convergence effectiveness of the KG-DDQN,and it also outperforms baselines regarding cache hit rate and service delay.展开更多
Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the applicat...Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the application and integration of UAV and Mobile Edge Computing(MEC)to the Internet of Things(loT).However,problems such as multi-user and huge data flow in large areas,which contradict the reality that a single UAV is constrained by limited computing power,still exist.Due to allowing UAV collaboration to accomplish complex tasks,cooperative task offloading between multiple UAVs must meet the interdependence of tasks and realize parallel processing,which reduces the computing power consumption and endurance pressure of terminals.Considering the computing requirements of the user terminal,delay constraint of a computing task,energy constraint,and safe distance of UAV,we constructed a UAV-Assisted cooperative offloading energy efficiency system for mobile edge computing to minimize user terminal energy consumption.However,the resulting optimization problem is originally nonconvex and thus,difficult to solve optimally.To tackle this problem,we developed an energy efficiency optimization algorithm using Block Coordinate Descent(BCD)that decomposes the problem into three convex subproblems.Furthermore,we jointly optimized the number of local computing tasks,number of computing offloaded tasks,trajectories of UAV,and offloading matching relationship between multi-UAVs and multiuser terminals.Simulation results show that the proposed approach is suitable for different channel conditions and significantly saves the user terminal energy consumption compared with other benchmark schemes.展开更多
In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of ...In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of UAV,the transmitting beamforming of users,and the phase shift matrix of IRS.The original problem is strong non-convex and difficult to solve.We first propose two basic modes of the proactive eavesdropper,and obtain the closed-form solution for the boundary conditions of the two modes.Then we transform the original problem into an equivalent one and propose an alternating optimization(AO)based method to obtain a local optimal solution.The convergence of the algorithm is illustrated by numerical results.Further,we propose a zero forcing(ZF)based method as sub-optimal solution,and the simulation section shows that the proposed two schemes could obtain better performance compared with traditional schemes.展开更多
This paper investigates the age of information(AoI)-based multi-user mobile edge computing(MEC)network with partial offloading mode.The weighted sum AoI(WSA)is first analyzed and derived,and then a WSA minimization pr...This paper investigates the age of information(AoI)-based multi-user mobile edge computing(MEC)network with partial offloading mode.The weighted sum AoI(WSA)is first analyzed and derived,and then a WSA minimization problem is formulated by jointly optimizing the user scheduling and data assignment.Due to the non-analytic expression of the WSA w.r.t.the optimization variables and the unknowability of future network information,the problem cannot be solved with known solution methods.Therefore,an online Joint Partial Offloading and User Scheduling Optimization(JPOUSO)algorithm is proposed by transforming the original problem into a single-slot data assignment subproblem and a single-slot user scheduling sub-problem and solving the two sub-problems separately.We analyze the computational complexity of the presented JPO-USO algorithm,which is of O(N),with N being the number of users.Simulation results show that the proposed JPO-USO algorithm is able to achieve better AoI performance compared with various baseline methods.It is shown that both the user’s data assignment and the user’s AoI should be jointly taken into account to decrease the system WSA when scheduling users.展开更多
In this paper,we investigate the energy efficiency maximization for mobile edge computing(MEC)in intelligent reflecting surface(IRS)assisted unmanned aerial vehicle(UAV)communications.In particular,UAVcan collect the ...In this paper,we investigate the energy efficiency maximization for mobile edge computing(MEC)in intelligent reflecting surface(IRS)assisted unmanned aerial vehicle(UAV)communications.In particular,UAVcan collect the computing tasks of the terrestrial users and transmit the results back to them after computing.We jointly optimize the users’transmitted beamforming and uploading ratios,the phase shift matrix of IRS,and the UAV trajectory to improve the energy efficiency.The formulated optimization problem is highly non-convex and difficult to be solved directly.Therefore,we decompose the original problem into three sub-problems.We first propose the successive convex approximation(SCA)based method to design the beamforming of the users and the phase shift matrix of IRS,and apply the Lagrange dual method to obtain a closed-form expression of the uploading ratios.For the trajectory optimization,we propose a block coordinate descent(BCD)based method to obtain a local optimal solution.Finally,we propose the alternating optimization(AO)based overall algorithmand analyzed its complexity to be equivalent or lower than existing algorithms.Simulation results show the superiority of the proposedmethod compared with existing schemes in energy efficiency.展开更多
Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady perform...Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady performance of eMBB traffic while meeting the requirements of URLLC traffic with puncturing is a major challenge in some realistic scenarios. In this paper, we pay attention to the timely and energy-efficient processing for eMBB traffic in the industrial Internet of Things(IIoT), where mobile edge computing(MEC) is employed for data processing. Specifically, the performance of eMBB traffic and URLLC traffic in a MEC-based IIoT system is ensured by setting the threshold of tolerable delay and outage probability, respectively. Furthermore,considering the limited energy supply, an energy minimization problem of eMBB device is formulated under the above constraints, by jointly optimizing the resource blocks(RBs) punctured by URLLC traffic, data offloading and transmit power of eMBB device. With Markov's inequality, the problem is reformulated by transforming the probabilistic outage constraint into a deterministic constraint. Meanwhile, an iterative energy minimization algorithm(IEMA) is proposed.Simulation results demonstrate that our algorithm has a significant reduction in the energy consumption for eMBB device and achieves a better overall effect compared to several benchmarks.展开更多
Multi-access Edge Computing(MEC)is one of the key technologies of the future 5G network.By deploying edge computing centers at the edge of wireless access network,the computation tasks can be offloaded to edge servers...Multi-access Edge Computing(MEC)is one of the key technologies of the future 5G network.By deploying edge computing centers at the edge of wireless access network,the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios.Meanwhile,with the development of IOV(Internet of Vehicles)technology,various delay-sensitive and compute-intensive in-vehicle applications continue to appear.Compared with traditional Internet business,these computation tasks have higher processing priority and lower delay requirements.In this paper,we design a 5G-based vehicle-aware Multi-access Edge Computing network(VAMECN)and propose a joint optimization problem of minimizing total system cost.In view of the problem,a deep reinforcement learningbased joint computation offloading and task migration optimization(JCOTM)algorithm is proposed,considering the influences of multiple factors such as concurrent multiple computation tasks,system computing resources distribution,and network communication bandwidth.And,the mixed integer nonlinear programming problem is described as a Markov Decision Process.Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption,optimize computing offloading and resource allocation schemes,and improve system resource utilization,compared with other computing offloading policies.展开更多
With the increasing maritime activities and the rapidly developing maritime economy, the fifth-generation(5G) mobile communication system is expected to be deployed at the ocean. New technologies need to be explored t...With the increasing maritime activities and the rapidly developing maritime economy, the fifth-generation(5G) mobile communication system is expected to be deployed at the ocean. New technologies need to be explored to meet the requirements of ultra-reliable and low latency communications(URLLC) in the maritime communication network(MCN). Mobile edge computing(MEC) can achieve high energy efficiency in MCN at the cost of suffering from high control plane latency and low reliability. In terms of this issue, the mobile edge communications, computing, and caching(MEC3) technology is proposed to sink mobile computing, network control, and storage to the edge of the network. New methods that enable resource-efficient configurations and reduce redundant data transmissions can enable the reliable implementation of computing-intension and latency-sensitive applications. The key technologies of MEC3 to enable URLLC are analyzed and optimized in MCN. The best response-based offloading algorithm(BROA) is adopted to optimize task offloading. The simulation results show that the task latency can be decreased by 26.5’ ms, and the energy consumption in terminal users can be reduced to 66.6%.展开更多
In this paper,the security problem for the multi-access edge computing(MEC)network is researched,and an intelligent immunity-based security defense system is proposed to identify the unauthorized mobile users and to p...In this paper,the security problem for the multi-access edge computing(MEC)network is researched,and an intelligent immunity-based security defense system is proposed to identify the unauthorized mobile users and to protect the security of whole system.In the proposed security defense system,the security is protected by the intelligent immunity through three functions,identification function,learning function,and regulation function,respectively.Meanwhile,a three process-based intelligent algorithm is proposed for the intelligent immunity system.Numerical simulations are given to prove the effeteness of the proposed approach.展开更多
Blockchain and multi-access edge com-puting(MEC)are two emerging promising tech-nologies that have received extensive attention from academia and industry.As a brand-new information storage,dissemination and managemen...Blockchain and multi-access edge com-puting(MEC)are two emerging promising tech-nologies that have received extensive attention from academia and industry.As a brand-new information storage,dissemination and management mechanism,blockchain technology achieves the reliable transmis-sion of data and value.While as a new computing paradigm,multi-access edge computing enables the high-frequency interaction and real-time transmission of data.The integration of communication and com-puting in blockchain-enabled multi-access edge com-puting networks has been studied without a systemat-ical view.In the survey,we focus on the integration of communication and computing,explores the mu-tual empowerment and mutual promotion effects be-tween the blockchain and MEC,and introduces the resource integration architecture of blockchain and multi-access edge computing.Then,the paper sum-marizes the applications of the resource integration ar-chitecture,resource management,data sharing,incen-tive mechanism,and consensus mechanism,and ana-lyzes corresponding applications in real-world scenar-ios.Finally,future challenges and potentially promis-ing research directions are discussed and present in de-tail.展开更多
The main aim of future mobile networks is to provide secure,reliable,intelligent,and seamless connectivity.It also enables mobile network operators to ensure their customer’s a better quality of service(QoS).Nowadays...The main aim of future mobile networks is to provide secure,reliable,intelligent,and seamless connectivity.It also enables mobile network operators to ensure their customer’s a better quality of service(QoS).Nowadays,Unmanned Aerial Vehicles(UAVs)are a significant part of the mobile network due to their continuously growing use in various applications.For better coverage,cost-effective,and seamless service connectivity and provisioning,UAVs have emerged as the best choice for telco operators.UAVs can be used as flying base stations,edge servers,and relay nodes in mobile networks.On the other side,Multi-access EdgeComputing(MEC)technology also emerged in the 5G network to provide a better quality of experience(QoE)to users with different QoS requirements.However,UAVs in a mobile network for coverage enhancement and better QoS face several challenges such as trajectory designing,path planning,optimization,QoS assurance,mobilitymanagement,etc.The efficient and proactive path planning and optimization in a highly dynamic environment containing buildings and obstacles are challenging.So,an automated Artificial Intelligence(AI)enabled QoSaware solution is needed for trajectory planning and optimization.Therefore,this work introduces a well-designed AI and MEC-enabled architecture for a UAVs-assisted future network.It has an efficient Deep Reinforcement Learning(DRL)algorithm for real-time and proactive trajectory planning and optimization.It also fulfills QoS-aware service provisioning.A greedypolicy approach is used to maximize the long-term reward for serving more users withQoS.Simulation results reveal the superiority of the proposed DRL mechanism for energy-efficient and QoS-aware trajectory planning over the existing models.展开更多
5G is a new generation of mobile networking that aims to achieve unparalleled speed and performance. To accomplish this, three technologies, Device-to-Device communication (D2D), multi-access edge computing (MEC) and ...5G is a new generation of mobile networking that aims to achieve unparalleled speed and performance. To accomplish this, three technologies, Device-to-Device communication (D2D), multi-access edge computing (MEC) and network function virtualization (NFV) with ClickOS, have been a significant part of 5G, and this paper mainly discusses them. D2D enables direct communication between devices without the relay of base station. In 5G, a two-tier cellular network composed of traditional cellular network system and D2D is an efficient method for realizing high-speed communication. MEC unloads work from end devices and clouds platforms to widespread nodes, and connects the nodes together with outside devices and third-party providers, in order to diminish the overloading effect on any device caused by enormous applications and improve users’ quality of experience (QoE). There is also a NFV method in order to fulfill the 5G requirements. In this part, an optimized virtual machine for middle-boxes named ClickOS is introduced, and it is evaluated in several aspects. Some middle boxes are being implemented in the ClickOS and proved to have outstanding performances.展开更多
In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to im...In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to improve IIoT service efficiency.There are two types of costs for this kind of IoT network:a communication cost and a computing cost.For service efficiency,the communication cost of data transmission should be minimized,and the computing cost in the edge cloud should be also minimized.Therefore,in this paper,the communication cost for data transmission is defined as the delay factor,and the computing cost in the edge cloud is defined as the waiting time of the computing intensity.The proposed method selects an edge cloud that minimizes the total cost of the communication and computing costs.That is,a device chooses a routing path to the selected edge cloud based on the costs.The proposed method controls the data flows in a mesh-structured network and appropriately distributes the data processing load.The performance of the proposed method is validated through extensive computer simulation.When the transition probability from good to bad is 0.3 and the transition probability from bad to good is 0.7 in wireless and edge cloud states,the proposed method reduced both the average delay and the service pause counts to about 25%of the existing method.展开更多
Non-orthogonal multiple access (NOMA) technology has recently been widely integrated into multi-access edge computing (MEC) to support task offloading in industrial wireless networks (IWNs) with limited radio resource...Non-orthogonal multiple access (NOMA) technology has recently been widely integrated into multi-access edge computing (MEC) to support task offloading in industrial wireless networks (IWNs) with limited radio resources. This paper minimizes the system overhead regarding task processing delay and energy consumption for the IWN with hybrid NOMA and orthogonal multiple access (OMA) schemes. Specifically, we formulate the system overhead minimization (SOM) problem by considering the limited computation and communication resources and NOMA efficiency. To solve the complex mixed-integer nonconvex problem, we combine the multi-agent twin delayed deep deterministic policy gradient (MATD3) and convex optimization, namely MATD3-CO, for iterative optimization. Specifically, we first decouple SOM into two sub-problems, i.e., joint sub-channel allocation and task offloading sub-problem, and computation resource allocation sub-problem. Then, we propose MATD3 to optimize the sub-channel allocation and task offloading ratio, and employ the convex optimization to allocate the computation resource with a closed-form expression derived by the Karush-Kuhn-Tucker (KKT) conditions. The solution is obtained by iteratively solving these two sub-problems. The experimental results indicate that the MATD3-CO scheme, when compared to the benchmark schemes, significantly decreases system overhead with respect to both delay and energy consumption.展开更多
The emergence of multi-access edge computing(MEC)aims at extending cloud computing capabilities to the edge of the radio access network.As the large-scale internet of things(IoT)services are rapidly growing,a single e...The emergence of multi-access edge computing(MEC)aims at extending cloud computing capabilities to the edge of the radio access network.As the large-scale internet of things(IoT)services are rapidly growing,a single edge infrastructure provider(EIP)may not be sufficient to handle the data traffic generated by these services.Most of the existing work addressed the computing resource shortage problem by optimizing tasks schedule,whereas others overcome such issue by placing computing resources on demand.However,when considering a multiple EIPs scenario,an urgent challenge is how to generate a coalition structure to maximize each EIP’s gain with a suitable price for computing resource block corresponding to a container.To this end,we design a scheme of EIPs collaboration with a market price for containers under a scenario that considers a collection of service providers(SPs)with different budgets and several EIPs distributed in geographical locations.First,we bring in the net profit market price model to generate a more reasonable equilibrium price and select the optimal EIPs for each SP by a convex program.Then we use a mathematical model to maximize EIP’s profits and form stable coalitions between EIPs by a distributed coalition formation algorithm.Numerical results demonstrate that our proposed collaborative scheme among EIPs enhances EIPs’gain and increases users’surplus.展开更多
This paper considers a UAV communication system with mobile edge computing(MEC).We minimize the energy consumption of the whole system via jointly optimizing the UAV's trajectory and task assignment as well as CPU...This paper considers a UAV communication system with mobile edge computing(MEC).We minimize the energy consumption of the whole system via jointly optimizing the UAV's trajectory and task assignment as well as CPU's computational speed under the set of resource constrains.To this end,we first derive the energy consumption model of data processing,and then obtain the energy consumption model of fixed-wing UAV's flight.The optimization problem is mathematically formulated.To address the problem,we first obtain the approximate optimization problem by applying the technique of discrete linear state-space approximation,and then transform the non-convex constraints into convex by using linearization.Furthermore,a concave-convex procedure(CCCP) based algorithm is proposed in order to solve the optimization problem approximately.Numerical results show the efficacy of the proposed algorithm.展开更多
Through enabling the IT and cloud computation capacities at Radio Access Network(RAN),Mobile Edge Computing(MEC) makes it possible to deploy and provide services locally.Therefore,MEC becomes the potential technology ...Through enabling the IT and cloud computation capacities at Radio Access Network(RAN),Mobile Edge Computing(MEC) makes it possible to deploy and provide services locally.Therefore,MEC becomes the potential technology to satisfy the requirements of 5G network to a certain extent,due to its functions of services localization,local breakout,caching,computation offloading,network context information exposure,etc.Especially,MEC can decrease the end-to-end latency dramatically through service localization and caching,which is key requirement of 5G low latency scenario.However,the performance of MEC still needs to be evaluated and verified for future deployment.Thus,the concept of MEC is introduced into5 G architecture and analyzed for different 5G scenarios in this paper.Secondly,the evaluation of MEC performance is conducted and analyzed in detail,especially for network end-to-end latency.In addition,some challenges of the MEC are also discussed for future deployment.展开更多
The demand for digital media services is increasing as the number of wireless subscriptions is growing exponentially.In order to meet this growing need,mobile wireless networks have been advanced at a tremendous pace ...The demand for digital media services is increasing as the number of wireless subscriptions is growing exponentially.In order to meet this growing need,mobile wireless networks have been advanced at a tremendous pace over recent days.However,the centralized architecture of existing mobile networks,with limited capacity and range of bandwidth of the radio access network and low bandwidth back-haul network,can not handle the exponentially increasing mobile traffic.Recently,we have seen the growth of new mechanisms of data caching and delivery methods through intermediate caching servers.In this paper,we present a survey on recent advances in mobile edge computing and content caching,including caching insertion and expulsion policies,the behavior of the caching system,and caching optimization based on wireless networks.Some of the important open challenges in mobile edge computing with content caching are identified and discussed.We have also compared edge,fog and cloud computing in terms of delay.Readers of this paper will get a thorough understanding of recent advances in mobile edge computing and content caching in mobile wireless networks.展开更多
基金supported by National Natural Science Foundation of China(No.62471254)National Natural Science Foundation of China(No.92367302)。
文摘The unmanned aerial vehicle(UAV)-assisted mobile edge computing(MEC)has been deemed a promising solution for energy-constrained devices to run smart applications with computationintensive and latency-sensitive requirements,especially in some infrastructure-limited areas or some emergency scenarios.However,the multi-UAVassisted MEC network remains largely unexplored.In this paper,the dynamic trajectory optimization and computation offloading are studied in a multi-UAVassisted MEC system where multiple UAVs fly over a target area with different trajectories to serve ground users.By considering the dynamic channel condition and random task arrival and jointly optimizing UAVs'trajectories,user association,and subchannel assignment,the average long-term sum of the user energy consumption minimization problem is formulated.To address the problem involving both discrete and continuous variables,a hybrid decision deep reinforcement learning(DRL)-based intelligent energyefficient resource allocation and trajectory optimization algorithm is proposed,named HDRT algorithm,where deep Q network(DQN)and deep deterministic policy gradient(DDPG)are invoked to process discrete and continuous variables,respectively.Simulation results show that the proposed HDRT algorithm converges fast and outperforms other benchmarks in the aspect of user energy consumption and latency.
文摘This paper presents an algorithm named the dependency-aware offloading framework(DeAOff),which is designed to optimize the deployment of Gen-AI decoder models in mobile edge computing(MEC)environments.These models,such as decoders,pose significant challenges due to their interlayer dependencies and high computational demands,especially under edge resource constraints.To address these challenges,we propose a two-phase optimization algorithm that first handles dependencyaware task allocation and subsequently optimizes energy consumption.By modeling the inference process using directed acyclic graphs(DAGs)and applying constraint relaxation techniques,our approach effectively reduces execution latency and energy usage.Experimental results demonstrate that our method achieves a reduction of up to 20%in task completion time and approximately 30%savings in energy consumption compared to traditional methods.These outcomes underscore our solution’s robustness in managing complex sequential dependencies and dynamic MEC conditions,enhancing quality of service.Thus,our work presents a practical and efficient resource optimization strategy for deploying models in resourceconstrained MEC scenarios.
基金supported by the National Natural Science Foundation of China(Nos.62201419,62372357)the Natural Science Foundation of Chongqing(CSTB2023NSCQ-LMX0032)the ISN State Key Laboratory.
文摘Existing wireless networks are flooded with video data transmissions,and the demand for high-speed and low-latency video services continues to surge.This has brought with it challenges to networks in the form of congestion as well as the need for more resources and more dedicated caching schemes.Recently,Multi-access Edge Computing(MEC)-enabled heterogeneous networks,which leverage edge caches for proximity delivery,have emerged as a promising solution to all of these problems.Designing an effective edge caching scheme is critical to its success,however,in the face of limited resources.We propose a novel Knowledge Graph(KG)-based Dueling Deep Q-Network(KG-DDQN)for cooperative caching in MEC-enabled heterogeneous networks.The KGDDQN scheme leverages a KG to uncover video relations,providing valuable insights into user preferences for the caching scheme.Specifically,the KG guides the selection of related videos as caching candidates(i.e.,actions in the DDQN),thus providing a rich reference for implementing a personalized caching scheme while also improving the decision efficiency of the DDQN.Extensive simulation results validate the convergence effectiveness of the KG-DDQN,and it also outperforms baselines regarding cache hit rate and service delay.
基金supported by the Jiangsu Provincial Key Research and Development Program(No.BE2020084-4)the National Natural Science Foundation of China(No.92067201)+2 种基金the National Natural Science Foundation of China(61871446)the Open Research Fund of Jiangsu Key Laboratory of Wireless Communications(710020017002)the Natural Science Foundation of Nanjing University of Posts and telecommunications(NY220047).
文摘Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the application and integration of UAV and Mobile Edge Computing(MEC)to the Internet of Things(loT).However,problems such as multi-user and huge data flow in large areas,which contradict the reality that a single UAV is constrained by limited computing power,still exist.Due to allowing UAV collaboration to accomplish complex tasks,cooperative task offloading between multiple UAVs must meet the interdependence of tasks and realize parallel processing,which reduces the computing power consumption and endurance pressure of terminals.Considering the computing requirements of the user terminal,delay constraint of a computing task,energy constraint,and safe distance of UAV,we constructed a UAV-Assisted cooperative offloading energy efficiency system for mobile edge computing to minimize user terminal energy consumption.However,the resulting optimization problem is originally nonconvex and thus,difficult to solve optimally.To tackle this problem,we developed an energy efficiency optimization algorithm using Block Coordinate Descent(BCD)that decomposes the problem into three convex subproblems.Furthermore,we jointly optimized the number of local computing tasks,number of computing offloaded tasks,trajectories of UAV,and offloading matching relationship between multi-UAVs and multiuser terminals.Simulation results show that the proposed approach is suitable for different channel conditions and significantly saves the user terminal energy consumption compared with other benchmark schemes.
基金This work was supported by the Key Scientific and Technological Project of Henan Province(Grant Number 222102210212)Doctoral Research Start Project of Henan Institute of Technology(Grant Number KQ2005)Key Research Projects of Colleges and Universities in Henan Province(Grant Number 23B510006).
文摘In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of UAV,the transmitting beamforming of users,and the phase shift matrix of IRS.The original problem is strong non-convex and difficult to solve.We first propose two basic modes of the proactive eavesdropper,and obtain the closed-form solution for the boundary conditions of the two modes.Then we transform the original problem into an equivalent one and propose an alternating optimization(AO)based method to obtain a local optimal solution.The convergence of the algorithm is illustrated by numerical results.Further,we propose a zero forcing(ZF)based method as sub-optimal solution,and the simulation section shows that the proposed two schemes could obtain better performance compared with traditional schemes.
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant 2022JBGP003in part by the National Natural Science Foundation of China(NSFC)under Grant 62071033in part by ZTE IndustryUniversity-Institute Cooperation Funds under Grant No.IA20230217003。
文摘This paper investigates the age of information(AoI)-based multi-user mobile edge computing(MEC)network with partial offloading mode.The weighted sum AoI(WSA)is first analyzed and derived,and then a WSA minimization problem is formulated by jointly optimizing the user scheduling and data assignment.Due to the non-analytic expression of the WSA w.r.t.the optimization variables and the unknowability of future network information,the problem cannot be solved with known solution methods.Therefore,an online Joint Partial Offloading and User Scheduling Optimization(JPOUSO)algorithm is proposed by transforming the original problem into a single-slot data assignment subproblem and a single-slot user scheduling sub-problem and solving the two sub-problems separately.We analyze the computational complexity of the presented JPO-USO algorithm,which is of O(N),with N being the number of users.Simulation results show that the proposed JPO-USO algorithm is able to achieve better AoI performance compared with various baseline methods.It is shown that both the user’s data assignment and the user’s AoI should be jointly taken into account to decrease the system WSA when scheduling users.
基金the Key Scientific and Technological Project of Henan Province(Grant Number 222102210212)Doctoral Research Start Project of Henan Institute of Technology(Grant Number KQ2005)+1 种基金Doctoral Research Start Project of Henan Institute of Technology(Grant Number KQ2110)Key Research Projects of Colleges and Universities in Henan Province(Grant Number 23B510006).
文摘In this paper,we investigate the energy efficiency maximization for mobile edge computing(MEC)in intelligent reflecting surface(IRS)assisted unmanned aerial vehicle(UAV)communications.In particular,UAVcan collect the computing tasks of the terrestrial users and transmit the results back to them after computing.We jointly optimize the users’transmitted beamforming and uploading ratios,the phase shift matrix of IRS,and the UAV trajectory to improve the energy efficiency.The formulated optimization problem is highly non-convex and difficult to be solved directly.Therefore,we decompose the original problem into three sub-problems.We first propose the successive convex approximation(SCA)based method to design the beamforming of the users and the phase shift matrix of IRS,and apply the Lagrange dual method to obtain a closed-form expression of the uploading ratios.For the trajectory optimization,we propose a block coordinate descent(BCD)based method to obtain a local optimal solution.Finally,we propose the alternating optimization(AO)based overall algorithmand analyzed its complexity to be equivalent or lower than existing algorithms.Simulation results show the superiority of the proposedmethod compared with existing schemes in energy efficiency.
基金supported by the Natural Science Foundation of China (No.62171051)。
文摘Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady performance of eMBB traffic while meeting the requirements of URLLC traffic with puncturing is a major challenge in some realistic scenarios. In this paper, we pay attention to the timely and energy-efficient processing for eMBB traffic in the industrial Internet of Things(IIoT), where mobile edge computing(MEC) is employed for data processing. Specifically, the performance of eMBB traffic and URLLC traffic in a MEC-based IIoT system is ensured by setting the threshold of tolerable delay and outage probability, respectively. Furthermore,considering the limited energy supply, an energy minimization problem of eMBB device is formulated under the above constraints, by jointly optimizing the resource blocks(RBs) punctured by URLLC traffic, data offloading and transmit power of eMBB device. With Markov's inequality, the problem is reformulated by transforming the probabilistic outage constraint into a deterministic constraint. Meanwhile, an iterative energy minimization algorithm(IEMA) is proposed.Simulation results demonstrate that our algorithm has a significant reduction in the energy consumption for eMBB device and achieves a better overall effect compared to several benchmarks.
基金supported in part by the National Key R&D Program of China under Grant 2018YFC0831502.
文摘Multi-access Edge Computing(MEC)is one of the key technologies of the future 5G network.By deploying edge computing centers at the edge of wireless access network,the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios.Meanwhile,with the development of IOV(Internet of Vehicles)technology,various delay-sensitive and compute-intensive in-vehicle applications continue to appear.Compared with traditional Internet business,these computation tasks have higher processing priority and lower delay requirements.In this paper,we design a 5G-based vehicle-aware Multi-access Edge Computing network(VAMECN)and propose a joint optimization problem of minimizing total system cost.In view of the problem,a deep reinforcement learningbased joint computation offloading and task migration optimization(JCOTM)algorithm is proposed,considering the influences of multiple factors such as concurrent multiple computation tasks,system computing resources distribution,and network communication bandwidth.And,the mixed integer nonlinear programming problem is described as a Markov Decision Process.Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption,optimize computing offloading and resource allocation schemes,and improve system resource utilization,compared with other computing offloading policies.
基金the National S&T Major Project (No. 2018ZX03001011)the National Key R&D Program(No.2018YFB1801102)+1 种基金the National Natural Science Foundation of China (No. 61671072)the Beijing Natural Science Foundation (No. L192025)
文摘With the increasing maritime activities and the rapidly developing maritime economy, the fifth-generation(5G) mobile communication system is expected to be deployed at the ocean. New technologies need to be explored to meet the requirements of ultra-reliable and low latency communications(URLLC) in the maritime communication network(MCN). Mobile edge computing(MEC) can achieve high energy efficiency in MCN at the cost of suffering from high control plane latency and low reliability. In terms of this issue, the mobile edge communications, computing, and caching(MEC3) technology is proposed to sink mobile computing, network control, and storage to the edge of the network. New methods that enable resource-efficient configurations and reduce redundant data transmissions can enable the reliable implementation of computing-intension and latency-sensitive applications. The key technologies of MEC3 to enable URLLC are analyzed and optimized in MCN. The best response-based offloading algorithm(BROA) is adopted to optimize task offloading. The simulation results show that the task latency can be decreased by 26.5’ ms, and the energy consumption in terminal users can be reduced to 66.6%.
基金This work was supported by National Natural Science Foundation of China(No.61971026)the Fundamental Research Funds for the Central Universities(No.FRF-TP-18-008A3).
文摘In this paper,the security problem for the multi-access edge computing(MEC)network is researched,and an intelligent immunity-based security defense system is proposed to identify the unauthorized mobile users and to protect the security of whole system.In the proposed security defense system,the security is protected by the intelligent immunity through three functions,identification function,learning function,and regulation function,respectively.Meanwhile,a three process-based intelligent algorithm is proposed for the intelligent immunity system.Numerical simulations are given to prove the effeteness of the proposed approach.
基金the National Key Re-search and Development Program of China(No.2020YFB1807500)the National Natural Science Foundation of China(No.62102297,No.61902292)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2020A1515110496)the Fundamen-tal Research Funds for the Central Universities(No.XJS210105,No.XJS201502)the Open Project of Shaanxi Key Laboratory of Information Communi-cation Network and Security(No.ICNS202005).
文摘Blockchain and multi-access edge com-puting(MEC)are two emerging promising tech-nologies that have received extensive attention from academia and industry.As a brand-new information storage,dissemination and management mechanism,blockchain technology achieves the reliable transmis-sion of data and value.While as a new computing paradigm,multi-access edge computing enables the high-frequency interaction and real-time transmission of data.The integration of communication and com-puting in blockchain-enabled multi-access edge com-puting networks has been studied without a systemat-ical view.In the survey,we focus on the integration of communication and computing,explores the mu-tual empowerment and mutual promotion effects be-tween the blockchain and MEC,and introduces the resource integration architecture of blockchain and multi-access edge computing.Then,the paper sum-marizes the applications of the resource integration ar-chitecture,resource management,data sharing,incen-tive mechanism,and consensus mechanism,and ana-lyzes corresponding applications in real-world scenar-ios.Finally,future challenges and potentially promis-ing research directions are discussed and present in de-tail.
基金This work was supported by the Fundamental Research Funds for the Central Universities(No.2019XD-A07)the Director Fund of Beijing Key Laboratory of Space-ground Interconnection and Convergencethe National Key Laboratory of Science and Technology on Vacuum Electronics.
文摘The main aim of future mobile networks is to provide secure,reliable,intelligent,and seamless connectivity.It also enables mobile network operators to ensure their customer’s a better quality of service(QoS).Nowadays,Unmanned Aerial Vehicles(UAVs)are a significant part of the mobile network due to their continuously growing use in various applications.For better coverage,cost-effective,and seamless service connectivity and provisioning,UAVs have emerged as the best choice for telco operators.UAVs can be used as flying base stations,edge servers,and relay nodes in mobile networks.On the other side,Multi-access EdgeComputing(MEC)technology also emerged in the 5G network to provide a better quality of experience(QoE)to users with different QoS requirements.However,UAVs in a mobile network for coverage enhancement and better QoS face several challenges such as trajectory designing,path planning,optimization,QoS assurance,mobilitymanagement,etc.The efficient and proactive path planning and optimization in a highly dynamic environment containing buildings and obstacles are challenging.So,an automated Artificial Intelligence(AI)enabled QoSaware solution is needed for trajectory planning and optimization.Therefore,this work introduces a well-designed AI and MEC-enabled architecture for a UAVs-assisted future network.It has an efficient Deep Reinforcement Learning(DRL)algorithm for real-time and proactive trajectory planning and optimization.It also fulfills QoS-aware service provisioning.A greedypolicy approach is used to maximize the long-term reward for serving more users withQoS.Simulation results reveal the superiority of the proposed DRL mechanism for energy-efficient and QoS-aware trajectory planning over the existing models.
文摘5G is a new generation of mobile networking that aims to achieve unparalleled speed and performance. To accomplish this, three technologies, Device-to-Device communication (D2D), multi-access edge computing (MEC) and network function virtualization (NFV) with ClickOS, have been a significant part of 5G, and this paper mainly discusses them. D2D enables direct communication between devices without the relay of base station. In 5G, a two-tier cellular network composed of traditional cellular network system and D2D is an efficient method for realizing high-speed communication. MEC unloads work from end devices and clouds platforms to widespread nodes, and connects the nodes together with outside devices and third-party providers, in order to diminish the overloading effect on any device caused by enormous applications and improve users’ quality of experience (QoE). There is also a NFV method in order to fulfill the 5G requirements. In this part, an optimized virtual machine for middle-boxes named ClickOS is introduced, and it is evaluated in several aspects. Some middle boxes are being implemented in the ClickOS and proved to have outstanding performances.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (No.2021R1C1C1013133)supported by the Institute of Information and Communications Technology Planning and Evaluation (IITP)grant funded by the Korea Government (MSIT) (RS-2022-00167197,Development of Intelligent 5G/6G Infrastructure Technology for The Smart City)supported by the Soonchunhyang University Research Fund.
文摘In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to improve IIoT service efficiency.There are two types of costs for this kind of IoT network:a communication cost and a computing cost.For service efficiency,the communication cost of data transmission should be minimized,and the computing cost in the edge cloud should be also minimized.Therefore,in this paper,the communication cost for data transmission is defined as the delay factor,and the computing cost in the edge cloud is defined as the waiting time of the computing intensity.The proposed method selects an edge cloud that minimizes the total cost of the communication and computing costs.That is,a device chooses a routing path to the selected edge cloud based on the costs.The proposed method controls the data flows in a mesh-structured network and appropriately distributes the data processing load.The performance of the proposed method is validated through extensive computer simulation.When the transition probability from good to bad is 0.3 and the transition probability from bad to good is 0.7 in wireless and edge cloud states,the proposed method reduced both the average delay and the service pause counts to about 25%of the existing method.
基金supported by the National Natural Science Foundation of China under Grants 92267108,62173322 and 61821005the Science and Technology Program of Liaoning Province under Grants 2023JH3/10200004 and 2022JH25/10100005.
文摘Non-orthogonal multiple access (NOMA) technology has recently been widely integrated into multi-access edge computing (MEC) to support task offloading in industrial wireless networks (IWNs) with limited radio resources. This paper minimizes the system overhead regarding task processing delay and energy consumption for the IWN with hybrid NOMA and orthogonal multiple access (OMA) schemes. Specifically, we formulate the system overhead minimization (SOM) problem by considering the limited computation and communication resources and NOMA efficiency. To solve the complex mixed-integer nonconvex problem, we combine the multi-agent twin delayed deep deterministic policy gradient (MATD3) and convex optimization, namely MATD3-CO, for iterative optimization. Specifically, we first decouple SOM into two sub-problems, i.e., joint sub-channel allocation and task offloading sub-problem, and computation resource allocation sub-problem. Then, we propose MATD3 to optimize the sub-channel allocation and task offloading ratio, and employ the convex optimization to allocate the computation resource with a closed-form expression derived by the Karush-Kuhn-Tucker (KKT) conditions. The solution is obtained by iteratively solving these two sub-problems. The experimental results indicate that the MATD3-CO scheme, when compared to the benchmark schemes, significantly decreases system overhead with respect to both delay and energy consumption.
基金supported by National Natural Science Foundation of China(No.6206020135)Key Research and Development Program of Gansu Province(No.20YF8GA123)+1 种基金Gansu Provincial Department of Education University Faculty Innovation Fund Project(No.2024B-059)Youth Science Fund Project of Lanzhou Jiaotong University(No.1200061307).
文摘The emergence of multi-access edge computing(MEC)aims at extending cloud computing capabilities to the edge of the radio access network.As the large-scale internet of things(IoT)services are rapidly growing,a single edge infrastructure provider(EIP)may not be sufficient to handle the data traffic generated by these services.Most of the existing work addressed the computing resource shortage problem by optimizing tasks schedule,whereas others overcome such issue by placing computing resources on demand.However,when considering a multiple EIPs scenario,an urgent challenge is how to generate a coalition structure to maximize each EIP’s gain with a suitable price for computing resource block corresponding to a container.To this end,we design a scheme of EIPs collaboration with a market price for containers under a scenario that considers a collection of service providers(SPs)with different budgets and several EIPs distributed in geographical locations.First,we bring in the net profit market price model to generate a more reasonable equilibrium price and select the optimal EIPs for each SP by a convex program.Then we use a mathematical model to maximize EIP’s profits and form stable coalitions between EIPs by a distributed coalition formation algorithm.Numerical results demonstrate that our proposed collaborative scheme among EIPs enhances EIPs’gain and increases users’surplus.
基金supported in part by National Natural Science Foundation of China(Grant No.61702149,U1709220)
文摘This paper considers a UAV communication system with mobile edge computing(MEC).We minimize the energy consumption of the whole system via jointly optimizing the UAV's trajectory and task assignment as well as CPU's computational speed under the set of resource constrains.To this end,we first derive the energy consumption model of data processing,and then obtain the energy consumption model of fixed-wing UAV's flight.The optimization problem is mathematically formulated.To address the problem,we first obtain the approximate optimization problem by applying the technique of discrete linear state-space approximation,and then transform the non-convex constraints into convex by using linearization.Furthermore,a concave-convex procedure(CCCP) based algorithm is proposed in order to solve the optimization problem approximately.Numerical results show the efficacy of the proposed algorithm.
基金supported by the National High Technology Research and Development Program(863) of China(No.2015AA01A701)
文摘Through enabling the IT and cloud computation capacities at Radio Access Network(RAN),Mobile Edge Computing(MEC) makes it possible to deploy and provide services locally.Therefore,MEC becomes the potential technology to satisfy the requirements of 5G network to a certain extent,due to its functions of services localization,local breakout,caching,computation offloading,network context information exposure,etc.Especially,MEC can decrease the end-to-end latency dramatically through service localization and caching,which is key requirement of 5G low latency scenario.However,the performance of MEC still needs to be evaluated and verified for future deployment.Thus,the concept of MEC is introduced into5 G architecture and analyzed for different 5G scenarios in this paper.Secondly,the evaluation of MEC performance is conducted and analyzed in detail,especially for network end-to-end latency.In addition,some challenges of the MEC are also discussed for future deployment.
基金This work is partly supported by the US NSF under grants CNS 1650831,and HRD 1828811the U.S.Department of Homeland Security under grant DHS 2017-ST-062-000003.
文摘The demand for digital media services is increasing as the number of wireless subscriptions is growing exponentially.In order to meet this growing need,mobile wireless networks have been advanced at a tremendous pace over recent days.However,the centralized architecture of existing mobile networks,with limited capacity and range of bandwidth of the radio access network and low bandwidth back-haul network,can not handle the exponentially increasing mobile traffic.Recently,we have seen the growth of new mechanisms of data caching and delivery methods through intermediate caching servers.In this paper,we present a survey on recent advances in mobile edge computing and content caching,including caching insertion and expulsion policies,the behavior of the caching system,and caching optimization based on wireless networks.Some of the important open challenges in mobile edge computing with content caching are identified and discussed.We have also compared edge,fog and cloud computing in terms of delay.Readers of this paper will get a thorough understanding of recent advances in mobile edge computing and content caching in mobile wireless networks.