期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Interpolation-Based Reversible Data Hiding in Encrypted Audio with Scalable Embedding Capacity
1
作者 Yuan-Yu Tsai Alfrindo Lin +1 位作者 Wen-Ting Jao Yi-Hui Chen 《Computers, Materials & Continua》 2025年第7期681-697,共17页
With the rapid expansion of multimedia data,protecting digital information has become increasingly critical.Reversible data hiding offers an effective solution by allowing sensitive information to be embedded in multi... With the rapid expansion of multimedia data,protecting digital information has become increasingly critical.Reversible data hiding offers an effective solution by allowing sensitive information to be embedded in multimedia files while enabling full recovery of the original data after extraction.Audio,as a vital medium in communication,entertainment,and information sharing,demands the same level of security as images.However,embedding data in encrypted audio poses unique challenges due to the trade-offs between security,data integrity,and embedding capacity.This paper presents a novel interpolation-based reversible data hiding algorithm for encrypted audio that achieves scalable embedding capacity.By increasing sample density through interpolation,embedding opportunities are significantly enhanced while maintaining encryption throughout the process.The method further integrates multiple most significant bit(multi-MSB)prediction and Huffman coding to optimize compression and embedding efficiency.Experimental results on standard audio datasets demonstrate the proposed algorithm’s ability to embed up to 12.47 bits per sample with over 9.26 bits per sample available for pure embedding capacity,while preserving full reversibility.These results confirm the method’s suitability for secure applications that demand high embedding capacity and perfect reconstruction of original audio.This work advances reversible data hiding in encrypted audio by offering a secure,efficient,and fully reversible data hiding framework. 展开更多
关键词 Reversible data hiding encrypted audio INTERPOLATION sampling multi-msb prediction Huffman coding
在线阅读 下载PDF
面向数据隐私差异的隐私保护数据发布方法 被引量:1
2
作者 俞艺涵 周大伟 +1 位作者 李洪成 吴晓平 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第9期57-63,共7页
针对关系型数据中多维敏感属性隐私差异所引起的隐私保护效用降低问题,提出了一种能有效表达多维敏感属性隐私差异的隐私保护数据发布方法.基于一种多维桶分组技术(MSB)对数据集的多维敏感属性隐私差异以及记录价值进行量化区分,给出记... 针对关系型数据中多维敏感属性隐私差异所引起的隐私保护效用降低问题,提出了一种能有效表达多维敏感属性隐私差异的隐私保护数据发布方法.基于一种多维桶分组技术(MSB)对数据集的多维敏感属性隐私差异以及记录价值进行量化区分,给出记录分组优先级参数的计算方法,进而可实现基于记录分组优先级参数多维桶记录分组(TPSB)算法的隐私保护数据发布.实验结果表明:在权重参数合理赋值条件下,该方法在保证数据发布效率的同时可有效提升数据发布的质量. 展开更多
关键词 隐私保护 数据发布 多维敏感属性 隐私差异 多维桶分组
原文传递
基于加法同态加密与多高位嵌入的加密域图像可逆信息隐藏 被引量:6
3
作者 肖文乾 杨高波 +1 位作者 王德望 夏明 《网络与信息安全学报》 2023年第4期121-133,共13页
密文域图像可逆信息隐藏将图像加密和可逆信息隐藏相结合,可提升图像网络传输的安全性和信息传输效率。然而,对于密文图像可逆信息隐藏,常规的逐位流加密会破坏图像的空间相关性,影响预留嵌入空间。提出基于加法同态加密与多高位嵌入的... 密文域图像可逆信息隐藏将图像加密和可逆信息隐藏相结合,可提升图像网络传输的安全性和信息传输效率。然而,对于密文图像可逆信息隐藏,常规的逐位流加密会破坏图像的空间相关性,影响预留嵌入空间。提出基于加法同态加密与多高位嵌入的加密域图像可逆信息隐藏方法,通过加密预留空间。将原始图像划分为无重叠的块,同一个块采用相同的密钥进行加法同态加密,尽可能地将原始图像子块内像素相关性转移到加密后图像对应的子块中。为了提升安全性,加密后的图像再逐块进行Arnold置乱。依据块内像素与预测值之间的差值,确定该块是否嵌入信息及嵌入容量。对于可嵌入的块,利用少量的像素低位保存预测差值以保证图像可逆,冗余的多高位则以位替换的方式嵌入秘密信息。针对多高位预测可能错误的问题,设计一个依据预测差值大小腾出高位的嵌入位置选择策略,使得越接近的像素值能预留越多的高位空间。在解密阶段,秘密信息能够无误地从子块内像素的多高位提取,图像内容也能根据嵌入的多高位的数量、预测值以及预测差值实现无损恢复。实验结果表明,所提方法对广泛使用的BOWS-2数据集的图像平均嵌入容量可达2.58 bit/pixel,优于其他的同类方法。 展开更多
关键词 加法同态 可逆信息隐藏 加密域 多高位嵌入
在线阅读 下载PDF
Privacy-Preserving Data Publishing for Multiple Numerical Sensitive Attributes 被引量:6
4
作者 Qinghai Liu Hong Shen Yingpeng Sang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2015年第3期246-254,共9页
Anonymized data publication has received considerable attention from the research community in recent years. For numerical sensitive attributes, most of the existing privacy-preserving data publishing techniques conce... Anonymized data publication has received considerable attention from the research community in recent years. For numerical sensitive attributes, most of the existing privacy-preserving data publishing techniques concentrate on microdata with multiple categorical sensitive attributes or only one numerical sensitive attribute. However, many real-world applications can contain multiple numerical sensitive attributes. Directly applying the existing privacy-preserving techniques for single-numerical-sensitive-attribute and multiple-categorical-sensitive- attributes often causes unexpected disclosure of private information. These techniques are particularly prone to the proximity breach, which is a privacy threat specific to numerical sensitive attributes in data publication, in this paper, we propose a privacy-preserving data publishing method, namely MNSACM, which uses the ideas of clustering and Multi-Sensitive Bucketization (MSB) to publish microdata with multiple numerical sensitive attributes. We use an example to show the effectiveness of this method in privacy protection when using multiple numerical sensitive attributes. 展开更多
关键词 PRIVACY-PRESERVING K-ANONYMITY numerical sensitive attribute CLUSTERING Multi-Sensitive Bucketization(MSB)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部