Multiple Sclerosis(MS)poses significant health risks.Patients may face neurodegeneration,mobility issues,cognitive decline,and a reduced quality of life.Manual diagnosis by neurologists is prone to limitations,making ...Multiple Sclerosis(MS)poses significant health risks.Patients may face neurodegeneration,mobility issues,cognitive decline,and a reduced quality of life.Manual diagnosis by neurologists is prone to limitations,making AI-based classification crucial for early detection.Therefore,automated classification using Artificial Intelligence(AI)techniques has a crucial role in addressing the limitations of manual classification and preventing the development of MS to advanced stages.This study developed hybrid systems integrating XGBoost(eXtreme Gradient Boosting)with multi-CNN(Convolutional Neural Networks)features based on Ant Colony Optimization(ACO)and Maximum Entropy Score-based Selection(MESbS)algorithms for early classification of MRI(Magnetic Resonance Imaging)images in a multi-class and binary-class MS dataset.All hybrid systems started by enhancing MRI images using the fusion processes of a Gaussian filter and Contrast-Limited Adaptive Histogram Equalization(CLAHE).Then,the Gradient Vector Flow(GVF)algorithm was applied to select white matter(regions of interest)within the brain and segment them from the surrounding brain structures.These regions of interest were processed by CNN models(ResNet101,DenseNet201,and MobileNet)to extract deep feature maps,which were then combined into fused feature vectors of multi-CNN model combinations(ResNet101-DenseNet201,DenseNet201-MobileNet,ResNet101-MobileNet,and ResNet101-DenseNet201-MobileNet).The multi-CNN features underwent dimensionality reduction using ACO and MESbS algorithms to remove unimportant features and retain important features.The XGBoost classifier employed the resultant feature vectors for classification.All developed hybrid systems displayed promising outcomes.For multiclass classification,the XGBoost model using ResNet101-DenseNet201-MobileNet features selected by ACO attained 99.4%accuracy,99.45%precision,and 99.75%specificity,surpassing prior studies(93.76%accuracy).It reached 99.6%accuracy,99.65%precision,and 99.55%specificity in binary-class classification.These results demonstrate the effectiveness of multi-CNN fusion with feature selection in improving MS classification accuracy.展开更多
Unmanned Aerial Vehicles(UAVs)coupled with deep learning such as Convolutional Neural Networks(CNNs)have been widely applied across numerous domains,including agriculture,smart city monitoring,and fire rescue operatio...Unmanned Aerial Vehicles(UAVs)coupled with deep learning such as Convolutional Neural Networks(CNNs)have been widely applied across numerous domains,including agriculture,smart city monitoring,and fire rescue operations,owing to their malleability and versatility.However,the computation-intensive and latency-sensitive natures of CNNs present a formidable obstacle to their deployment on resource-constrained UAVs.Some early studies have explored a hybrid approach that dynamically switches between lightweight and complex models to balance accuracy and latency.However,they often overlook scenarios involving multiple concurrent CNN streams,where competition for resources between streams can substantially impact latency and overall system performance.In this paper,we first investigate the deployment of both lightweight and complex models for multiple CNN streams in UAV swarm.Specifically,we formulate an optimization problem to minimize the total latency across multiple CNN streams,under the constraints on UAV memory and the accuracy requirement of each stream.To address this problem,we propose an algorithm called Adaptive Model Switching of collaborative inference for MultiCNN streams(AMSM)to identify the inference strategy with a low latency.Simulation results demonstrate that the proposed AMSM algorithm consistently achieves the lowest latency while meeting the accuracy requirements compared to benchmark algorithms.展开更多
文摘Multiple Sclerosis(MS)poses significant health risks.Patients may face neurodegeneration,mobility issues,cognitive decline,and a reduced quality of life.Manual diagnosis by neurologists is prone to limitations,making AI-based classification crucial for early detection.Therefore,automated classification using Artificial Intelligence(AI)techniques has a crucial role in addressing the limitations of manual classification and preventing the development of MS to advanced stages.This study developed hybrid systems integrating XGBoost(eXtreme Gradient Boosting)with multi-CNN(Convolutional Neural Networks)features based on Ant Colony Optimization(ACO)and Maximum Entropy Score-based Selection(MESbS)algorithms for early classification of MRI(Magnetic Resonance Imaging)images in a multi-class and binary-class MS dataset.All hybrid systems started by enhancing MRI images using the fusion processes of a Gaussian filter and Contrast-Limited Adaptive Histogram Equalization(CLAHE).Then,the Gradient Vector Flow(GVF)algorithm was applied to select white matter(regions of interest)within the brain and segment them from the surrounding brain structures.These regions of interest were processed by CNN models(ResNet101,DenseNet201,and MobileNet)to extract deep feature maps,which were then combined into fused feature vectors of multi-CNN model combinations(ResNet101-DenseNet201,DenseNet201-MobileNet,ResNet101-MobileNet,and ResNet101-DenseNet201-MobileNet).The multi-CNN features underwent dimensionality reduction using ACO and MESbS algorithms to remove unimportant features and retain important features.The XGBoost classifier employed the resultant feature vectors for classification.All developed hybrid systems displayed promising outcomes.For multiclass classification,the XGBoost model using ResNet101-DenseNet201-MobileNet features selected by ACO attained 99.4%accuracy,99.45%precision,and 99.75%specificity,surpassing prior studies(93.76%accuracy).It reached 99.6%accuracy,99.65%precision,and 99.55%specificity in binary-class classification.These results demonstrate the effectiveness of multi-CNN fusion with feature selection in improving MS classification accuracy.
基金supported by the National Natural Science Foundation of China(No.61931011)the Jiangsu Provincial Key Research and Development Program,China(No.BE2021013-4)the Fundamental Research Project in University Characteristic Disciplines,China(No.ILF240071A24)。
文摘Unmanned Aerial Vehicles(UAVs)coupled with deep learning such as Convolutional Neural Networks(CNNs)have been widely applied across numerous domains,including agriculture,smart city monitoring,and fire rescue operations,owing to their malleability and versatility.However,the computation-intensive and latency-sensitive natures of CNNs present a formidable obstacle to their deployment on resource-constrained UAVs.Some early studies have explored a hybrid approach that dynamically switches between lightweight and complex models to balance accuracy and latency.However,they often overlook scenarios involving multiple concurrent CNN streams,where competition for resources between streams can substantially impact latency and overall system performance.In this paper,we first investigate the deployment of both lightweight and complex models for multiple CNN streams in UAV swarm.Specifically,we formulate an optimization problem to minimize the total latency across multiple CNN streams,under the constraints on UAV memory and the accuracy requirement of each stream.To address this problem,we propose an algorithm called Adaptive Model Switching of collaborative inference for MultiCNN streams(AMSM)to identify the inference strategy with a low latency.Simulation results demonstrate that the proposed AMSM algorithm consistently achieves the lowest latency while meeting the accuracy requirements compared to benchmark algorithms.