期刊文献+
共找到3,507篇文章
< 1 2 176 >
每页显示 20 50 100
Providing Robust and Low-Cost Edge Computing in Smart Grid:An Energy Harvesting Based Task Scheduling and Resource Management Framework 被引量:1
1
作者 Xie Zhigang Song Xin +1 位作者 Xu Siyang Cao Jing 《China Communications》 2025年第2期226-240,共15页
Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power sta... Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power stations).To solve the problem,we propose an energy harvesting based task scheduling and resource management framework to provide robust and low-cost edge computing services for smart grid.First,we formulate an energy consumption minimization problem with regard to task offloading,time switching,and resource allocation for mobile devices,which can be decoupled and transformed into a typical knapsack problem.Then,solutions are derived by two different algorithms.Furthermore,we deploy renewable energy and energy storage units at edge servers to tackle intermittency and instability problems.Finally,we design an energy management algorithm based on sampling average approximation for edge computing servers to derive the optimal charging/discharging strategies,number of energy storage units,and renewable energy utilization.The simulation results show the efficiency and superiority of our proposed framework. 展开更多
关键词 edge computing energy harvesting energy storage unit renewable energy sampling average approximation task scheduling
在线阅读 下载PDF
A Bioinspired Method for Optimal Task Scheduling in Fog-Cloud Environment
2
作者 Ferzat Anka Ghanshyam G.Tejani +1 位作者 Sunil Kumar Sharma Mohammed Baljon 《Computer Modeling in Engineering & Sciences》 2025年第3期2691-2724,共34页
Due to the intense data flow in expanding Internet of Things(IoT)applications,a heavy processing cost and workload on the fog-cloud side become inevitable.One of the most critical challenges is optimal task scheduling... Due to the intense data flow in expanding Internet of Things(IoT)applications,a heavy processing cost and workload on the fog-cloud side become inevitable.One of the most critical challenges is optimal task scheduling.Since this is an NP-hard problem type,a metaheuristic approach can be a good option.This study introduces a novel enhancement to the Artificial Rabbits Optimization(ARO)algorithm by integrating Chaotic maps and Levy flight strategies(CLARO).This dual approach addresses the limitations of standard ARO in terms of population diversity and convergence speed.It is designed for task scheduling in fog-cloud environments,optimizing energy consumption,makespan,and execution time simultaneously three critical parameters often treated individually in prior works.Unlike conventional single-objective methods,the proposed approach incorporates a multi-objective fitness function that dynamically adjusts the weight of each parameter,resulting in better resource allocation and load balancing.In analysis,a real-world dataset,the Open-source Google Cloud Jobs Dataset(GoCJ_Dataset),is used for performance measurement,and analyses are performed on three considered parameters.Comparisons are applied with well-known algorithms:GWO,SCSO,PSO,WOA,and ARO to indicate the reliability of the proposed method.In this regard,performance evaluation is performed by assigning these tasks to Virtual Machines(VMs)in the resource pool.Simulations are performed on 90 base cases and 30 scenarios for each evaluation parameter.The results indicated that the proposed algorithm achieved the best makespan performance in 80% of cases,ranked first in execution time in 61%of cases,and performed best in the final parameter in 69% of cases.In addition,according to the obtained results based on the defined fitness function,the proposed method(CLARO)is 2.52%better than ARO,3.95%better than SCSO,5.06%better than GWO,8.15%better than PSO,and 9.41%better than WOA. 展开更多
关键词 Improved ARO fog computing task scheduling GoCJ_Dataset chaotic map levy flight
在线阅读 下载PDF
Learning-Based Matching Game for Task Scheduling and Resource Collaboration in Intent-Driven Task-Oriented Networks
3
作者 Jiaorui Huang Min Cao +2 位作者 Chungang Yang Zhu Han Tong Li 《Engineering》 2025年第11期143-154,共12页
With the rapid advancement of satellite communication technologies,space information networks(SINs)have become essential infrastructure for complex service delivery and cross-domain task coordination,facilitating the ... With the rapid advancement of satellite communication technologies,space information networks(SINs)have become essential infrastructure for complex service delivery and cross-domain task coordination,facilitating the transition toward an intent-driven task-oriented coordination paradigm across the space,ground,and user segments.This study presents a novel intent-driven task-oriented network(IDTN)framework to address task scheduling and resource allocation challenges in SINs.The scheduling problem is formulated as a three-sided matching game that incorporates the preference attributes of entities across all network segments.To manage the variability of random task arrivals and dynamic resources,a context-aware linear upper-confidence-bound online learning mechanism is integrated to reduce decision-making uncertainty.Simulation results demonstrate the effectiveness of the proposed IDTN framework.Compared with conventional baseline methods,the framework achieves significant performance improvements,including a 4.4%-28.9%increase in average system reward,a 6.2%-34.5%improvement in resource utilization,and a 5.6%-35.7%enhancement in user satisfaction.The proposed framework is expected to facilitate the integration and orchestration of space-based platforms. 展开更多
关键词 Intent-driven network Matching game Resource allocation Space information network task scheduling
在线阅读 下载PDF
Innovative Approaches to Task Scheduling in Cloud Computing Environments Using an Advanced Willow Catkin Optimization Algorithm
4
作者 Jeng-Shyang Pan Na Yu +3 位作者 Shu-Chuan Chu An-Ning Zhang Bin Yan Junzo Watada 《Computers, Materials & Continua》 2025年第2期2495-2520,共26页
The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resource... The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resources for optimized resource utilization. Several meta-heuristic algorithms have shown effectiveness in task scheduling, among which the relatively recent Willow Catkin Optimization (WCO) algorithm has demonstrated potential, albeit with apparent needs for enhanced global search capability and convergence speed. To address these limitations of WCO in cloud computing task scheduling, this paper introduces an improved version termed the Advanced Willow Catkin Optimization (AWCO) algorithm. AWCO enhances the algorithm’s performance by augmenting its global search capability through a quasi-opposition-based learning strategy and accelerating its convergence speed via sinusoidal mapping. A comprehensive evaluation utilizing the CEC2014 benchmark suite, comprising 30 test functions, demonstrates that AWCO achieves superior optimization outcomes, surpassing conventional WCO and a range of established meta-heuristics. The proposed algorithm also considers trade-offs among the cost, makespan, and load balancing objectives. Experimental results of AWCO are compared with those obtained using the other meta-heuristics, illustrating that the proposed algorithm provides superior performance in task scheduling. The method offers a robust foundation for enhancing the utilization of cloud computing resources in the domain of task scheduling within a cloud computing environment. 展开更多
关键词 Willow catkin optimization algorithm cloud computing task scheduling opposition-based learning strategy
在线阅读 下载PDF
Multi-strategy Enhanced Hiking Optimization Algorithm for Task Scheduling in the Cloud Environment
5
作者 Libang Wu Shaobo Li +2 位作者 Fengbin Wu Rongxiang Xie Panliang Yuan 《Journal of Bionic Engineering》 2025年第3期1506-1534,共29页
Metaheuristic algorithms are pivotal in cloud task scheduling. However, the complexity and uncertainty of the scheduling problem severely limit algorithms. To bypass this circumvent, numerous algorithms have been prop... Metaheuristic algorithms are pivotal in cloud task scheduling. However, the complexity and uncertainty of the scheduling problem severely limit algorithms. To bypass this circumvent, numerous algorithms have been proposed. The Hiking Optimization Algorithm (HOA) have been used in multiple fields. However, HOA suffers from local optimization, slow convergence, and low efficiency of late iteration search when solving cloud task scheduling problems. Thus, this paper proposes an improved HOA called CMOHOA. It collaborates with multi-strategy to improve HOA. Specifically, Chebyshev chaos is introduced to increase population diversity. Then, a hybrid speed update strategy is designed to enhance convergence speed. Meanwhile, an adversarial learning strategy is introduced to enhance the search capability in the late iteration. Different scenarios of scheduling problems are used to test the CMOHOA’s performance. First, CMOHOA was used to solve basic cloud computing task scheduling problems, and the results showed that it reduced the average total cost by 10% or more. Secondly, CMOHOA has been applied to edge fog cloud scheduling problems, and the results show that it reduces the average total scheduling cost by 2% or more. Finally, CMOHOA reduced the average total cost by 7% or more in scheduling problems for information transmission. 展开更多
关键词 task scheduling Chebyshev chaos Hybrid speed update strategy Metaheuristic algorithms The Hiking Optimization Algorithm(HOA)
在线阅读 下载PDF
Task Scheduling for UAV Swarms with Limited Communication Range
6
作者 ZHENG Jiyuan ZHANG Shaobo +2 位作者 ZHANG Dongjun WANG Donghui ZHOU Haihua 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第6期852-864,共13页
With the widespread adoption of unmanned aerial vehicle(UAV)technology,task scheduling for UAV swarms has become a crucial approach to improve operational efficiency.Most existing studies oversimplify the operational ... With the widespread adoption of unmanned aerial vehicle(UAV)technology,task scheduling for UAV swarms has become a crucial approach to improve operational efficiency.Most existing studies oversimplify the operational process rules of UAVs,making it difficult to accurately characterize the adaptability differences of UAVs to various tasks under practical operational constraints.To address this limitation,this paper proposes a UAV swarm task scheduling problem with limited communication range(UAVS-LCR)and establishes an integer programming model for its formal description.For solving this problem,a multi-neighborhood iterative local search(MNILS)algorithm is designed,which adopts a doubly linked list solution representation method to reduce the computational complexity of basic neighborhood operations.This algorithm generates high-quality initial solutions via a greedy construction strategy,combines insertion search,multi-swap search and the two-opt operator to enable alternating exploration across multiple neighborhoods,and incorporates a simulated annealing mechanism to balance search efficiency and solution diversity.This method can provide an effective solution for various application scenarios including wide-area UAV inspection and heterogeneous UAV collaborative operations.Experimental results on 12 power grid maintenance test instances demonstrate that the MNILS algorithm significantly outperforms the genetic algorithm,the artificial bee colony algorithm,the ant colony optimization algorithm and the variable neighborhood search algorithm in terms of both solution quality and scalability for large-scale problems. 展开更多
关键词 unmanned aerial vehicle(UAV)swarms task scheduling neighborhood structure iterative local search
在线阅读 下载PDF
Physical-layer secure hybrid task scheduling and resource management for fog computing IoT networks
7
作者 ZHANG Shibo GAO Hongyuan +1 位作者 SU Yumeng SUN Rongchen 《Journal of Systems Engineering and Electronics》 2025年第5期1146-1160,共15页
Fog computing has emerged as an important technology which can improve the performance of computation-intensive and latency-critical communication networks.Nevertheless,the fog computing Internet-of-Things(IoT)systems... Fog computing has emerged as an important technology which can improve the performance of computation-intensive and latency-critical communication networks.Nevertheless,the fog computing Internet-of-Things(IoT)systems are susceptible to malicious eavesdropping attacks during the information transmission,and this issue has not been adequately addressed.In this paper,we propose a physical-layer secure fog computing IoT system model,which is able to improve the physical layer security of fog computing IoT networks against the malicious eavesdropping of multiple eavesdroppers.The secrecy rate of the proposed model is analyzed,and the quantum galaxy–based search algorithm(QGSA)is proposed to solve the hybrid task scheduling and resource management problem of the network.The computational complexity and convergence of the proposed algorithm are analyzed.Simulation results validate the efficiency of the proposed model and reveal the influence of various environmental parameters on fog computing IoT networks.Moreover,the simulation results demonstrate that the proposed hybrid task scheduling and resource management scheme can effectively enhance secrecy performance across different communication scenarios. 展开更多
关键词 fog computing Internet-of-Things(IoT) physical layer security hybrid task scheduling and resource management quantum galaxy-based search algorithm(QGSA)
在线阅读 下载PDF
ACS-based resource assignment and task scheduling in grid
8
作者 祁超 张璟 李军怀 《Journal of Southeast University(English Edition)》 EI CAS 2007年第3期451-454,共4页
To solve the deadlock problem of tasks that the interdependence between tasks fails to consider during the course of resource assignment and task scheduling based on the heuristics algorithm, an improved ant colony sy... To solve the deadlock problem of tasks that the interdependence between tasks fails to consider during the course of resource assignment and task scheduling based on the heuristics algorithm, an improved ant colony system (ACS) based algorithm is proposed. First, how to map the resource assignment and task scheduling (RATS) problem into the optimization selection problem of task resource assignment graph (TRAG) and to add the semaphore mechanism in the optimal TRAG to solve deadlocks are explained. Secondly, how to utilize the grid pheromone system model to realize the algorithm based on ACS is explicated. This refers to the construction of TRAG by the random selection of appropriate resources for each task by the user agent and the optimization of TRAG through the positive feedback and distributed parallel computing mechanism of the ACS. Simulation results show that the proposed algorithm is effective and efficient in solving the deadlock problem. 展开更多
关键词 GRID resource assignment task scheduling ant colony system (ACS) task resource assignment graph (TRAG) SEMAPHORE
在线阅读 下载PDF
Multi-satellite observation integrated scheduling method oriented to emergency tasks and common tasks 被引量:23
9
作者 Guohua Wu Manhao Ma +1 位作者 Jianghan Zhu Dishan Qiu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期723-733,共11页
Satellite observation scheduling plays a significant role in improving the efficiency of satellite observation systems.Although many scheduling algorithms have been proposed,emergency tasks,characterized as importance... Satellite observation scheduling plays a significant role in improving the efficiency of satellite observation systems.Although many scheduling algorithms have been proposed,emergency tasks,characterized as importance and urgency(e.g.,observation tasks orienting to the earthquake area and military conflict area),have not been taken into account yet.Therefore,it is crucial to investigate the satellite integrated scheduling methods,which focus on meeting the requirements of emergency tasks while maximizing the profit of common tasks.Firstly,a pretreatment approach is proposed,which eliminates conflicts among emergency tasks and allocates all tasks with a potential time-window to related orbits of satellites.Secondly,a mathematical model and an acyclic directed graph model are constructed.Thirdly,a hybrid ant colony optimization method mixed with iteration local search(ACO-ILS) is established to solve the problem.Moreover,to guarantee all solutions satisfying the emergency task requirement constraints,a constraint repair method is presented.Extensive experimental simulations show that the proposed integrated scheduling method is superior to two-phased scheduling methods,the performance of ACO-ILS is greatly improved in both evolution speed and solution quality by iteration local search,and ACO-ILS outperforms both genetic algorithm and simulated annealing algorithm. 展开更多
关键词 satellite scheduling emergency task ant colony optimization(ACO) iteration local search(ILS) acyclic directed graph model
在线阅读 下载PDF
A Parallel Genetic Simulated Annealing Hybrid Algorithm for Task Scheduling 被引量:12
10
作者 SHU Wanneng ZHENG Shijue 《Wuhan University Journal of Natural Sciences》 CAS 2006年第5期1378-1382,共5页
In this paper combined with the advantages of genetic algorithm and simulated annealing, brings forward a parallel genetic simulated annealing hybrid algorithm (PGSAHA) and applied to solve task scheduling problem i... In this paper combined with the advantages of genetic algorithm and simulated annealing, brings forward a parallel genetic simulated annealing hybrid algorithm (PGSAHA) and applied to solve task scheduling problem in grid computing. It first generates a new group of individuals through genetic operation such as reproduction, crossover, mutation, etc, and than simulated anneals independently all the generated individuals respectively. When the temperature in the process of cooling no longer falls, the result is the optimal solution on the whole. From the analysis and experiment result, it is concluded that this algorithm is superior to genetic algorithm and simulated annealing. 展开更多
关键词 grid computing task scheduling genetic algorithm simulated annealing PGSAHA algorithm
在线阅读 下载PDF
Scheduling algorithm based on critical tasks in heterogeneous environments 被引量:4
11
作者 Lan Zhou Sun Shixin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第2期398-404,F0003,共8页
Heterogeneous computing is one effective method of high performance computing with many advantages. Task scheduling is a critical issue in heterogeneous environments as well as in homogeneous environments. A number of... Heterogeneous computing is one effective method of high performance computing with many advantages. Task scheduling is a critical issue in heterogeneous environments as well as in homogeneous environments. A number of task scheduling algorithms for homogeneous environments have been proposed, whereas, a few for heterogeneous environments can be found in the literature. A novel task scheduling algorithm for heterogeneous environments, called the heterogeneous critical task (HCT) scheduling algorithm is presented. By means of the directed acyclic graph and the gantt graph, the HCT algorithm defines the critical task and the idle time slot. After determining the critical tasks of a given task, the HCT algorithm tentatively duplicates the critical tasks onto the processor that has the given task in the idle time slot, to reduce the start time of the given task. To compare the performance of the HCT algorithm with several recently proposed algorithms, a large set of randomly generated applications and the Gaussian elimination application are randomly generated. The experimental result has shown that the HCT algorithm outperforms the other algorithm. 展开更多
关键词 list scheduling task duplication task graphs heterogeneous environment parallel processing.
在线阅读 下载PDF
Variable scheduling interval task scheduling for phased array radar 被引量:5
12
作者 ZHANG Haowei XIE Junwei +2 位作者 ZHANG Zhaojian SHAO Lei CHEN Tangjun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第5期937-946,共10页
A scheduling algorithm is presented aiming at the task scheduling problem in the phased array radar. Rather than assuming the scheduling interval(SI) time, which is the update interval of the radar invoking the schedu... A scheduling algorithm is presented aiming at the task scheduling problem in the phased array radar. Rather than assuming the scheduling interval(SI) time, which is the update interval of the radar invoking the scheduling algorithm, to be a fixed value,it is modeled as a fuzzy set to improve the scheduling flexibility.The scheduling algorithm exploits the fuzzy set model in order to intelligently adjust the SI time. The idle time in other SIs is provided for SIs which will be overload. Thereby more request tasks can be accommodated. The simulation results show that the proposed algorithm improves the successful scheduling ratio by 16%,the threat ratio of execution by 16% and the time utilization ratio by 15% compared with the highest task mode priority first(HPF)algorithm. 展开更多
关键词 phased array radar task scheduling variable scheduling interval(SI) fuzzy set
在线阅读 下载PDF
Task Scheduling for Multi-Cloud Computing Subject to Security and Reliability Constraints 被引量:8
13
作者 Qing-Hua Zhu Huan Tang +1 位作者 Jia-Jie Huang Yan Hou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第4期848-865,共18页
The rise of multi-cloud systems has been spurred.For safety-critical missions,it is important to guarantee their security and reliability.To address trust constraints in a heterogeneous multi-cloud environment,this wo... The rise of multi-cloud systems has been spurred.For safety-critical missions,it is important to guarantee their security and reliability.To address trust constraints in a heterogeneous multi-cloud environment,this work proposes a novel scheduling method called matching and multi-round allocation(MMA)to optimize the makespan and total cost for all submitted tasks subject to security and reliability constraints.The method is divided into two phases for task scheduling.The first phase is to find the best matching candidate resources for the tasks to meet their preferential demands including performance,security,and reliability in a multi-cloud environment;the second one iteratively performs multiple rounds of re-allocating to optimize tasks execution time and cost by minimizing the variance of the estimated completion time.The proposed algorithm,the modified cuckoo search(MCS),hybrid chaotic particle search(HCPS),modified artificial bee colony(MABC),max-min,and min-min algorithms are implemented in CloudSim to create simulations.The simulations and experimental results show that our proposed method achieves shorter makespan,lower cost,higher resource utilization,and better trade-off between time and economic cost.It is more stable and efficient. 展开更多
关键词 Multi-cloud environment multi-quality of service(QoS) reliability SECURITY task scheduling
在线阅读 下载PDF
Low-power task scheduling algorithm for large-scale cloud data centers 被引量:3
14
作者 Xiaolong Xu Jiaxing Wu +1 位作者 Geng Yang Ruchuan Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第5期870-878,共9页
How to effectively reduce the energy consumption of large-scale data centers is a key issue in cloud computing. This paper presents a novel low-power task scheduling algorithm (L3SA) for large-scale cloud data cente... How to effectively reduce the energy consumption of large-scale data centers is a key issue in cloud computing. This paper presents a novel low-power task scheduling algorithm (L3SA) for large-scale cloud data centers. The winner tree is introduced to make the data nodes as the leaf nodes of the tree and the final winner on the purpose of reducing energy consumption is selected. The complexity of large-scale cloud data centers is fully consider, and the task comparson coefficient is defined to make task scheduling strategy more reasonable. Experiments and performance analysis show that the proposed algorithm can effectively improve the node utilization, and reduce the overall power consumption of the cloud data center. 展开更多
关键词 cloud computing data center task scheduling energy consumption.
在线阅读 下载PDF
Churn-Resilient Task Scheduling in a Tiered IoT Infrastructure 被引量:2
15
作者 Jianhua Fan Xianglin Wei +2 位作者 Tongxiang Wang Tian Lan Suresh Subramaniam 《China Communications》 SCIE CSCD 2019年第8期162-175,共14页
Cloud-as-the-center computing paradigms face multiple challenges in the 5G and Internet of Things scenarios, where the service requests are usually initiated by the end-user devices located at network edge and have ri... Cloud-as-the-center computing paradigms face multiple challenges in the 5G and Internet of Things scenarios, where the service requests are usually initiated by the end-user devices located at network edge and have rigid time constraints. Therefore, Fog computing, or mobile edge computing, is introduced as a promising solution to the service provision in the tiered IoT infrastructure to compensate the shortage of traditional cloud-only architecture. In this cloud-to-things continuum, several cloudlet or mobile edge server entities are placed at the access network to handle the task offloading and processing problems at the network edge. This raises the resource scheduling problem in this tiered system, which is vital for the promotion of the system efficiency. Therefore, in this paper, a scheduling mechanism for the cloudlets or fog nodes are presented, which takes the mobile tasks’ deadline and resources requirements at the same time while promoting the overall profit of the system. First, the problem at the cloudlet, to which IoT devices offload their tasks, is formulated as a multi-dimensional 0-1 knapsack problem. Second, based on ant colony optimization, a scheduling algorithm is presented which treat this problem as a subset selection problem. Third, to promote the performance of the system in the dynamic environments,a churn-refined algorithm is further put forward. A series of simulation experiments have shown that out proposal outperforms many state-of-the-art algorithms in both profit and guarantee ratio. 展开更多
关键词 FOG computing task scheduling DEADLINE constrained internet of THINGS ant COLONY optimization
在线阅读 下载PDF
Scheduling optimization of task allocation in integrated manufacturing system based on task decomposition 被引量:10
16
作者 Aijun Liu Michele Pfund John Fowler 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期422-433,共12页
How to deal with the collaboration between task decomposition and task scheduling is the key problem of the integrated manufacturing system for complex products. With the development of manufacturing technology, we ca... How to deal with the collaboration between task decomposition and task scheduling is the key problem of the integrated manufacturing system for complex products. With the development of manufacturing technology, we can probe a new way to solve this problem. Firstly, a new method for task granularity quantitative analysis is put forward, which can precisely evaluate the task granularity of complex product cooperation workflow in the integrated manufacturing system, on the above basis; this method is used to guide the coarse-grained task decomposition and recombine the subtasks with low cohesion coefficient. Then, a multi-objective optimieation model and an algorithm are set up for the scheduling optimization of task scheduling. Finally, the application feasibility of the model and algorithm is ultimately validated through an application case study. 展开更多
关键词 integrated manufacturing system optimization task decomposition task scheduling
在线阅读 下载PDF
Task scheduling and virtual machine allocation policy in cloud computing environment 被引量:3
17
作者 Xiong Fu Yeliang Cang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第4期847-856,共10页
Cloud computing represents a novel computing model in the contemporary technology world. In a cloud system, the com- puting power of virtual machines (VMs) and network status can greatly affect the completion time o... Cloud computing represents a novel computing model in the contemporary technology world. In a cloud system, the com- puting power of virtual machines (VMs) and network status can greatly affect the completion time of data intensive tasks. How- ever, most of the current resource allocation policies focus only on network conditions and physical hosts. And the computing power of VMs is largely ignored. This paper proposes a comprehensive resource allocation policy which consists of a data intensive task scheduling algorithm that takes account of computing power of VMs and a VM allocation policy that considers bandwidth between storage nodes and hosts. The VM allocation policy includes VM placement and VM migration algorithms. Related simulations show that the proposed algorithms can greatly reduce the task comple- tion time and keep good load balance of physical hosts at the same time. 展开更多
关键词 cloud computing resource allocation task scheduling virtual machine (VM) allocation.
在线阅读 下载PDF
Survey on autonomous task scheduling technology for Earth observation satellites 被引量:5
18
作者 WU Jian CHEN Yuning +2 位作者 HE Yongming XING Lining HU Yangrui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第6期1176-1189,共14页
How to make use of limited onboard resources for complex and heavy space tasks has attracted much attention.With the continuous improvement on satellite payload capacity and the increasing complexity of observation re... How to make use of limited onboard resources for complex and heavy space tasks has attracted much attention.With the continuous improvement on satellite payload capacity and the increasing complexity of observation requirements,the importance of satellite autonomous task scheduling research has gradually increased.This article first gives the problem description and mathematical model for the satellite autonomous task scheduling and then follows the steps of"satellite autonomous task scheduling,centralized autonomous collaborative task scheduling architecture,distributed autonomous collaborative task scheduling architecture,solution algorithm".Finally,facing the complex and changeable environment situation,this article proposes the future direction of satellite autonomous task scheduling. 展开更多
关键词 satellite autonomous task scheduling centralized architecture distributed architecture
在线阅读 下载PDF
Multi-UAV surveillance implementation under hierarchical dynamic task scheduling architecture 被引量:4
19
作者 WU Wen-di WU Yun-long +3 位作者 LI Jing-hua REN Xiao-guang SHI Dian-xi TANG Yu-hua 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第9期2614-2627,共14页
In this paper,we consider a multi-UAV surveillance scenario where a team of unmanned aerial vehicles(UAVs)synchronously covers an area for monitoring the ground conditions.In this scenario,we adopt the leader-follower... In this paper,we consider a multi-UAV surveillance scenario where a team of unmanned aerial vehicles(UAVs)synchronously covers an area for monitoring the ground conditions.In this scenario,we adopt the leader-follower control mode and propose a modified Lyapunov guidance vector field(LGVF)approach for improving the precision of surveillance trajectory tracking.Then,in order to adopt to poor communication conditions,we propose a prediction-based synchronization method for keeping the formation consistently.Moreover,in order to adapt the multi-UAV system to dynamic and uncertain environment,this paper proposes a hierarchical dynamic task scheduling architecture.In this architecture,we firstly classify all the algorithms that perform tasks according to their functions,and then modularize the algorithms based on plugin technology.Afterwards,integrating the behavior model and plugin technique,this paper designs a three-layer control flow,which can efficiently achieve dynamic task scheduling.In order to verify the effectiveness of our architecture,we consider a multi-UAV traffic monitoring scenario and design several cases to demonstrate the online adjustment from three levels,respectively. 展开更多
关键词 prediction-based synchronization dynamic task scheduling hierarchical software architecture
在线阅读 下载PDF
An optimal scheduling algorithm based on task duplication 被引量:2
20
作者 RuanYoulin LiuCan ZhuGuangxi LuXiaofeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期445-450,共6页
When the communication time is relatively shorter than the computation time for every task, the task duplication based scheduling (TDS) algorithm proposed by Darbha and Agrawal generates an optimal schedule. Park and ... When the communication time is relatively shorter than the computation time for every task, the task duplication based scheduling (TDS) algorithm proposed by Darbha and Agrawal generates an optimal schedule. Park and Choe also proposed an extended TDS algorithm whose optimality condition is less restricted than that of TDS algorithm, but the condition is very complex and is difficult to satisfy when the number of tasks is large. An efficient algorithm is proposed whose optimality condition is less restricted and simpler than both of the algorithms, and the schedule length is also shorter than both of the algorithms. The time complexity of the proposed algorithm is O(v2), where v represents the number of tasks. 展开更多
关键词 optimal scheduling algorithm task duplication optimality condition.
在线阅读 下载PDF
上一页 1 2 176 下一页 到第
使用帮助 返回顶部