期刊文献+
共找到142篇文章
< 1 2 8 >
每页显示 20 50 100
Improved genetic algorithm for nonlinear programming problems 被引量:8
1
作者 Kezong Tang Jingyu Yang +1 位作者 Haiyan Chen Shang Gao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期540-546,共7页
An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector w... An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms. 展开更多
关键词 genetic algorithm(GA) nonlinear programming problem constraint handling non-dominated solution optimization problem.
在线阅读 下载PDF
Multi-objective optimization of membrane structures based on Pareto Genetic Algorithm 被引量:7
2
作者 伞冰冰 孙晓颖 武岳 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第5期622-630,共9页
A multi-objective optimization method based on Pareto Genetic Algorithm is presented for shape design of membrane structures from a structural view point.Several non-dimensional variables are defined as optimization v... A multi-objective optimization method based on Pareto Genetic Algorithm is presented for shape design of membrane structures from a structural view point.Several non-dimensional variables are defined as optimization variables,which are decision factors of shapes of membrane structures.Three objectives are proposed including maximization of stiffness,maximum uniformity of stress and minimum reaction under external loads.Pareto Multi-objective Genetic Algorithm is introduced to solve the Pareto solutions.Consequently,the dependence of the optimality upon the optimization variables is derived to provide guidelines on how to determine design parameters.Moreover,several examples illustrate the proposed methods and applications.The study shows that the multi-objective optimization method in this paper is feasible and efficient for membrane structures;the research on Pareto solutions can provide explicit and useful guidelines for shape design of membrane structures. 展开更多
关键词 membrane structures multi-objective optimization pareto solutions multi-objective genetic algorithm
在线阅读 下载PDF
Orthogonal genetic algorithm for solving quadratic bilevel programming problems 被引量:4
3
作者 Hong Li Yongchang Jiao Li Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第5期763-770,共8页
A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encod... A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encoding scheme is adopted for KKT multipliers,and then the complementarity slackness problem is simplified to successive quadratic programming problems,which can be solved by many algorithms available.Based on 0-1 binary encoding,an orthogonal genetic algorithm,in which the orthogonal experimental design with both two-level orthogonal array and factor analysis is used as crossover operator,is proposed.Numerical experiments on 10 benchmark examples show that the orthogonal genetic algorithm can find global optimal solutions of quadratic bilevel programming problems with high accuracy in a small number of iterations. 展开更多
关键词 orthogonal genetic algorithm quadratic bilevel programming problem Karush-Kuhn-Tucker conditions orthogonal experimental design global optimal solution.
在线阅读 下载PDF
Optimal Polygonal Approximation of Digital Planar Curves Using Genetic Algorithm and Tabu Search 被引量:2
4
作者 张鸿宾 《High Technology Letters》 EI CAS 2000年第2期20-28,共9页
Three heuristic algorithms for optimal polygonal approximation of digital planar curves is presented. With Genetic Algorithm (GA), improved Genetic Algorithm (IGA) based on Pareto optimal solution and Tabu Search (TS)... Three heuristic algorithms for optimal polygonal approximation of digital planar curves is presented. With Genetic Algorithm (GA), improved Genetic Algorithm (IGA) based on Pareto optimal solution and Tabu Search (TS), a near optimal polygonal approximation was obtained. Compared to the famous Teh chin algorithm, our algorithms have obtained the approximated polygons with less number of vertices and less approximation error. Compared to the dynamic programming algorithm, the processing time of our algorithms are much less expensive. 展开更多
关键词 DIGITAL planar CURVES Polygonal APPROXIMATION genetic algorithm pareto optimal solution Tabu search.
在线阅读 下载PDF
Genetic Algorithm for Solving Quadratic Bilevel Programming Problem 被引量:1
5
作者 WANG Guangmin WAN Zhongping +1 位作者 WANG Xianjiai FANG Debin 《Wuhan University Journal of Natural Sciences》 CAS 2007年第3期421-425,共5页
By applying Kuhn-Tucker condition the quadratic bilevel programming, a class of bilevel programming, is transformed into a single level programming problem, which can be simplified by some rule. So we can search the o... By applying Kuhn-Tucker condition the quadratic bilevel programming, a class of bilevel programming, is transformed into a single level programming problem, which can be simplified by some rule. So we can search the optimal solution in the feasible region, hence reduce greatly the searching space. Numerical experiments on several literature problems show that the new algorithm is both feasible and effective in practice. 展开更多
关键词 quadratic bilevel programming genetic algorithm optimal solution
在线阅读 下载PDF
Three-Objective Programming with Continuous Variable Genetic Algorithm
6
作者 Adugna Fita 《Applied Mathematics》 2014年第21期3297-3310,共14页
The subject area of multiobjective optimization deals with the investigation of optimization problems that possess more than one objective function. Usually, there does not exist a single solution that optimizes all f... The subject area of multiobjective optimization deals with the investigation of optimization problems that possess more than one objective function. Usually, there does not exist a single solution that optimizes all functions simultaneously;quite the contrary, we have solution set that is called nondominated set and elements of this set are usually infinite. It is from this set decision made by taking elements of nondominated set as alternatives, which is given by analysts. Since it is important for the decision maker to obtain as much information as possible about this set, our research objective is to determine a well-defined and meaningful approximation of the solution set for linear and nonlinear three objective optimization problems. In this paper a continuous variable genetic algorithm is used to find approximate near optimal solution set. Objective functions are considered as fitness function without modification. Initial solution was generated within box constraint and solutions will be kept in feasible region during mutation and recombination. 展开更多
关键词 CHROMOSOME CROSSOVER HEURISTICS Mutation optimization Population Ranking genetic algorithms Multi-Objective pareto optimal solutions PARENT Selection
暂未订购
Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades 被引量:30
7
作者 王珑 王同光 罗源 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第6期739-748,共10页
The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an exa... The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multi objective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines. 展开更多
关键词 wind turbine multi-objective optimization pareto-optimal solution non-dominated sorting genetic algorithm (NSGA)-II
在线阅读 下载PDF
An Improved Simulation Annealing (SA) Algorithm for Solving Bilevel Multiobjective Programming Problem
8
作者 ZHANG Tao 《长江大学学报(自科版)(上旬)》 CAS 2012年第11期I0001-I0003,共3页
关键词 《长江大学学报》 英文摘要 期刊 编辑工作
在线阅读 下载PDF
求解多目标规划问题的Pareto多目标遗传算法 被引量:49
9
作者 赖红松 董品杰 祝国瑞 《系统工程》 CSCD 北大核心 2003年第5期24-28,共5页
针对传统的多目标优化方法的局限性 ,提出用于多目标规划问题求解的 Pareto多目标遗传算法。实验结果表明 ,该算法是可行有效的 。
关键词 多目标规划 遗传算法 适应度函数 pareto多目标遗传算法 决策者
在线阅读 下载PDF
多目标网络相异路径的Pareto解及其遗传算法 被引量:8
10
作者 李引珍 何瑞春 +1 位作者 郭耀煌 刘斌 《系统工程学报》 CSCD 北大核心 2008年第3期264-268,共5页
网络相异路径一般是多目标约束路径问题,具有重要应用价值.然而,由于问题的难解性,总是利用妥协思想将其转换为单目标问题求解.本文建立了双目标相异路径的一种优化模型,给出了模型求解过程中伪理想点的概念,提出了基于小生境共享竞争... 网络相异路径一般是多目标约束路径问题,具有重要应用价值.然而,由于问题的难解性,总是利用妥协思想将其转换为单目标问题求解.本文建立了双目标相异路径的一种优化模型,给出了模型求解过程中伪理想点的概念,提出了基于小生境共享竞争复制算子的遗传算法,该算法可求解多目标优化问题的 Pareto 解集.最后,给出了一个计算分析实例. 展开更多
关键词 相异路径 多目标优化 pareto解集 遗传算法
在线阅读 下载PDF
基于遗传多目标优化算法的Pareto最优解研究 被引量:1
11
作者 徐全元 鲁莹 《计算机光盘软件与应用》 2011年第15期135-135,共1页
遗传算法可有效求解多目标优化问题中的Pareto最优解,并利用MATLAB进行了仿真验证。
关键词 遗传算法 多目标优化 pareto最优解
在线阅读 下载PDF
基于Pareto遗传算法的仓库箱装军用物资垛位优化
12
作者 贺鑫 马振书 +1 位作者 杜峰坡 王垒 《物流技术》 2010年第16期142-145,共4页
垛位是否合理是影响后方仓库中箱装军用物资供应保障能力的一个重要因素。首先根据后方仓库中箱装军用物资堆垛优化原则和储存策略,建立了基于收发频率和同一性原则的多目标优化模型—箱装军用物资垛位优化数学模型;然后通过分析模型,... 垛位是否合理是影响后方仓库中箱装军用物资供应保障能力的一个重要因素。首先根据后方仓库中箱装军用物资堆垛优化原则和储存策略,建立了基于收发频率和同一性原则的多目标优化模型—箱装军用物资垛位优化数学模型;然后通过分析模型,提出采用Pareto遗传算法对垛位优化问题进行了求解,并给出求解的详细步骤;最后选用一个实例进行了应用,证明了该模型的合理性和算法的有效性。 展开更多
关键词 后方仓库 垛位优化 pareto最优解 遗传算法
在线阅读 下载PDF
基于Pareto改进猫群优化算法的多目标拆卸线平衡问题 被引量:5
13
作者 邹宾森 张则强 +1 位作者 李六柯 朱立夏 《信息与控制》 CSCD 北大核心 2017年第4期503-512,共11页
为求解多目标拆卸线平衡问题,提出了一种改进的猫群优化算法.在该算法中,针对拆卸线平衡问题以拆卸序列为编码的特点,提出一种基于随机数和固定扰动的搜寻模式确保猫在当前位置附近有效的随机搜索.将遗传算法交叉操作和变异操作引入跟... 为求解多目标拆卸线平衡问题,提出了一种改进的猫群优化算法.在该算法中,针对拆卸线平衡问题以拆卸序列为编码的特点,提出一种基于随机数和固定扰动的搜寻模式确保猫在当前位置附近有效的随机搜索.将遗传算法交叉操作和变异操作引入跟踪模式中指导种群向全局最优逼近,有效地克服了传统猫群优化算法容易早熟的缺点.建立外部档案集并采用精英保留策略加速算法的收敛.最后,通过将该算法用于求解经典的多目标拆卸线平衡问题算例并与其它算法对比,验证了算法的有效性. 展开更多
关键词 多目标优化 拆卸线平衡 pareto解集 猫群优化算法 遗传算法
原文传递
Optimization of maintenance strategy for high-speed railwaycatenary system based on multistate model 被引量:8
14
作者 YU Guo-liang SU Hong-sheng 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2019年第4期348-360,共13页
A multi-objective optimization model considering both reliability and maintenance cost is proposed to solve the contradiction between reliability and maintenance cost in high-speed railway catenary system maintenance ... A multi-objective optimization model considering both reliability and maintenance cost is proposed to solve the contradiction between reliability and maintenance cost in high-speed railway catenary system maintenance activities.The non-dominated sorting genetic algorithm 2(NSGA2)is applied to multi-objective optimization,and the optimization result is a set of Pareto solutions.Firstly,multistate failure mode analysis is conducted for the main devices leading to the failure of catenary,and then the reliability and failure mode of the whole catenary system is analyzed.The mathematical relationship between system reliability and maintenance cost is derived considering the existing catenary preventive maintenance mode to improve the reliability of the system.Secondly,an improved NSGA2(INSGA2)is proposed,which strengths population diversity by improving selection operator,and introduces local search strategy to ensure that population distribution is more uniform.The comparison results of the two algorithms before and after improvement on the zero-ductility transition(ZDT)series functions show that the population diversity is better and the solution is more uniform using INSGA2.Finally,the INSGA2 is applied to multi-objective optimization of system reliability and maintenance cost in different maintenance periods.The decision-makers can choose the reasonable solutions as the maintenance plans in the optimization results by weighing the relationship between the system reliability and the maintenance cost.The selected maintenance plans can ensure the lowest maintenance cost while the system reliability is as high as possible. 展开更多
关键词 high-speed railway CATENARY multi-objective optimization non-dominated sorting genetic algorithm 2(NSGA2) selection operator local search pareto solutions
在线阅读 下载PDF
基于Pareto多目标遗传算法的输电网扩展规划
15
作者 冯利 黄伟 +1 位作者 王颖 王涛 《现代电力》 2011年第1期1-5,共5页
提出将多目标遗传算法应用到输电网扩展规划,进而将N-1安全准则以罚函数的形式作为算法中多目标的一个目标,满足输电网规划对安全性的较高要求。本文多目标遗传算法引入最优个体保留策略,避免优秀个体丢失,加快收敛速度;N-1安全校验采... 提出将多目标遗传算法应用到输电网扩展规划,进而将N-1安全准则以罚函数的形式作为算法中多目标的一个目标,满足输电网规划对安全性的较高要求。本文多目标遗传算法引入最优个体保留策略,避免优秀个体丢失,加快收敛速度;N-1安全校验采用故障排序法提高计算效率。最后对一个标准算例进行仿真计算,结果表明:将N-1校验作为多目标的一个目标,能一步优化出满足输电网N-1安全性要求的解;与传统的单目标遗传算法相比,本文多目标遗传算法能提供均衡多个目标的最优解。 展开更多
关键词 多目标规划 遗传算法 pareto最优 N-1准则 输电网规划
原文传递
基于层级分解的前围声学包多目标优化 被引量:1
16
作者 杨帅 吴宪 薛顺达 《振动与冲击》 北大核心 2025年第3期267-277,共11页
搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变... 搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变量范围,以PBNR(power based noise reduction)均值作为约束,以质量和成本作为优化目标,采用非支配排序遗传算法(nondominated sorting genetic algorithm II,NSGA-II)进行多目标优化,得到Pareto多目标解集。并从中选取满足设计目标的最佳组合方案(材料组合、覆盖率、前围过孔密封方案选型)。结果显示,该模型最终的优化结果与实测结果接近,误差分别为0.35%,1.47%,1.82%,相较于初始声学包方案,优化后的结果显示,PBNR均值提升3.05%,其质量降低52.38%,成本降低15.15%,验证了所提方法的有效性和准确性。 展开更多
关键词 GAPSO-RBFNN 声学包 PBNR NSGA-II pareto多目标解集
在线阅读 下载PDF
面向磁控溅射全过程的复杂电磁环境分析与优化
17
作者 卿晓梅 丁友 马子超 《现代电子技术》 北大核心 2025年第24期36-40,共5页
在磁控溅射工艺中,磁场设计是决定溅射效率、薄膜质量及工艺经济性的核心因素。文中基于磁场-等离子体-薄膜性能的耦合机制,提出一种动态可调磁场与多区域协同优化策略,以解决传统静态磁场在复杂工艺中的调控瓶颈。针对靶材参数优化问题... 在磁控溅射工艺中,磁场设计是决定溅射效率、薄膜质量及工艺经济性的核心因素。文中基于磁场-等离子体-薄膜性能的耦合机制,提出一种动态可调磁场与多区域协同优化策略,以解决传统静态磁场在复杂工艺中的调控瓶颈。针对靶材参数优化问题,采用粒子群优化(PSO)算法对磁轭结构、磁场强度等关键参数进行全局寻优。在全流程的多目标优化过程中,通过非支配排序遗传算法(NSGA-Ⅱ)来同步优化薄膜均匀性、靶材利用率、沉积速率及能耗效率,构建Pareto最优解集。实验测试结果表明,所提方法在代际距离(GD=4.58×10-5)、间距指标(SP=7.55×10-3)和超体积(HV=0.551)等综合评价指标上均优于对比算法,验证了该方法具有良好的收敛性、多目标协同优化能力及综合性能。 展开更多
关键词 磁控溅射 磁场分析 粒子群优化算法 非支配排序遗传算法 多目标优化 pareto解集
在线阅读 下载PDF
集装箱码头堆存空间规划
18
作者 蔡立群 《上海海事大学学报》 北大核心 2025年第4期60-65,82,共7页
针对集装箱码头堆存空间长期规划问题,考虑船期冲突、泊位距离、进出口分离等要素,构建基于多目标混合整数规划的长期规划模型。设计第Ⅲ代非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅲ,NSGA-Ⅲ)求解该模型,并结合... 针对集装箱码头堆存空间长期规划问题,考虑船期冲突、泊位距离、进出口分离等要素,构建基于多目标混合整数规划的长期规划模型。设计第Ⅲ代非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅲ,NSGA-Ⅲ)求解该模型,并结合自适应交叉和变异策略,增强其在高维多目标问题上的搜索能力。经厦门港海天集装箱码头案例验证,在长期规划模型的支撑下,码头相关运营指标均得到不同程度的改善,尤其在船期冲突方面,优化幅度达57.5%。所提模型能满足集装箱码头堆存空间长期规划需要,具有一定的理论意义和实际应用价值。 展开更多
关键词 堆存空间规划 多目标混合整数规划 帕累托最优解集 第Ⅲ代非支配排序遗传算法(NSGA-Ⅲ)
在线阅读 下载PDF
基于精英选择和个体迁移的多目标遗传算法 被引量:28
19
作者 祁荣宾 钱锋 +1 位作者 杜文莉 颜学峰 《控制与决策》 EI CSCD 北大核心 2007年第2期164-168,共5页
提出基于遗传算法求解多目标优化问题的方法,将多目标问题分解成多个单目标优化问题,用遗传算法分别在每个单目标种群中并行搜索.在进化过程中的每一代,采用精英选择和个体迁移策略加快多个目标的并行搜索,提出了控制Pareto最优解数量... 提出基于遗传算法求解多目标优化问题的方法,将多目标问题分解成多个单目标优化问题,用遗传算法分别在每个单目标种群中并行搜索.在进化过程中的每一代,采用精英选择和个体迁移策略加快多个目标的并行搜索,提出了控制Pareto最优解数量并保持个体多样性的有限精度法,同时还提出了多目标遗传算法的终止条件.数值实验说明所提出的算法能较快地找到一组分布广泛且均匀的Pareto最优解. 展开更多
关键词 多目标优化 遗传算法 pareto最优解
在线阅读 下载PDF
基于多目标优化的纯电动车动力系统参数匹配方法 被引量:33
20
作者 张抗抗 徐梁飞 +4 位作者 华剑锋 李建秋 欧阳明高 赵小羽 成艾国 《汽车工程》 EI CSCD 北大核心 2015年第7期757-765,共9页
本文提出一种基于多目标优化的纯电动车动力系统的参数匹配方法。该方法以最高车速、加速时间和100km电耗等多个整车性能指标作为优化目标,以传动比为优化变量建立参数匹配优化模型;再以该车型的最基本性能指标作为约束条件得到传动比... 本文提出一种基于多目标优化的纯电动车动力系统的参数匹配方法。该方法以最高车速、加速时间和100km电耗等多个整车性能指标作为优化目标,以传动比为优化变量建立参数匹配优化模型;再以该车型的最基本性能指标作为约束条件得到传动比的可行域,在可行域中采用多目标遗传算法对优化问题进行求解;求出固定传动比变速器和两挡变速器两种情况下的Pareto最优解集,作为备选方案集;综合对比不同电机的备选方案集,确定最终的参数匹配方案,并进行样车的开发。转鼓试验结果表明,所开发车辆达到设计的性能指标,验证了所提出的参数匹配方法的有效性。 展开更多
关键词 纯电动车 pareto最优解集 参数匹配 多目标优化 遗传算法
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部