期刊文献+
共找到242,655篇文章
< 1 2 250 >
每页显示 20 50 100
“大数据、大模型、大计算”全新范式与舆情精准研判:理论和Multi-Agent实证两个向度的探索 被引量:1
1
作者 丁晓蔚 戚庆燕 刘梓航 《传媒观察》 2025年第2期28-42,共15页
本文探讨了“大数据、大模型、大计算”全新范式在舆情精准研判中的相关理论和应用实证。理论部分论述了该范式的概念和所涉关系,分析了其与Multi-Agent多智能体系统之间的联系。实证部分基于此范式在舆情研判中的应用案例,提出Multi-Ag... 本文探讨了“大数据、大模型、大计算”全新范式在舆情精准研判中的相关理论和应用实证。理论部分论述了该范式的概念和所涉关系,分析了其与Multi-Agent多智能体系统之间的联系。实证部分基于此范式在舆情研判中的应用案例,提出Multi-Agent多智能体协作驱动的舆情分析框架,构建全新的舆情研判流程,能有效应对动态变化的舆情环境。采用Multi-Agent对热点事件是否上热搜进行预测和检验,并与传统大模型和BERT模型进行对比分析。研究表明:Multi-Agent在应对涉及公众情感共鸣和社会性广泛事件时具有显著优势,能通过多角度的综合评估提升预测精度和鲁棒性。通过实证研究验证了Multi-Agent在舆情监测中的重要价值,为未来舆情精准研判提供了新的技术路径。 展开更多
关键词 “大数据、大模型、大计算”全新范式 multi-Agent多智能体系统 舆情精准研判
原文传递
便携式拉曼光谱仪结合CGAN-Multi-CNN模型的矿物精确识别方法研究
2
作者 向艳芳 石红 +1 位作者 张家臣 蔡耀仪 《分析测试学报》 北大核心 2025年第6期1075-1085,共11页
野外环境下天然未知矿物的快速识别受限于不同光谱设备分辨率差异、样本量不足导致的模型泛化能力弱以及高维复杂光谱特征的提取能力有限这三个难题。为了解决上述难题,该文设计并实现了一种多尺度卷积神经网络结合光谱样本生成的拉曼... 野外环境下天然未知矿物的快速识别受限于不同光谱设备分辨率差异、样本量不足导致的模型泛化能力弱以及高维复杂光谱特征的提取能力有限这三个难题。为了解决上述难题,该文设计并实现了一种多尺度卷积神经网络结合光谱样本生成的拉曼光谱分类模型,并联立便携式拉曼光谱仪实现了野外未知矿物的快速识别。首先,三次样条曲线拟合算法被用于实现不同设备所采集光谱的维数匹配,从而消除不同光谱设备之间采样分辨率的差异。其次,全球矿物光谱库包含1648类矿物的5668个光谱样本被送入生成对抗网络进行训练并产生15000个扩增样本,从而缓解了数据稀缺性对模型分类性能的制约。此外,一种新的多尺度深度卷积网络被用于同步提取拉曼光谱的宽峰与窄峰特征,从而增强复杂光谱的表征能力。实验中将所提出的模型与k-近邻(k-NN)、支持向量机(SVM)和随机森林(RF)等几类经典机器学习模型对未知矿物的识别性能进行对比。结果表明,所提出的多尺度卷积神经网络结合光谱样本生成的分类模型对未知矿物拉曼光谱的判别准确率远超其他传统机器学习模型,其top-1和top-3的准确率值分别为93.26%和98.94%。使用所提出的模型结合便携式拉曼光谱系统对50类未知天然矿石样本进行了识别,其准确率达到100%,单个样本的识别时间仅为1~2 min,体现了该方法快速、精确和无需取样制样的优势。 展开更多
关键词 拉曼光谱 矿物识别 重采样方法 多尺度卷积网络 条件生成对抗网络(CGAN)样本生成
在线阅读 下载PDF
Multi-shooting非线性MPC无人驾驶汽车轨迹跟踪控制
3
作者 朱仲文 蒋智涛 +2 位作者 王维志 江维海 李书华 《控制理论与应用》 北大核心 2025年第8期1477-1485,共9页
针对复杂路径下无人驾驶汽车轨迹跟踪精度不足和稳定性差的问题,本文研究了非线性MPC轨迹跟踪控制策略.首先基于brush轮胎模型建立了考虑轮胎滑移的车辆动力学模型.然后利用Multi-shooting算法将状态方程转化为函数连续性约束,独立计算... 针对复杂路径下无人驾驶汽车轨迹跟踪精度不足和稳定性差的问题,本文研究了非线性MPC轨迹跟踪控制策略.首先基于brush轮胎模型建立了考虑轮胎滑移的车辆动力学模型.然后利用Multi-shooting算法将状态方程转化为函数连续性约束,独立计算每个预测子区间的状态微分方程组,采用序列二次规划方法对非线性最优控制问题进行求解,得到最优控制输入.最后通过CarSim和MATLAB进行联合仿真,分别在36 km/h,54km/h和72 km/h3种车速下跟踪双移线轨迹,与传统的线性MPC控制器对比,3种车速下本文的控制策略横向跟踪累积误差降低了41.6%,46.6%和36.5%,控制效果得到提高,对不同车速有较好的鲁棒性.与基于Single-shooting的非线性MPC控制器对比,计算效率提高了61.9%,60%和52.8%,算法实时性得到了提高. 展开更多
关键词 无人驾驶汽车 轨迹跟踪 模型预测控制 multi-shooting算法
在线阅读 下载PDF
Efficient Resource Allocation in Cloud IaaS: A Multi-Objective Strategy for Minimizing Workflow Makespan and Cloud Resource Costs
4
作者 Jean Edgard Gnimassoun Dagou Dangui Augustin Sylvain Legrand Koffi Akanza Konan Ricky N’dri 《Open Journal of Applied Sciences》 2025年第1期147-167,共21页
The ease of accessing a virtually unlimited pool of resources makes Infrastructure as a Service (IaaS) clouds an ideal platform for running data-intensive workflow applications comprising hundreds of computational tas... The ease of accessing a virtually unlimited pool of resources makes Infrastructure as a Service (IaaS) clouds an ideal platform for running data-intensive workflow applications comprising hundreds of computational tasks. However, executing scientific workflows in IaaS cloud environments poses significant challenges due to conflicting objectives, such as minimizing execution time (makespan) and reducing resource utilization costs. This study responds to the increasing need for efficient and adaptable optimization solutions in dynamic and complex environments, which are critical for meeting the evolving demands of modern users and applications. This study presents an innovative multi-objective approach for scheduling scientific workflows in IaaS cloud environments. The proposed algorithm, MOS-MWMC, aims to minimize total execution time (makespan) and resource utilization costs by leveraging key features of virtual machine instances, such as a high number of cores and fast local SSD storage. By integrating realistic simulations based on the WRENCH framework, the method effectively dimensions the cloud infrastructure and optimizes resource usage. Experimental results highlight the superiority of MOS-MWMC compared to benchmark algorithms HEFT and Max-Min. The Pareto fronts obtained for the CyberShake, Epigenomics, and Montage workflows demonstrate closer proximity to the optimal front, confirming the algorithm’s ability to balance conflicting objectives. This study contributes to optimizing scientific workflows in complex environments by providing solutions tailored to specific user needs while minimizing costs and execution times. 展开更多
关键词 Cloud Infrastructure multi-Objective Scheduling Resource Cost Optimization Resource Utilization Scientific Workflows
在线阅读 下载PDF
Pricing Multi-Strike Quanto Call Options on Multiple Assets with Stochastic Volatility, Correlation, and Exchange Rates
5
作者 Boris Ter-Avanesov Gunter Meissner 《Applied Mathematics》 2025年第1期113-142,共30页
Quanto options allow the buyer to exchange the foreign currency payoff into the domestic currency at a fixed exchange rate. We investigate quanto options with multiple underlying assets valued in different foreign cur... Quanto options allow the buyer to exchange the foreign currency payoff into the domestic currency at a fixed exchange rate. We investigate quanto options with multiple underlying assets valued in different foreign currencies each with a different strike price in the payoff function. We carry out a comparative performance analysis of different stochastic volatility (SV), stochastic correlation (SC), and stochastic exchange rate (SER) models to determine the best combination of these models for Monte Carlo (MC) simulation pricing. In addition, we test the performance of all model variants with constant correlation as a benchmark. We find that a combination of GARCH-Jump SV, Weibull SC, and Ornstein Uhlenbeck (OU) SER performs best. In addition, we analyze different discretization schemes and their results. In our simulations, the Milstein scheme yields the best balance between execution times and lower standard deviations of price estimates. Furthermore, we find that incorporating mean reversion into stochastic correlation and stochastic FX rate modeling is beneficial for MC simulation pricing. We improve the accuracy of our simulations by implementing antithetic variates variance reduction. Finally, we derive the correlation risk parameters Cora and Gora in our framework so that correlation hedging of quanto options can be performed. 展开更多
关键词 Quanto Option multi-Strike Option Stochastic Volatility (SV) Stochastic Correlation (SC) Stochastic Exchange Rates (SER) CORA GORA Correlation Risk
在线阅读 下载PDF
AI-Powered Threat Detection in Online Communities: A Multi-Modal Deep Learning Approach
6
作者 Ravi Teja Potla 《Journal of Computer and Communications》 2025年第2期155-171,共17页
The fast increase of online communities has brought about an increase in cyber threats inclusive of cyberbullying, hate speech, misinformation, and online harassment, making content moderation a pressing necessity. Tr... The fast increase of online communities has brought about an increase in cyber threats inclusive of cyberbullying, hate speech, misinformation, and online harassment, making content moderation a pressing necessity. Traditional single-modal AI-based detection systems, which analyze both text, photos, or movies in isolation, have established useless at taking pictures multi-modal threats, in which malicious actors spread dangerous content throughout a couple of formats. To cope with these demanding situations, we advise a multi-modal deep mastering framework that integrates Natural Language Processing (NLP), Convolutional Neural Networks (CNNs), and Long Short-Term Memory (LSTM) networks to become aware of and mitigate online threats effectively. Our proposed model combines BERT for text class, ResNet50 for photograph processing, and a hybrid LSTM-3-d CNN community for video content material analysis. We constructed a large-scale dataset comprising 500,000 textual posts, 200,000 offensive images, and 50,000 annotated motion pictures from more than one platform, which includes Twitter, Reddit, YouTube, and online gaming forums. The system became carefully evaluated using trendy gadget mastering metrics which include accuracy, precision, remember, F1-score, and ROC-AUC curves. Experimental outcomes demonstrate that our multi-modal method extensively outperforms single-modal AI classifiers, achieving an accuracy of 92.3%, precision of 91.2%, do not forget of 90.1%, and an AUC rating of 0.95. The findings validate the necessity of integrating multi-modal AI for actual-time, high-accuracy online chance detection and moderation. Future paintings will have consciousness on improving hostile robustness, enhancing scalability for real-world deployment, and addressing ethical worries associated with AI-driven content moderation. 展开更多
关键词 multi-Model AI Deep Learning Natural Language Processing (NLP) Explainable AI (XI) Federated Learning Cyber Threat Detection LSTM CNNS
在线阅读 下载PDF
基于Multi-Head Attention机制优化的Bi-LSTM模型河道汇流模拟
7
作者 程帅 张娟 +2 位作者 李晓琳 杨默远 沈建明 《水文》 北大核心 2025年第2期80-87,共8页
为有效提取河道径流时间序列信息特征,提高河道汇流过程模拟预测的非线性拟合能力,构建一种融合双向长短期记忆网络(Bi-LSTM)、多头注意力机制(Multi-Head Attention)、前馈神经网络(FFNN)的河道汇流预测模型(MABLFN)。为验证MABLFN模... 为有效提取河道径流时间序列信息特征,提高河道汇流过程模拟预测的非线性拟合能力,构建一种融合双向长短期记忆网络(Bi-LSTM)、多头注意力机制(Multi-Head Attention)、前馈神经网络(FFNN)的河道汇流预测模型(MABLFN)。为验证MABLFN模型有效性,以永定河山峡段典型站点实测数据开展实例验证,并将预测结果与单一的LSTM、Bi-LSTM模型和具有物理机制的MIKE11模型预测结果进行对比分析,评估模型不同预报时长径流过程预测性能。结果表明:MABLFN模型能够较好地预测河道径流,MABLFN模型相比于LSTM模型、Bi-LSTM模型和MIKE11模型的RMSE降低了1%~52%,NSE提高了8%~9%;在计算效率方面MABLFN模型相比于LSTM模型、Bi-LSTM模型计算耗时由0.26 s增加至1.2 s,相比于MIKE11模型(360 s)计算耗时明显降低。 展开更多
关键词 河道汇流演算 双向长短期记忆网络 多头注意力机制 深度学习
在线阅读 下载PDF
基于Multi-Agent的无人机集群体系自主作战系统设计 被引量:5
8
作者 张堃 华帅 +1 位作者 袁斌林 杜睿怡 《系统工程与电子技术》 EI CSCD 北大核心 2024年第4期1273-1286,共14页
针对无人集群自主作战体系设计中的关键问题,提出基于Multi-Agent的无人集群自主作战系统设计方法。建立无人集群各节点的Agent模型及其推演规则;对于仿真系统模块化和通用化的需求,设计系统互操作式接口和无人集群自主作战的交互关系;... 针对无人集群自主作战体系设计中的关键问题,提出基于Multi-Agent的无人集群自主作战系统设计方法。建立无人集群各节点的Agent模型及其推演规则;对于仿真系统模块化和通用化的需求,设计系统互操作式接口和无人集群自主作战的交互关系;开展无人集群系统仿真推演验证。仿真结果表明,所提设计方案不仅能够有效开展并完成自主作战网络生成-集群演化-效能评估的全过程动态演示验证,而且能够通过重复随机试验进一步评估无人集群的协同作战效能,最后总结了集群协同作战的策略和经验。 展开更多
关键词 multi-AGENT 无人集群 体系设计 协同作战
在线阅读 下载PDF
Multi-ANRL:一种基于多粒度思想的属性网络表示学习算法
9
作者 邹佳贤 《安徽电气工程职业技术学院学报》 2025年第2期107-119,共13页
近些年,网络表示学习引发众多研究者的关注,其目的是将网络中的节点映射为低维向量,并保留网络骨干信息。目前在单一粒度上学习网络表示已有许多研究,然而很多网络呈现多粒度特性,因此如何有效利用各粒度网络的结构和属性信息学习更丰... 近些年,网络表示学习引发众多研究者的关注,其目的是将网络中的节点映射为低维向量,并保留网络骨干信息。目前在单一粒度上学习网络表示已有许多研究,然而很多网络呈现多粒度特性,因此如何有效利用各粒度网络的结构和属性信息学习更丰富的节点表示具有重要意义。文章提出一种基于多粒度思想的属性网络表示学习算法Multi-ANRL,该方法能快速构建多粒度网络,深度融合网络中节点的结构和属性信息,并保留网络层级信息。首先,根据相似关系对节点进行聚类,构建一系列不同粒度的网络。然后学习最粗层网络的节点表示作为原始网络的近似表示。最后利用基于相似特征增强的自动编码器模型学习粗化过程得到的网络表示,进而传递到原始网络。在3个数据集和节点分类任务上对Multi-ANRL进行了评估,实验结果表明,该方法在节点分类任务中的表现相较于现有多粒度方法有明显提升,能够有效学习网络的多粒度特性。 展开更多
关键词 多粒度 自动编码器 网络表示学习 聚类分析
在线阅读 下载PDF
基于Multi-Agent的水电站变压器故障诊断系统
10
作者 乔丹 马鹏 王琦 《自动化技术与应用》 2024年第7期58-61,65,共5页
为了精准、快速完成水电站变压器的故障诊断,设计基于Multi-Agent的水电站变压器故障诊断系统。变压器状态监控agent将检测到的变压器故障信息发送给系统管理agent,系统管理agent通过通信agent将变压器故障信息发送给变压器故障诊断age... 为了精准、快速完成水电站变压器的故障诊断,设计基于Multi-Agent的水电站变压器故障诊断系统。变压器状态监控agent将检测到的变压器故障信息发送给系统管理agent,系统管理agent通过通信agent将变压器故障信息发送给变压器故障诊断agent,变压器故障诊断agent利用小波变换方法提取变压器故障特征,并将其作为IFOA-SVM模型输入,完成变压器故障分类后,获取变压器故障诊断结果,该结果通过通信agent显示给用户。实验表明,该系统可有效诊断变压器故障诊断,诊断成功率受系统故障信息丢失率的影响较小,诊断耗时、耗能小,并具有较高故障诊断成功率。 展开更多
关键词 multi-AGENT 水电站 变压器 故障诊断 小波变换
在线阅读 下载PDF
Multi-Granularity Neighborhood Fuzzy Rough Set Model on Two Universes
11
作者 Ju Wang Xinghu Ai Li Fu 《Journal of Intelligent Learning Systems and Applications》 2024年第2期91-106,共16页
The two universes multi-granularity fuzzy rough set model is an effective tool for handling uncertainty problems between two domains with the help of binary fuzzy relations. This article applies the idea of neighborho... The two universes multi-granularity fuzzy rough set model is an effective tool for handling uncertainty problems between two domains with the help of binary fuzzy relations. This article applies the idea of neighborhood rough sets to two universes multi-granularity fuzzy rough sets, and discusses the two-universes multi-granularity neighborhood fuzzy rough set model. Firstly, the upper and lower approximation operators are defined in the two universes multi-granularity neighborhood fuzzy rough set model. Secondly, the properties of the upper and lower approximation operators are discussed. Finally, the properties of the two universes multi-granularity neighborhood fuzzy rough set model are verified through case studies. 展开更多
关键词 Fuzzy Set Two Universes multi-Granularity Rough Set multi-Granularity Neighborhood Fuzzy Rough Set
在线阅读 下载PDF
基于Multi-WHFPN与SimAM注意力机制的版面分割 被引量:1
12
作者 杨陈慧 周小亮 +2 位作者 张恒 孙政 业宁 《电子测量技术》 北大核心 2024年第1期159-168,共10页
作为OCR的预处理工作,版面分割技术越来越受到学术界和工业界重视。针对版面分割中遇到的检测速度慢、目标区域边界不准确以及细小目标易遗漏等问题,提出了YOLOv7-MSY模型。此模型首先借鉴残差连接思想,提出了Multi-WHFPN网络结构。它... 作为OCR的预处理工作,版面分割技术越来越受到学术界和工业界重视。针对版面分割中遇到的检测速度慢、目标区域边界不准确以及细小目标易遗漏等问题,提出了YOLOv7-MSY模型。此模型首先借鉴残差连接思想,提出了Multi-WHFPN网络结构。它采用可训练的权重参数,突出特征融合过程中特征重要性,并添加了小目标检测头,从而提升对小目标的检测性能;其次,引入SimAM注意力机制,可以在不增加额外参数的基础上在3D维度评估特征权重,以增强重要特征,抑制无效特征;最后,使用YEIOU来代替原模型中的定位损失函数,提升了模型的收敛速度与回归精度。在江苏省档案馆提供的数据集上进行实验对比,YOLOv7-MSY对目标区域边界检测更加敏感,对细小目标的检测效果更好。YOLOv7-MSY的mAP@.5达到了0.871,相较于原YOLOv7模型提高了7.84%。该模型的版面分割的效果优于其他类型的版面分割算法,具有良好的泛化性能,并且版面分割速度处于较高水平。 展开更多
关键词 版面分割 YOLOv7-MSY multi-WHFPN SimAM注意力机制 YEIOU
原文传递
基于长短时记忆神经网络的Multi-GNSS卫星钟差建模预报 被引量:5
13
作者 蒋春华 朱美珍 +1 位作者 薛慧杰 刘广盛 《大地测量与地球动力学》 CSCD 北大核心 2024年第3期257-262,共6页
针对卫星钟差预报中二次多项式模型存在易受噪声干扰、预报精度不高的问题,构建一种基于长短时记忆神经网络的multi-GNSS卫星钟差预报模型,并分析不同卫星系统、不同钟类型基于不同建模方案的模型精度。为验证该模型的有效性和可行性,利... 针对卫星钟差预报中二次多项式模型存在易受噪声干扰、预报精度不高的问题,构建一种基于长短时记忆神经网络的multi-GNSS卫星钟差预报模型,并分析不同卫星系统、不同钟类型基于不同建模方案的模型精度。为验证该模型的有效性和可行性,利用LSTM模型、QP模型、QP-LSTM模型分别基于12 h和24 h钟差序列进行建模,预报1 h、3 h、6 h、12 h钟差。结果表明,LSTM模型建模24 h、预报1 h精度最高。multi-GNSS卫星钟差LSTM预报模型中Galileo系统精度最高,其次为BDS-2系统和GPS系统,GLONASS系统精度最低,精度分别为0.018 ns、0.069 ns、0.133 ns、0.242 ns。不同原子钟预报精度不同,氢原子钟预报精度优于铷原子钟、铯原子钟。LSTM神经网络模型预报精度相较于QP-LSTM模型提升27%,相较于QP模型提升36%。 展开更多
关键词 长短时记忆神经网络(LSTM) 二次多项式模型 QP-LSTM模型 multi-GNSS卫星钟差预报
在线阅读 下载PDF
联合物理层与MAC层的multi-TRP上行重叠传输处理机制
14
作者 景小荣 熊杰 +1 位作者 孙健 陈前斌 《通信学报》 EI CSCD 北大核心 2024年第8期110-124,共15页
针对非理想回程下现有协议难以有效处理多传输接收节点(multi-TRP)场景中多定时提前(multi-TA)导致的严重上行链路(UL)重叠传输问题,联合改进物理层复用技术和介质访问控制(MAC)令牌桶技术,提出了一种新型的UL重叠传输处理机制。该新型... 针对非理想回程下现有协议难以有效处理多传输接收节点(multi-TRP)场景中多定时提前(multi-TA)导致的严重上行链路(UL)重叠传输问题,联合改进物理层复用技术和介质访问控制(MAC)令牌桶技术,提出了一种新型的UL重叠传输处理机制。该新型机制通过改进物理层重叠信道识别流程、复用要求及复用规则,将物理层复用信息与重叠信息反馈至MAC层,并对MAC层令牌桶技术进行优化。通过仿真实验对所提机制与现有协议机制进行对比,结果表明,在逻辑时隙不可重叠和可重叠2种情形下,物理上行控制信道(PUCCH)实际复用数量性能平均提升了57.58%和49.40%,物理上行共享信道(PUSCH)实际可用资源数量性能平均提升了12.09%和26.03%;优先级最高逻辑信道实际占用资源数量性能平均提升了33.33%和45.48%。 展开更多
关键词 多传输接收节点 上行链路 重叠传输 信道复用 令牌桶
在线阅读 下载PDF
Low-Rank Multi-View Subspace Clustering Based on Sparse Regularization 被引量:1
15
作者 Yan Sun Fanlong Zhang 《Journal of Computer and Communications》 2024年第4期14-30,共17页
Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The signif... Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The significance of low-rank prior in MVSC is emphasized, highlighting its role in capturing the global data structure across views for improved performance. However, it faces challenges with outlier sensitivity due to its reliance on the Frobenius norm for error measurement. Addressing this, our paper proposes a Low-Rank Multi-view Subspace Clustering Based on Sparse Regularization (LMVSC- Sparse) approach. Sparse regularization helps in selecting the most relevant features or views for clustering while ignoring irrelevant or noisy ones. This leads to a more efficient and effective representation of the data, improving the clustering accuracy and robustness, especially in the presence of outliers or noisy data. By incorporating sparse regularization, LMVSC-Sparse can effectively handle outlier sensitivity, which is a common challenge in traditional MVSC methods relying solely on low-rank priors. Then Alternating Direction Method of Multipliers (ADMM) algorithm is employed to solve the proposed optimization problems. Our comprehensive experiments demonstrate the efficiency and effectiveness of LMVSC-Sparse, offering a robust alternative to traditional MVSC methods. 展开更多
关键词 CLUSTERING multi-View Subspace Clustering Low-Rank Prior Sparse Regularization
在线阅读 下载PDF
A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification 被引量:2
16
作者 Adama Dembele Ronald Waweru Mwangi Ananda Omutokoh Kube 《Journal of Computer and Communications》 2024年第2期173-200,共28页
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso... Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline. 展开更多
关键词 MobileNet Image Classification Lightweight Convolutional Neural Network Depthwise Dilated Separable Convolution Hierarchical multi-Scale Feature Fusion
在线阅读 下载PDF
Multi-agent Based Hierarchy Simulation Models of Carrier-based Aircraft Catapult Launch 被引量:19
17
作者 王维军 屈香菊 郭林亮 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第3期223-231,共9页
With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as ... With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as aggregation agents, the detailed components like catapult, landing gears, and disturbances are considered as meta-agents, which belong to their aggregation agent. Thus, the model with two layers is formed i.e. the aggregation agent layer and the meta-agent layer. The information communication among all agents is described. The meta-agents within one aggregation agent communicate with each other directly by information sharing, but the meta-agents, which belong to different aggregation agents exchange their information through the aggregation layer first, and then perceive it from the sharing environment, that is the aggregation agent. Thus, not only the hierarchy model is built, but also the environment perceived by each agent is specified. Meanwhile, the problem of balancing the independency of agent and the resource consumption brought by real-time communication within multi-agent system (MAS) is resolved. Each agent involved in carrier-based aircraft catapult launch is depicted, with considering the interaction within disturbed atmospheric environment and multiple motion bodies including carrier, aircraft, and landing gears. The models of reactive agents among them are derived based on tensors, and the perceived messages and inner frameworks of each agent are characterized. Finally, some results of a simulation instance are given. The simulation and modeling of dynamic system based on multi-agent system is of benefit to express physical concepts and logical hierarchy clearly and precisely. The system model can easily draw in kinds of other agents to achieve a precise simulation of more complex system. This modeling technique makes the complex integral dynamic equations of multibodies decompose into parallel operations of single agent, and it is convenient to expand, maintain, and reuse the program codes. 展开更多
关键词 multi-agent system (MAS) multi-agent based modeling (MABM) TENSOR carrier-based aircraft catapult launch hierarchy simulation model
在线阅读 下载PDF
Contribution of GIS to Soil Landscape Mapping by Multi-Criteria Analysis Using Weighting: The Case of the Square Degrees of M’Bahiakro (Centre) and Daloa (Centre-West) in Ivory Coast
18
作者 Guy Fernand Yao Derving Baka +5 位作者 Nestor Kouman Yao Kouakou Bala Mamadou Ouattara Kouadio Amani Jean Lopez Essehi Brou Kouame Albert Yao-Kouame 《Open Journal of Geology》 CAS 2024年第1期101-116,共16页
As part of the drive to improve coffee and cocoa production in Ivory Coast, studies are carried out to identify soils that are favourable for these crops. It is therefore necessary to orientate soil investigations bas... As part of the drive to improve coffee and cocoa production in Ivory Coast, studies are carried out to identify soils that are favourable for these crops. It is therefore necessary to orientate soil investigations based on reliable criteria that best discriminate soil cover. With this in mind, this study is being carried out to help improve survey methods by mapping soil landscapes. It uses GIS and weighted multicriteria analysis. To do this, satellite images were processed and the geological map of the square degrees of M’Bahiakro and Daloa was reclassified. The results show that relief is the main factor in soil landscape differentiation, with respective weights of 0.58 and 0.67 for the forest and pre-forest zones. In contrast, the weight of geological formation in soil landscape differentiation remains low (0.05 for the forest zone and 0.07 for the pre-forest zone). The criteria used on the base of aggregation sum methods have made it possible to formulate soil landscape mapping prediction functions according to agro-ecological environments in the humid intertropical zone. This is essential for the orientation of soil survey work. Nevertheless, other comparative methods, such as the coding mapping method, could provide elements for discussion to validate the models. 展开更多
关键词 GIS multi-Criteria Analysis Soil Landscapes M’Bahiakro Daloa Ivory Coast
在线阅读 下载PDF
基于Anubis的Multi-GNSS观测质量评估与可视化表达
19
作者 董国桥 王友昆 +3 位作者 胡伟清 寸寿才 施明鲜 刘晨 《工程勘察》 2024年第7期40-43,共4页
为满足Multi-GNSS观测数据质量评估的需求,基于G-Nut/Anubis和MATLAB软件开发了多指标量化与可视化表达程序KMQC。该程序能够显著改善原生Anubis存在的交互性差和可视化性能低等问题,可便捷地输出BDS、GPS和GLONASS等系统的观测质量分... 为满足Multi-GNSS观测数据质量评估的需求,基于G-Nut/Anubis和MATLAB软件开发了多指标量化与可视化表达程序KMQC。该程序能够显著改善原生Anubis存在的交互性差和可视化性能低等问题,可便捷地输出BDS、GPS和GLONASS等系统的观测质量分析图表。本研究采集了KMCORS中3个基准站2022年7d的RNX3观测数据,对KMQC的性能进行测试。结果表明,该程序可高效输出CORS站的Multi-GNSS观测数据评估结果,并能够通过各型图表进行直观表达。因此,该软件能够显著降低多元GNSS观测数据的质量检核难度,可有效辅助质检部门及时监控CORS系统的运行健康度。 展开更多
关键词 multi-GNSS G-Nut/Anubis MATLAB 观测质量评估
原文传递
MULTI-VALUED TOTALLY QUASI-φ-ASYMPTOTICALLY NONEXPANSIVE SEMI-GROUPS AND STRONG CONVERGENCE THEOREMS IN BANACH SPACES
20
作者 张石生 王林 赵云河 《Acta Mathematica Scientia》 SCIE CSCD 2013年第2期589-599,共11页
The purpose of this article is first to introduce the concept of multi-valued to- tally Quasi-φ-asymptotically nonexpansive semi-groups, which contains many kinds of semi- groups as its special cases, and then to mod... The purpose of this article is first to introduce the concept of multi-valued to- tally Quasi-φ-asymptotically nonexpansive semi-groups, which contains many kinds of semi- groups as its special cases, and then to modify the Halpern-Mann-type iteration algorithm for multi-valued totally Quasi-cS-asymptotically nonexpansive semi-groups to have the strong convergence under a limit condition only in the framework of Banach spaces. The results presented in this article improve and extend the corresponding results announced by many authors recently. 展开更多
关键词 multi-valued totally Quasi-q^-asymptotically nonexpansive semi-groups mod-ified Halpern-Mann-type iteration multi-valued quasi-qS-symptotically nonex-pansive semi-groups multi-valued quasi-~b-nonexpansive semi-groups multi-valued relatively nonexpansive semi-groups generalized projection
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部