期刊文献+
共找到267,652篇文章
< 1 2 250 >
每页显示 20 50 100
A pipelining task offloading strategy via delay-aware multi-agent reinforcement learning in Cybertwin-enabled 6G network
1
作者 Haiwen Niu Luhan Wang +3 位作者 Keliang Du Zhaoming Lu Xiangming Wen Yu Liu 《Digital Communications and Networks》 2025年第1期92-105,共14页
Cybertwin-enabled 6th Generation(6G)network is envisioned to support artificial intelligence-native management to meet changing demands of 6G applications.Multi-Agent Deep Reinforcement Learning(MADRL)technologies dri... Cybertwin-enabled 6th Generation(6G)network is envisioned to support artificial intelligence-native management to meet changing demands of 6G applications.Multi-Agent Deep Reinforcement Learning(MADRL)technologies driven by Cybertwins have been proposed for adaptive task offloading strategies.However,the existence of random transmission delay between Cybertwin-driven agents and underlying networks is not considered in related works,which destroys the standard Markov property and increases the decision reaction time to reduce the task offloading strategy performance.In order to address this problem,we propose a pipelining task offloading method to lower the decision reaction time and model it as a delay-aware Markov Decision Process(MDP).Then,we design a delay-aware MADRL algorithm to minimize the weighted sum of task execution latency and energy consumption.Firstly,the state space is augmented using the lastly-received state and historical actions to rebuild the Markov property.Secondly,Gate Transformer-XL is introduced to capture historical actions'importance and maintain the consistent input dimension dynamically changed due to random transmission delays.Thirdly,a sampling method and a new loss function with the difference between the current and target state value and the difference between real state-action value and augmented state-action value are designed to obtain state transition trajectories close to the real ones.Numerical results demonstrate that the proposed methods are effective in reducing reaction time and improving the task offloading performance in the random-delay Cybertwin-enabled 6G networks. 展开更多
关键词 Cybertwin multi-Agent Deep Reinforcement Learning(MADRL) task offloading PIPELINING Delay-aware
在线阅读 下载PDF
Terminal Multitask Parallel Offloading Algorithm Based on Deep Reinforcement Learning
2
作者 Zhang Lincong Li Yang +2 位作者 Zhao Weinan Liu Xiangyu Guo Lei 《China Communications》 2025年第7期30-43,共14页
The advent of the internet-of-everything era has led to the increased use of mobile edge computing.The rise of artificial intelligence has provided many possibilities for the low-latency task-offloading demands of use... The advent of the internet-of-everything era has led to the increased use of mobile edge computing.The rise of artificial intelligence has provided many possibilities for the low-latency task-offloading demands of users,but existing technologies rigidly assume that there is only one task to be offloaded in each time slot at the terminal.In practical scenarios,there are often numerous computing tasks to be executed at the terminal,leading to a cumulative delay for subsequent task offloading.Therefore,the efficient processing of multiple computing tasks on the terminal has become highly challenging.To address the lowlatency offloading requirements for multiple computational tasks on terminal devices,we propose a terminal multitask parallel offloading algorithm based on deep reinforcement learning.Specifically,we first establish a mobile edge computing system model consisting of a single edge server and multiple terminal users.We then model the task offloading decision problem as a Markov decision process,and solve this problem using the Dueling Deep-Q Network algorithm to obtain the optimal offloading strategy.Experimental results demonstrate that,under the same constraints,our proposed algorithm reduces the average system latency. 展开更多
关键词 deep reinforcement learning mobile edge computing multitask parallel offloading task offloading
在线阅读 下载PDF
Multi-station multi-robot task assignment method based on deep reinforcement learning
3
作者 Junnan Zhang Ke Wang Chaoxu Mu 《CAAI Transactions on Intelligence Technology》 2025年第1期134-146,共13页
This paper focuses on the problem of multi-station multi-robot spot welding task assignment,and proposes a deep reinforcement learning(DRL)framework,which is made up of a public graph attention network and independent... This paper focuses on the problem of multi-station multi-robot spot welding task assignment,and proposes a deep reinforcement learning(DRL)framework,which is made up of a public graph attention network and independent policy networks.The graph of welding spots distribution is encoded using the graph attention network.Independent policy networks with attention mechanism as a decoder can handle the encoded graph and decide to assign robots to different tasks.The policy network is used to convert the large scale welding spots allocation problem to multiple small scale singlerobot welding path planning problems,and the path planning problem is quickly solved through existing methods.Then,the model is trained through reinforcement learning.In addition,the task balancing method is used to allocate tasks to multiple stations.The proposed algorithm is compared with classical algorithms,and the results show that the algorithm based on DRL can produce higher quality solutions. 展开更多
关键词 attention mechanism deep reinforcement learning graph neural network industrial robot task allocation
在线阅读 下载PDF
Efficient Task Allocation for Energy and Execution Time Trade-Off in Edge Computing Using Multi-Objective IPSO
4
作者 Jafar Aminu Rohaya Latip +2 位作者 Zurina Mohd Hanafi Shafinah Kamarudin Danlami Gabi 《Computers, Materials & Continua》 2025年第8期2989-3011,共23页
As mobile edge computing continues to develop,the demand for resource-intensive applications is steadily increasing,placing a significant strain on edge nodes.These nodes are normally subject to various constraints,fo... As mobile edge computing continues to develop,the demand for resource-intensive applications is steadily increasing,placing a significant strain on edge nodes.These nodes are normally subject to various constraints,for instance,limited processing capability,a few energy sources,and erratic availability being some of the common ones.Correspondingly,these problems require an effective task allocation algorithmto optimize the resources through continued high system performance and dependability in dynamic environments.This paper proposes an improved Particle Swarm Optimization technique,known as IPSO,for multi-objective optimization in edge computing to overcome these issues.To this end,the IPSO algorithm tries to make a trade-off between two important objectives,which are energy consumption minimization and task execution time reduction.Because of global optimal position mutation and dynamic adjustment to inertia weight,the proposed optimization algorithm can effectively distribute tasks among edge nodes.As a result,it reduces the execution time of tasks and energy consumption.In comparative assessments carried out by IPSO with benchmark methods such as Energy-aware Double-fitness Particle Swarm Optimization(EADPSO)and ICBA,IPSO provides better results than these algorithms.For the maximum task size,when compared with the benchmark methods,IPSO reduces the execution time by 17.1%and energy consumption by 31.58%.These results allow the conclusion that IPSO is an efficient and scalable technique for task allocation at the edge environment.It provides peak efficiency while handling scarce resources and variable workloads. 展开更多
关键词 Keyword edge computing energy consumption execution time particle swarm optimization task allocation
在线阅读 下载PDF
Multi-strategy Enhanced Hiking Optimization Algorithm for Task Scheduling in the Cloud Environment
5
作者 Libang Wu Shaobo Li +2 位作者 Fengbin Wu Rongxiang Xie Panliang Yuan 《Journal of Bionic Engineering》 2025年第3期1506-1534,共29页
Metaheuristic algorithms are pivotal in cloud task scheduling. However, the complexity and uncertainty of the scheduling problem severely limit algorithms. To bypass this circumvent, numerous algorithms have been prop... Metaheuristic algorithms are pivotal in cloud task scheduling. However, the complexity and uncertainty of the scheduling problem severely limit algorithms. To bypass this circumvent, numerous algorithms have been proposed. The Hiking Optimization Algorithm (HOA) have been used in multiple fields. However, HOA suffers from local optimization, slow convergence, and low efficiency of late iteration search when solving cloud task scheduling problems. Thus, this paper proposes an improved HOA called CMOHOA. It collaborates with multi-strategy to improve HOA. Specifically, Chebyshev chaos is introduced to increase population diversity. Then, a hybrid speed update strategy is designed to enhance convergence speed. Meanwhile, an adversarial learning strategy is introduced to enhance the search capability in the late iteration. Different scenarios of scheduling problems are used to test the CMOHOA’s performance. First, CMOHOA was used to solve basic cloud computing task scheduling problems, and the results showed that it reduced the average total cost by 10% or more. Secondly, CMOHOA has been applied to edge fog cloud scheduling problems, and the results show that it reduces the average total scheduling cost by 2% or more. Finally, CMOHOA reduced the average total cost by 7% or more in scheduling problems for information transmission. 展开更多
关键词 task scheduling Chebyshev chaos Hybrid speed update strategy Metaheuristic algorithms The Hiking Optimization Algorithm(HOA)
在线阅读 下载PDF
Multi-Robot Task Allocation Using Multimodal Multi-Objective Evolutionary Algorithm Based on Deep Reinforcement Learning 被引量:4
6
作者 苗镇华 黄文焘 +1 位作者 张依恋 范勤勤 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第3期377-387,共11页
The overall performance of multi-robot collaborative systems is significantly affected by the multi-robot task allocation.To improve the effectiveness,robustness,and safety of multi-robot collaborative systems,a multi... The overall performance of multi-robot collaborative systems is significantly affected by the multi-robot task allocation.To improve the effectiveness,robustness,and safety of multi-robot collaborative systems,a multimodal multi-objective evolutionary algorithm based on deep reinforcement learning is proposed in this paper.The improved multimodal multi-objective evolutionary algorithm is used to solve multi-robot task allo-cation problems.Moreover,a deep reinforcement learning strategy is used in the last generation to provide a high-quality path for each assigned robot via an end-to-end manner.Comparisons with three popular multimodal multi-objective evolutionary algorithms on three different scenarios of multi-robot task allocation problems are carried out to verify the performance of the proposed algorithm.The experimental test results show that the proposed algorithm can generate sufficient equivalent schemes to improve the availability and robustness of multi-robot collaborative systems in uncertain environments,and also produce the best scheme to improve the overall task execution efficiency of multi-robot collaborative systems. 展开更多
关键词 multi-robot task allocation multi-robot cooperation path planning multimodal multi-objective evo-lutionary algorithm deep reinforcement learning
原文传递
Policy Network-Based Dual-Agent Deep Reinforcement Learning for Multi-Resource Task Offloading in Multi-Access Edge Cloud Networks 被引量:1
7
作者 Feng Chuan Zhang Xu +2 位作者 Han Pengchao Ma Tianchun Gong Xiaoxue 《China Communications》 SCIE CSCD 2024年第4期53-73,共21页
The Multi-access Edge Cloud(MEC) networks extend cloud computing services and capabilities to the edge of the networks. By bringing computation and storage capabilities closer to end-users and connected devices, MEC n... The Multi-access Edge Cloud(MEC) networks extend cloud computing services and capabilities to the edge of the networks. By bringing computation and storage capabilities closer to end-users and connected devices, MEC networks can support a wide range of applications. MEC networks can also leverage various types of resources, including computation resources, network resources, radio resources,and location-based resources, to provide multidimensional resources for intelligent applications in 5/6G.However, tasks generated by users often consist of multiple subtasks that require different types of resources. It is a challenging problem to offload multiresource task requests to the edge cloud aiming at maximizing benefits due to the heterogeneity of resources provided by devices. To address this issue,we mathematically model the task requests with multiple subtasks. Then, the problem of task offloading of multi-resource task requests is proved to be NP-hard. Furthermore, we propose a novel Dual-Agent Deep Reinforcement Learning algorithm with Node First and Link features(NF_L_DA_DRL) based on the policy network, to optimize the benefits generated by offloading multi-resource task requests in MEC networks. Finally, simulation results show that the proposed algorithm can effectively improve the benefit of task offloading with higher resource utilization compared with baseline algorithms. 展开更多
关键词 benefit maximization deep reinforcement learning multi-access edge cloud task offloading
在线阅读 下载PDF
Multi-Agent Deep Deterministic Policy Gradien-Based Task Offloading Resource Allocation Joint Offloading 被引量:1
8
作者 Xuan Zhang Xiaohui Hu 《Journal of Computer and Communications》 2024年第6期152-168,共17页
With the advancement of technology and the continuous innovation of applications, low-latency applications such as drones, online games and virtual reality are gradually becoming popular demands in modern society. How... With the advancement of technology and the continuous innovation of applications, low-latency applications such as drones, online games and virtual reality are gradually becoming popular demands in modern society. However, these applications pose a great challenge to the traditional centralized mobile cloud computing paradigm, and it is obvious that the traditional cloud computing model is already struggling to meet such demands. To address the shortcomings of cloud computing, mobile edge computing has emerged. Mobile edge computing provides users with computing and storage resources by offloading computing tasks to servers at the edge of the network. However, most existing work only considers single-objective performance optimization in terms of latency or energy consumption, but not balanced optimization in terms of latency and energy consumption. To reduce task latency and device energy consumption, the problem of joint optimization of computation offloading and resource allocation in multi-cell, multi-user, multi-server MEC environments is investigated. In this paper, a dynamic computation offloading algorithm based on Multi-Agent Deep Deterministic Policy Gradient (MADDPG) is proposed to obtain the optimal policy. The experimental results show that the algorithm proposed in this paper reduces the delay by 5 ms compared to PPO, 1.5 ms compared to DDPG and 10.7 ms compared to DQN, and reduces the energy consumption by 300 compared to PPO, 760 compared to DDPG and 380 compared to DQN. This fully proves that the algorithm proposed in this paper has excellent performance. 展开更多
关键词 Edge Computing task Offloading Deep Reinforcement Learning Resource Allocation MADDPG
在线阅读 下载PDF
便携式拉曼光谱仪结合CGAN-Multi-CNN模型的矿物精确识别方法研究
9
作者 向艳芳 石红 +1 位作者 张家臣 蔡耀仪 《分析测试学报》 北大核心 2025年第6期1075-1085,共11页
野外环境下天然未知矿物的快速识别受限于不同光谱设备分辨率差异、样本量不足导致的模型泛化能力弱以及高维复杂光谱特征的提取能力有限这三个难题。为了解决上述难题,该文设计并实现了一种多尺度卷积神经网络结合光谱样本生成的拉曼... 野外环境下天然未知矿物的快速识别受限于不同光谱设备分辨率差异、样本量不足导致的模型泛化能力弱以及高维复杂光谱特征的提取能力有限这三个难题。为了解决上述难题,该文设计并实现了一种多尺度卷积神经网络结合光谱样本生成的拉曼光谱分类模型,并联立便携式拉曼光谱仪实现了野外未知矿物的快速识别。首先,三次样条曲线拟合算法被用于实现不同设备所采集光谱的维数匹配,从而消除不同光谱设备之间采样分辨率的差异。其次,全球矿物光谱库包含1648类矿物的5668个光谱样本被送入生成对抗网络进行训练并产生15000个扩增样本,从而缓解了数据稀缺性对模型分类性能的制约。此外,一种新的多尺度深度卷积网络被用于同步提取拉曼光谱的宽峰与窄峰特征,从而增强复杂光谱的表征能力。实验中将所提出的模型与k-近邻(k-NN)、支持向量机(SVM)和随机森林(RF)等几类经典机器学习模型对未知矿物的识别性能进行对比。结果表明,所提出的多尺度卷积神经网络结合光谱样本生成的分类模型对未知矿物拉曼光谱的判别准确率远超其他传统机器学习模型,其top-1和top-3的准确率值分别为93.26%和98.94%。使用所提出的模型结合便携式拉曼光谱系统对50类未知天然矿石样本进行了识别,其准确率达到100%,单个样本的识别时间仅为1~2 min,体现了该方法快速、精确和无需取样制样的优势。 展开更多
关键词 拉曼光谱 矿物识别 重采样方法 多尺度卷积网络 条件生成对抗网络(CGAN)样本生成
在线阅读 下载PDF
A Task Offloading Strategy Based on Multi-Agent Deep Reinforcement Learning for Offshore Wind Farm Scenarios
10
作者 Zeshuang Song Xiao Wang +4 位作者 Qing Wu Yanting Tao Linghua Xu Yaohua Yin Jianguo Yan 《Computers, Materials & Continua》 SCIE EI 2024年第10期985-1008,共24页
This research is the first application of Unmanned Aerial Vehicles(UAVs)equipped with Multi-access Edge Computing(MEC)servers to offshore wind farms,providing a new task offloading solution to address the challenge of... This research is the first application of Unmanned Aerial Vehicles(UAVs)equipped with Multi-access Edge Computing(MEC)servers to offshore wind farms,providing a new task offloading solution to address the challenge of scarce edge servers in offshore wind farms.The proposed strategy is to offload the computational tasks in this scenario to other MEC servers and compute them proportionally,which effectively reduces the computational pressure on local MEC servers when wind turbine data are abnormal.Finally,the task offloading problem is modeled as a multi-intelligent deep reinforcement learning problem,and a task offloading model based on MultiAgent Deep Reinforcement Learning(MADRL)is established.The Adaptive Genetic Algorithm(AGA)is used to explore the action space of the Deep Deterministic Policy Gradient(DDPG),which effectively solves the problem of slow convergence of the DDPG algorithm in the high-dimensional action space.The simulation results show that the proposed algorithm,AGA-DDPG,saves approximately 61.8%,55%,21%,and 33%of the overall overhead compared to local MEC,random offloading,TD3,and DDPG,respectively.The proposed strategy is potentially important for improving real-time monitoring,big data analysis,and predictive maintenance of offshore wind farm operation and maintenance systems. 展开更多
关键词 Offshore wind MEC task offloading MADRL AGA-DDPG
在线阅读 下载PDF
Task Offloading and Resource Allocation in NOMA-VEC:A Multi-Agent Deep Graph Reinforcement Learning Algorithm
11
作者 Hu Yonghui Jin Zuodong +1 位作者 Qi Peng Tao Dan 《China Communications》 SCIE CSCD 2024年第8期79-88,共10页
Vehicular edge computing(VEC)is emerging as a promising solution paradigm to meet the requirements of compute-intensive applications in internet of vehicle(IoV).Non-orthogonal multiple access(NOMA)has advantages in im... Vehicular edge computing(VEC)is emerging as a promising solution paradigm to meet the requirements of compute-intensive applications in internet of vehicle(IoV).Non-orthogonal multiple access(NOMA)has advantages in improving spectrum efficiency and dealing with bandwidth scarcity and cost.It is an encouraging progress combining VEC and NOMA.In this paper,we jointly optimize task offloading decision and resource allocation to maximize the service utility of the NOMA-VEC system.To solve the optimization problem,we propose a multiagent deep graph reinforcement learning algorithm.The algorithm extracts the topological features and relationship information between agents from the system state as observations,outputs task offloading decision and resource allocation simultaneously with local policy network,which is updated by a local learner.Simulation results demonstrate that the proposed method achieves a 1.52%∼5.80%improvement compared with the benchmark algorithms in system service utility. 展开更多
关键词 edge computing graph convolutional network reinforcement learning task offloading
在线阅读 下载PDF
A Multi-Task Deep Learning Framework for Simultaneous Detection of Thoracic Pathology through Image Classification
12
作者 Nada Al Zahrani Ramdane Hedjar +4 位作者 Mohamed Mekhtiche Mohamed Bencherif Taha Al Fakih Fattoh Al-Qershi Muna Alrazghan 《Journal of Computer and Communications》 2024年第4期153-170,共18页
Thoracic diseases pose significant risks to an individual's chest health and are among the most perilous medical diseases. They can impact either one or both lungs, which leads to a severe impairment of a person’... Thoracic diseases pose significant risks to an individual's chest health and are among the most perilous medical diseases. They can impact either one or both lungs, which leads to a severe impairment of a person’s ability to breathe normally. Some notable examples of such diseases encompass pneumonia, lung cancer, coronavirus disease 2019 (COVID-19), tuberculosis, and chronic obstructive pulmonary disease (COPD). Consequently, early and precise detection of these diseases is paramount during the diagnostic process. Traditionally, the primary methods employed for the detection involve the use of X-ray imaging or computed tomography (CT) scans. Nevertheless, due to the scarcity of proficient radiologists and the inherent similarities between these diseases, the accuracy of detection can be compromised, leading to imprecise or erroneous results. To address this challenge, scientists have turned to computer-based solutions, aiming for swift and accurate diagnoses. The primary objective of this study is to develop two machine learning models, utilizing single-task and multi-task learning frameworks, to enhance classification accuracy. Within the multi-task learning architecture, two principal approaches exist soft parameter sharing and hard parameter sharing. Consequently, this research adopts a multi-task deep learning approach that leverages CNNs to achieve improved classification performance for the specified tasks. These tasks, focusing on pneumonia and COVID-19, are processed and learned simultaneously within a multi-task model. To assess the effectiveness of the trained model, it is rigorously validated using three different real-world datasets for training and testing. 展开更多
关键词 PNEUMONIA Thoracic Pathology COVID-19 Deep Learning multi-task Learning
暂未订购
MADDPG-D2: An Intelligent Dynamic Task Allocation Algorithm Based on Multi-Agent Architecture Driven by Prior Knowledge
13
作者 Tengda Li Gang Wang Qiang Fu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2559-2586,共28页
Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task allocation(DTA)and high-dimensional decision space with single agent,this paper combines the deep reinfor... Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task allocation(DTA)and high-dimensional decision space with single agent,this paper combines the deep reinforce-ment learning(DRL)theory and an improved Multi-Agent Deep Deterministic Policy Gradient(MADDPG-D2)algorithm with a dual experience replay pool and a dual noise based on multi-agent architecture is proposed to improve the efficiency of DTA.The algorithm is based on the traditional Multi-Agent Deep Deterministic Policy Gradient(MADDPG)algorithm,and considers the introduction of a double noise mechanism to increase the action exploration space in the early stage of the algorithm,and the introduction of a double experience pool to improve the data utilization rate;at the same time,in order to accelerate the training speed and efficiency of the agents,and to solve the cold-start problem of the training,the a priori knowledge technology is applied to the training of the algorithm.Finally,the MADDPG-D2 algorithm is compared and analyzed based on the digital battlefield of ground and air confrontation.The experimental results show that the agents trained by the MADDPG-D2 algorithm have higher win rates and average rewards,can utilize the resources more reasonably,and better solve the problem of the traditional single agent algorithms facing the difficulty of solving the problem in the high-dimensional decision space.The MADDPG-D2 algorithm based on multi-agent architecture proposed in this paper has certain superiority and rationality in DTA. 展开更多
关键词 Deep reinforcement learning dynamic task allocation intelligent decision-making multi-agent system MADDPG-D2 algorithm
在线阅读 下载PDF
Multi-Agent Collaborative Task Planning with Uncertain Task Requirements
14
作者 Jia Zhang Zexuan Jin Qichen Dong 《Journal of Beijing Institute of Technology》 EI CAS 2024年第5期361-373,共13页
In response to the uncertainty of information of the injured in post disaster situations,considering constraints such as random chance and the quantity of rescue resource,the split deliv-ery vehicle routing problem wi... In response to the uncertainty of information of the injured in post disaster situations,considering constraints such as random chance and the quantity of rescue resource,the split deliv-ery vehicle routing problem with stochastic demands(SDVRPSD)model and the multi-depot split delivery heterogeneous vehicle routing problem with stochastic demands(MDSDHVRPSD)model are established.A two-stage hybrid variable neighborhood tabu search algorithm is designed for unmanned vehicle task planning to minimize the path cost of rescue plans.Simulation experiments show that the solution obtained by the algorithm can effectively reduce the rescue vehicle path cost and the rescue task completion time,with high optimization quality and certain portability. 展开更多
关键词 multi-agent collaboration task planning vehicle routing problem stochastic demands
在线阅读 下载PDF
“大数据、大模型、大计算”全新范式与舆情精准研判:理论和Multi-Agent实证两个向度的探索 被引量:1
15
作者 丁晓蔚 戚庆燕 刘梓航 《传媒观察》 2025年第2期28-42,共15页
本文探讨了“大数据、大模型、大计算”全新范式在舆情精准研判中的相关理论和应用实证。理论部分论述了该范式的概念和所涉关系,分析了其与Multi-Agent多智能体系统之间的联系。实证部分基于此范式在舆情研判中的应用案例,提出Multi-Ag... 本文探讨了“大数据、大模型、大计算”全新范式在舆情精准研判中的相关理论和应用实证。理论部分论述了该范式的概念和所涉关系,分析了其与Multi-Agent多智能体系统之间的联系。实证部分基于此范式在舆情研判中的应用案例,提出Multi-Agent多智能体协作驱动的舆情分析框架,构建全新的舆情研判流程,能有效应对动态变化的舆情环境。采用Multi-Agent对热点事件是否上热搜进行预测和检验,并与传统大模型和BERT模型进行对比分析。研究表明:Multi-Agent在应对涉及公众情感共鸣和社会性广泛事件时具有显著优势,能通过多角度的综合评估提升预测精度和鲁棒性。通过实证研究验证了Multi-Agent在舆情监测中的重要价值,为未来舆情精准研判提供了新的技术路径。 展开更多
关键词 “大数据、大模型、大计算”全新范式 multi-Agent多智能体系统 舆情精准研判
原文传递
Dynamic Task Offloading Scheme for Edge Computing via Meta-Reinforcement Learning 被引量:1
16
作者 Jiajia Liu Peng Xie +2 位作者 Wei Li Bo Tang Jianhua Liu 《Computers, Materials & Continua》 2025年第2期2609-2635,共27页
As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the... As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective optimization problem aimed at minimizing both delay and energy consumption. We model the task offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes (MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies responsively across diverse network environments. To achieve joint optimization of delay and energy consumption, we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable adaptability, responding swiftly to changes in various network environments. 展开更多
关键词 Edge computing adaptive META task offloading joint optimization
在线阅读 下载PDF
Providing Robust and Low-Cost Edge Computing in Smart Grid:An Energy Harvesting Based Task Scheduling and Resource Management Framework 被引量:1
17
作者 Xie Zhigang Song Xin +1 位作者 Xu Siyang Cao Jing 《China Communications》 2025年第2期226-240,共15页
Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power sta... Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power stations).To solve the problem,we propose an energy harvesting based task scheduling and resource management framework to provide robust and low-cost edge computing services for smart grid.First,we formulate an energy consumption minimization problem with regard to task offloading,time switching,and resource allocation for mobile devices,which can be decoupled and transformed into a typical knapsack problem.Then,solutions are derived by two different algorithms.Furthermore,we deploy renewable energy and energy storage units at edge servers to tackle intermittency and instability problems.Finally,we design an energy management algorithm based on sampling average approximation for edge computing servers to derive the optimal charging/discharging strategies,number of energy storage units,and renewable energy utilization.The simulation results show the efficiency and superiority of our proposed framework. 展开更多
关键词 edge computing energy harvesting energy storage unit renewable energy sampling average approximation task scheduling
在线阅读 下载PDF
Multi-objective optimization of grinding process parameters for improving gear machining precision 被引量:1
18
作者 YOU Tong-fei HAN Jiang +4 位作者 TIAN Xiao-qing TANG Jian-ping LU Yi-guo LI Guang-hui XIA Lian 《Journal of Central South University》 2025年第2期538-551,共14页
The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus... The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods. 展开更多
关键词 worm wheel gear grinding machine gear machining precision machining process parameters multi objective optimization
在线阅读 下载PDF
Joint Feature Encoding and Task Alignment Mechanism for Emotion-Cause Pair Extraction
19
作者 Shi Li Didi Sun 《Computers, Materials & Continua》 SCIE EI 2025年第1期1069-1086,共18页
With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions... With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings. 展开更多
关键词 Emotion-cause pair extraction interactive information enhancement joint feature encoding label consistency task alignment mechanisms
在线阅读 下载PDF
Multi-UAV Cooperative Exploration Based on Task-Density Space Partition
20
作者 YU Jiafa 《Aerospace China》 2024年第2期28-35,共8页
This paper proposes a multi-UAV cooperative exploration approach based on task-density space partition.In the research of multi-UAV cooperative exploration,it is a prevalent cooperative scheme to control robots to wor... This paper proposes a multi-UAV cooperative exploration approach based on task-density space partition.In the research of multi-UAV cooperative exploration,it is a prevalent cooperative scheme to control robots to work independently in partitioned spaces.Nonetheless,only considering the position of robots during space partition cannot effectively ensure the overall cooperative efficiency.According to research on task density of current time points and positions of robots during exploration,robots with fewer task points are assigned to work in spaces with more tasks in the rolling horizon optimization planning mode,which can reduce the redundancy of multi-robot cooperative work.Comparative research suggests that the overall exploration efficiency is improved. 展开更多
关键词 exploration of unknown environments multi-UAV cooperation rolling horizon planning task density space partition
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部