期刊文献+
共找到13,518篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-scale feature fusion optical remote sensing target detection method 被引量:1
1
作者 BAI Liang DING Xuewen +1 位作者 LIU Ying CHANG Limei 《Optoelectronics Letters》 2025年第4期226-233,共8页
An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyram... An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved. 展开更多
关键词 multi scale feature fusion optical remote sensing feature map improve target detection ability optical remote sensing imagesfirstlythe target detection feature fusionto enrich semantic information spatial information
原文传递
Multi-Scale Feature Fusion and Advanced Representation Learning for Multi Label Image Classification
2
作者 Naikang Zhong Xiao Lin +1 位作者 Wen Du Jin Shi 《Computers, Materials & Continua》 2025年第3期5285-5306,共22页
Multi-label image classification is a challenging task due to the diverse sizes and complex backgrounds of objects in images.Obtaining class-specific precise representations at different scales is a key aspect of feat... Multi-label image classification is a challenging task due to the diverse sizes and complex backgrounds of objects in images.Obtaining class-specific precise representations at different scales is a key aspect of feature representation.However,existing methods often rely on the single-scale deep feature,neglecting shallow and deeper layer features,which poses challenges when predicting objects of varying scales within the same image.Although some studies have explored multi-scale features,they rarely address the flow of information between scales or efficiently obtain class-specific precise representations for features at different scales.To address these issues,we propose a two-stage,three-branch Transformer-based framework.The first stage incorporates multi-scale image feature extraction and hierarchical scale attention.This design enables the model to consider objects at various scales while enhancing the flow of information across different feature scales,improving the model’s generalization to diverse object scales.The second stage includes a global feature enhancement module and a region selection module.The global feature enhancement module strengthens interconnections between different image regions,mitigating the issue of incomplete represen-tations,while the region selection module models the cross-modal relationships between image features and labels.Together,these components enable the efficient acquisition of class-specific precise feature representations.Extensive experiments on public datasets,including COCO2014,VOC2007,and VOC2012,demonstrate the effectiveness of our proposed method.Our approach achieves consistent performance gains of 0.3%,0.4%,and 0.2%over state-of-the-art methods on the three datasets,respectively.These results validate the reliability and superiority of our approach for multi-label image classification. 展开更多
关键词 Image classification multi-LABEL multi scale attention mechanisms feature fusion
在线阅读 下载PDF
Marine organism classification method based on hierarchical multi-scale attention mechanism
3
作者 XU Haotian CHENG Yuanzhi +1 位作者 ZHAO Dong XIE Peidong 《Optoelectronics Letters》 2025年第6期354-361,共8页
We propose a hierarchical multi-scale attention mechanism-based model in response to the low accuracy and inefficient manual classification of existing oceanic biological image classification methods. Firstly, the hie... We propose a hierarchical multi-scale attention mechanism-based model in response to the low accuracy and inefficient manual classification of existing oceanic biological image classification methods. Firstly, the hierarchical efficient multi-scale attention(H-EMA) module is designed for lightweight feature extraction, achieving outstanding performance at a relatively low cost. Secondly, an improved EfficientNetV2 block is used to integrate information from different scales better and enhance inter-layer message passing. Furthermore, introducing the convolutional block attention module(CBAM) enhances the model's perception of critical features, optimizing its generalization ability. Lastly, Focal Loss is introduced to adjust the weights of complex samples to address the issue of imbalanced categories in the dataset, further improving the model's performance. The model achieved 96.11% accuracy on the intertidal marine organism dataset of Nanji Islands and 84.78% accuracy on the CIFAR-100 dataset, demonstrating its strong generalization ability to meet the demands of oceanic biological image classification. 展开更多
关键词 integrate information different scales hierarchical multi scale attention lightweight feature extraction focal loss efficientnetv marine organism classification oceanic biological image classification methods convolutional block attention module
原文传递
Low-light image enhancement based on multi-illumination estimation and multi-scale fusion
4
作者 ZHANG Xin'ai GAO Jing +1 位作者 NIE Kaiming LUO Tao 《Optoelectronics Letters》 2025年第6期362-369,共8页
To improve image quality under low illumination conditions,a novel low-light image enhancement method is proposed in this paper based on multi-illumination estimation and multi-scale fusion(MIMS).Firstly,the illuminat... To improve image quality under low illumination conditions,a novel low-light image enhancement method is proposed in this paper based on multi-illumination estimation and multi-scale fusion(MIMS).Firstly,the illumination is processed by contrast-limited adaptive histogram equalization(CLAHE),adaptive complementary gamma function(ACG),and adaptive detail preserving S-curve(ADPS),respectively,to obtain three components.Then,the fusion-relevant features,exposure,and color contrast are selected as the weight maps.Subsequently,these components and weight maps are fused through multi-scale to generate enhanced illumination.Finally,the enhanced images are obtained by multiplying the enhanced illumination and reflectance.Compared with existing approaches,this proposed method achieves an average increase of 0.81%and 2.89%in the structural similarity index measurement(SSIM)and peak signal-to-noise ratio(PSNR),and a decrease of 6.17%and 32.61%in the natural image quality evaluator(NIQE)and gradient magnitude similarity deviation(GMSD),respectively. 展开更多
关键词 adaptive detail preserving s curve contrast limited adaptive histogram equalization adaptive complementary gamma function low light image enhancement equalization clahe adaptive complementary gamma function acg multi scale fusion weight maps multi illumination estimation
原文传递
便携式拉曼光谱仪结合CGAN-Multi-CNN模型的矿物精确识别方法研究
5
作者 向艳芳 石红 +1 位作者 张家臣 蔡耀仪 《分析测试学报》 北大核心 2025年第6期1075-1085,共11页
野外环境下天然未知矿物的快速识别受限于不同光谱设备分辨率差异、样本量不足导致的模型泛化能力弱以及高维复杂光谱特征的提取能力有限这三个难题。为了解决上述难题,该文设计并实现了一种多尺度卷积神经网络结合光谱样本生成的拉曼... 野外环境下天然未知矿物的快速识别受限于不同光谱设备分辨率差异、样本量不足导致的模型泛化能力弱以及高维复杂光谱特征的提取能力有限这三个难题。为了解决上述难题,该文设计并实现了一种多尺度卷积神经网络结合光谱样本生成的拉曼光谱分类模型,并联立便携式拉曼光谱仪实现了野外未知矿物的快速识别。首先,三次样条曲线拟合算法被用于实现不同设备所采集光谱的维数匹配,从而消除不同光谱设备之间采样分辨率的差异。其次,全球矿物光谱库包含1648类矿物的5668个光谱样本被送入生成对抗网络进行训练并产生15000个扩增样本,从而缓解了数据稀缺性对模型分类性能的制约。此外,一种新的多尺度深度卷积网络被用于同步提取拉曼光谱的宽峰与窄峰特征,从而增强复杂光谱的表征能力。实验中将所提出的模型与k-近邻(k-NN)、支持向量机(SVM)和随机森林(RF)等几类经典机器学习模型对未知矿物的识别性能进行对比。结果表明,所提出的多尺度卷积神经网络结合光谱样本生成的分类模型对未知矿物拉曼光谱的判别准确率远超其他传统机器学习模型,其top-1和top-3的准确率值分别为93.26%和98.94%。使用所提出的模型结合便携式拉曼光谱系统对50类未知天然矿石样本进行了识别,其准确率达到100%,单个样本的识别时间仅为1~2 min,体现了该方法快速、精确和无需取样制样的优势。 展开更多
关键词 拉曼光谱 矿物识别 重采样方法 多尺度卷积网络 条件生成对抗网络(CGAN)样本生成
在线阅读 下载PDF
A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification 被引量:2
6
作者 Adama Dembele Ronald Waweru Mwangi Ananda Omutokoh Kube 《Journal of Computer and Communications》 2024年第2期173-200,共28页
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso... Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline. 展开更多
关键词 MobileNet Image Classification Lightweight Convolutional Neural Network Depthwise Dilated Separable Convolution Hierarchical multi-scale Feature Fusion
在线阅读 下载PDF
改进Multi-scale ResNet的蔬菜叶部病害识别 被引量:50
7
作者 王春山 周冀 +3 位作者 吴华瑞 滕桂法 赵春江 李久熙 《农业工程学报》 EI CAS CSCD 北大核心 2020年第20期209-217,共9页
基于深度网络的蔬菜叶部病害图像识别模型虽然性能显著,但由于存在参数量巨大、训练时间长、存储成本与计算成本过高等问题,仍然难以部署到农业物联网的边缘计算设备、嵌入式设备、移动设备等硬件资源受限的领域。该研究在残差网络(ResN... 基于深度网络的蔬菜叶部病害图像识别模型虽然性能显著,但由于存在参数量巨大、训练时间长、存储成本与计算成本过高等问题,仍然难以部署到农业物联网的边缘计算设备、嵌入式设备、移动设备等硬件资源受限的领域。该研究在残差网络(ResNet18)的基础上,提出了改进型的多尺度残差(Multi-scale ResNet)轻量级病害识别模型,通过增加多尺度特征提取模块,改变残差层连接方式,将大卷积核分解,进行群卷积操作,显著减少了模型参数、降低了存储空间和运算开销。结果表明,在PlantVillage和AI Challenge2018中15种病害图像数据集中取得了95.95%的准确率,在自采集的7种真实环境病害图像数据中取得了93.05%的准确率,在准确率较ResNet18下降约3.72%的情况下,模型的训练参数减少93%左右,模型总体尺寸缩减约35%。该研究提出的改进型Multi-scale ResNet使蔬菜叶部病害识别模型具备了在硬件受限的场景下部署和运行的能力,平衡了模型的复杂度和识别精度,为基于深度网络模型的病害识别系统进行边缘部署提供了思路。 展开更多
关键词 图像处理 病害 图像识别 多尺度 轻量化 残差层 ResNet18
在线阅读 下载PDF
A Quadrilateral Element-based Method for Calculation of Multi-scale Temperature Field
8
作者 孙志刚 周超羡 +1 位作者 高希光 宋迎东 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第5期529-536,共8页
In the analysis of functionally graded materials (FGMs), the uncoupled approach is used broadly, which is based on homogenized material property and ignores the effect Of local micro-structural interaction. The high... In the analysis of functionally graded materials (FGMs), the uncoupled approach is used broadly, which is based on homogenized material property and ignores the effect Of local micro-structural interaction. The higher-order theory for FGMs (HOTFGM) is a coupled approach that explicitly takes the effect of micro-structural gradation and the local interaction of the spatially variable inclusion phase into account. Based on the HOTFGM, this article presents a quadrilateral element-based method for the calculation of multi-scale temperature field (QTF). In this method, the discrete cells are quadrilateral including rectangular while the surface-averaged quantities are the primary variables which replace the coefficients employed in the temperature function. In contrast with the HOTFGM, this method improves the efficiency, eliminates the restriction of being rectangular cells and expands the solution scale. The presented results illustrate the efficiency of the QTF and its advantages in analyzing FGMs. 展开更多
关键词 functionally graded materials higher-order theory temperature field multi-scale computing quadrilateral cell
原文传递
基于多尺度Scale-Unet的单样本图像翻译
9
作者 周蓬勃 冯龙 寇宇帆 《计算机技术与发展》 2024年第4期55-61,共7页
随着生成对抗网络(GAN)的发展,基于单样本的无监督图像到图像翻译(UI2I)取得了重大进展。然而,以前方法无法捕获图像中的复杂纹理并保留原始内容信息。为解决这个问题,提出了一种基于尺度可变U-Net结构(Scale—Unet)的新型单样本图像翻... 随着生成对抗网络(GAN)的发展,基于单样本的无监督图像到图像翻译(UI2I)取得了重大进展。然而,以前方法无法捕获图像中的复杂纹理并保留原始内容信息。为解决这个问题,提出了一种基于尺度可变U-Net结构(Scale—Unet)的新型单样本图像翻译结构SUGAN。所提出的SUGAN使用Scale—Unet作为生成器,利用多尺度结构和渐进方法不断改进网络结构,以从粗到细地学习图像特征。同时,提出了尺度像素损失scale-pixel来更好地约束保留原始内容信息,防止信息丢失。实验表明,与SinGAN、TuiGAN、TSIT、StyTR2等公共数据集Summer■Winter、Horse■Zebra上的方法相比,该方法生成图像的SIFID值平均降低了30%。所提方法可更好地保留图像内容信息,同时生成详细逼真的高质量图像。 展开更多
关键词 单样本图像翻译 scale-Unet 多尺度结构 渐进方法 尺度像素损失
在线阅读 下载PDF
Morphology Similarity Distance for Bearing Fault Diagnosis Based on Multi-Scale Permutation Entropy 被引量:2
10
作者 Jinbao Zhang Yongqiang Zhao +1 位作者 Lingxian Kong Ming Liu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2020年第1期1-9,共9页
Bearings are crucial components in rotating machines,which have direct effects on industrial productivity and safety.To fast and accurately identify the operating condition of bearings,a novel method based on multi⁃sc... Bearings are crucial components in rotating machines,which have direct effects on industrial productivity and safety.To fast and accurately identify the operating condition of bearings,a novel method based on multi⁃scale permutation entropy(MPE)and morphology similarity distance(MSD)is proposed in this paper.Firstly,the MPE values of the original signals were calculated to characterize the complexity in different scales and they constructed feature vectors after normalization.Then,the MSD was employed to measure the distance among test samples from different fault types and the reference samples,and achieved classification with the minimum MSD.Finally,the proposed method was verified with two experiments concerning artificially seeded damage bearings and run⁃to⁃failure bearings,respectively.Different categories were considered for the two experiments and high classification accuracies were obtained.The experimental results indicate that the proposed method is effective and feasible in bearing fault diagnosis. 展开更多
关键词 bearing fault diagnosis multi⁃scale permutation entropy morphology similarity distance
在线阅读 下载PDF
融合Multi-scale CNN和Bi-LSTM的人脸表情识别研究 被引量:3
11
作者 李军 李明 《北京联合大学学报》 CAS 2021年第1期35-39,44,共6页
为了有效改善现有人脸表情识别模型中存在信息丢失严重、特征信息之间联系不密切的问题,提出一种融合多尺度卷积神经网络(Multi-scale CNN)和双向长短期记忆(Bi-LSTM)的模型。Bi-LSTM可以增强特征信息间的联系与信息的维持,在Multi-scal... 为了有效改善现有人脸表情识别模型中存在信息丢失严重、特征信息之间联系不密切的问题,提出一种融合多尺度卷积神经网络(Multi-scale CNN)和双向长短期记忆(Bi-LSTM)的模型。Bi-LSTM可以增强特征信息间的联系与信息的维持,在Multi-scale CNN中通过不同尺度的卷积核可以提取到更加丰富的特征信息,并通过加入批标准化(BN)层与特征融合处理,从而加快网络的收敛速度,有利于特征信息的重利用,再将两者提取到的特征信息进行融合,最后将改进的正则化方法应用到目标函数中,减小网络复杂度和过拟合。在JAFFE和FER-2013公开数据集上进行实验,准确率分别达到了95.455%和74.115%,由此证明所提算法的有效性和先进性。 展开更多
关键词 多尺度卷积神经网络 双向长短期记忆 特征融合 批标准化层 正则化
在线阅读 下载PDF
Application of Multi-Scale Tracking Radar Echoes Scheme in Quantitative Precipitation Nowcasting 被引量:11
12
作者 WANG Gaili WONG Waikin +1 位作者 LIU Liping WANG Hongyan 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第2期448-460,共13页
A new radar echo tracking algorithm known as multi-scale tracking radar echoes by cross-correlation (MTREC) was developed in this study to analyze movements of radar echoes at different spatial scales. Movement of r... A new radar echo tracking algorithm known as multi-scale tracking radar echoes by cross-correlation (MTREC) was developed in this study to analyze movements of radar echoes at different spatial scales. Movement of radar echoes, particularly associated with convective storms, exhibits different characteristics at various spatial scales as a result of complex interactions among meteorological systems leading to the formation of convective storms. For the null echo region, the usual correlation technique produces zero or a very small magnitude of motion vectors. To mitigate these constraints, MTREC uses the tracking radar echoes by correlation (TREC) technique with a large "box" to determine the systematic movement driven by steering wind, and MTREC applies the TREC technique with a small "box" to estimate small-scale internal motion vectors. Eventually, the MTREC vectors are obtained by synthesizing the systematic motion and the small-scale internal motion. Performance of the MTREC technique was compared with TREC technique using case studies: the Khanun typhoon on 11 September 2005 observed by Wenzhou radar and a squall-line system on 23 June 2011 detected by Beijing radar. The results demonstrate that more spatially smoothed and continuous vector fields can be generated by the MTREC technique, which leads to improvements in tracking the entire radar reflectivity pattern. The new multi-scMe tracking scheme was applied to study its impact on the performance of quantitative precipitation nowcasting. The location and intensity of heavy precipitation at a 1-h lead time was more consistent with quantitative precipitation estimates using radar and rain gauges. 展开更多
关键词 multi-scale tracking EXTRAPOLATION NOWCASTING
在线阅读 下载PDF
Multi-scale Cyclone Activity in the Changjiang River–Huaihe River Valleys during Spring and Its Relationship with Rainfall Anomalies 被引量:13
13
作者 Yujing QIN Chuhan LU Liping LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第2期246-257,共12页
Based on the recognition framework of the outermost closed contours of cyclones, an automated identification algorithm capable of identifying the multi-scale cyclones that occur during spring in the Changjiang River-H... Based on the recognition framework of the outermost closed contours of cyclones, an automated identification algorithm capable of identifying the multi-scale cyclones that occur during spring in the Changjiang River-Huaihe River valleys (CHV) were developed. We studied the characteristics of the multi-scale cyclone activity that affects CHV and its relationship with rainfall during spring since 1979. The results indicated that the automated identification algorithm for cyclones proposed in this paper could intuitively identify multi-scale cyclones that affect CHV. The algorithm allows for effectively describing the shape and coverage area of the closed contours around the periphery of cyclones. We found that, compared to the meso- and sub-synoptic scale cyclone activities, the synoptic-scale cyclone activity showed more intimate correlation with the overall activity intensity of multi-scale CHV cyclones during spring. However, the frequency of occurrence of sub-synoptic scale cyclones was the highest, and their effect on changes in CHV cyclone activity could not be ignored. Based on the area of impact and the depth of the cyclones, the sub-synoptic scale, synoptic scale and comprehensive cyclone intensity indices were further defined, which showed a positive correlation with rainfall in CHV during spring. Additionally, the comprehensive cyclone intensity index was a good indicator of strong rainfall events. 展开更多
关键词 cyclone activity multi-scale cyclone extreme precipitation CHV area
在线阅读 下载PDF
基于改进Multi-Scale AlexNet的番茄叶部病害图像识别 被引量:79
14
作者 郭小清 范涛杰 舒欣 《农业工程学报》 EI CAS CSCD 北大核心 2019年第13期162-169,共8页
番茄同种病害在不同发病阶段表征差异明显,不同病害又表现出一定的相似性,传统模式识别方法不能体现病害病理表征的动态变化,实用性较差。针对该问题,基于卷积神经网络提出一种适用于移动平台的多尺度识别模型,并基于此模型开发了面向... 番茄同种病害在不同发病阶段表征差异明显,不同病害又表现出一定的相似性,传统模式识别方法不能体现病害病理表征的动态变化,实用性较差。针对该问题,基于卷积神经网络提出一种适用于移动平台的多尺度识别模型,并基于此模型开发了面向农业生产人员的番茄叶部病害图像识别系统。该文详细描述了AlexNet的结构,分析其不足,结合番茄病害叶片图像特点,去除局部响应归一化层、修改全连接层、设置不同尺度卷积核提取特征,设计了基于AlexNet的多感受野识别模型,并基于Android实现了使用此模型的番茄叶部病害图像识别系统。Multi-ScaleAlexNet模型运行所耗内存为29.9MB,比原始AlexNet的内存需求652MB降低了95.4%,该模型对番茄叶部病害及每种病害早中晚期的平均识别准确率达到92.7%,基于此模型的Andriod端识别系统在田间的识别率达到89.2%,能够满足生产实践中移动平台下的病害图像识别需求。研究结果可为基于卷积神经网络的作物病害图像识别提供参考,为作物病害的自动化识别和工程化应用参考。 展开更多
关键词 图像处理 病害 图像识别 算法 卷积神经网络 番茄病害 多尺度
在线阅读 下载PDF
A Multi-Scale Urban Atmospheric Dispersion Model for Emergency Management 被引量:5
15
作者 MIAO Yucong LIU Shuhua +3 位作者 ZHENG Hui ZHENG Yijia CHEN Bicheng WANG Shu 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第6期1353-1365,共13页
To assist emergency management planning and prevention in case of hazardous chemical release into the atmosphere,especially in densely built-up regions with large populations,a multi-scale urban atmospheric dispersion... To assist emergency management planning and prevention in case of hazardous chemical release into the atmosphere,especially in densely built-up regions with large populations,a multi-scale urban atmospheric dispersion model was established.Three numerical dispersion experiments,at horizontal resolutions of 10 m,50 m and 3000 m,were performed to estimate the adverse effects of toxic chemical release in densely built-up areas.The multi-scale atmospheric dispersion model is composed of the Weather Forecasting and Research (WRF) model,the Open Source Field Operation and Manipulation software package,and a Lagrangian dispersion model.Quantification of the adverse health effects of these chemical release events are given by referring to the U.S.Environmental Protection Agency's Acute Exposure Guideline Levels.The wind fields of the urban-scale case,with 3 km horizontal resolution,were simulated by the Beijing Rapid Update Cycle system,which were utilized by the WRF model.The sub-domain-scale cases took advantage of the computational fluid dynamics method to explicitly consider the effects of buildings.It was found that the multi-scale atmospheric dispersion model is capable of simulating the flow pattern and concentration distribution on different scales,ranging from several meters to kilometers,and can therefore be used to improve the planning of prevention and response programs. 展开更多
关键词 WRF model OPENFOAM AEGLs multi-scale simulation
在线阅读 下载PDF
Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography 被引量:12
16
作者 Biao Guo JiuHui Chen +1 位作者 QiYuan Liu ShunCheng Li 《Earth and Planetary Physics》 CSCD 2019年第3期232-242,共11页
The Qilian Orogen Zone(QOZ), located in the north margin of the Tibetan Plateau, is the key area for understanding the deformation and dynamics process of Tibet. Numerous geological and geophysical studies have been c... The Qilian Orogen Zone(QOZ), located in the north margin of the Tibetan Plateau, is the key area for understanding the deformation and dynamics process of Tibet. Numerous geological and geophysical studies have been carried out on the mechanics of the Tibetan Plateau deformation and uplift; however, the detailed structure and deformation style of the Qilian Orogen Zone have remained uncertain due to poor geophysical data coverage and limited resolution power of inversion algorithms. In this study, we analyze the P-wave velocity structure beneath the Qilian Orogen Zone, obtained by applying multi-scale seismic tomography technique to P-wave arrival time data recorded by regional seismic networks. The seismic tomography algorithm used in this study employs sparsity constraints on the wavelet representation of the velocity model via L1-norm regularization. This algorithm can deal efficiently with uneven-sampled volumes, and can obtain multi-scale images of the velocity model. Our results can be summarized as follows:(1) The crustal velocity structure is strongly inhomogeneous and consistent with the surface geological setting. Significant low-velocity anomalies exist in the crust of northeastern Tibet, and slight high-velocity anomalies exist beneath the Qaidam Basin and Alxa terrane.(2)The Qilian Orogen Zone can be divided into two main parts by the Laji Shan Faults: the northwestern part with a low-velocity feature, and the southeastern part with a high-velocity feature at the upper and middle crust.(3) Our tomographic images suggest that northwestern and southeastern Qilian Orogen Zones have undergone different tectonic processes. In the northwest Qilian Orogen Zone, the deformation and growth of the Northern Tibetan Plateau has extended to the Heli Shan and Beida Shan region by northward overthrusting at the upper crust and thickening in the lower crust. We speculate that in the southeast Qilian Orogen Zone the deformation and growth of the Northern Tibet Plateau were of strike-slip style at the upper crust; in the lower crust, the evidence suggests ductile shear extrusion style and active frontage extension to the Alxa terrane.(4) The multi-scale seismic tomography technique provides multiscale analysis and sparse constraints, which has allowed to us obtain stable, high-resolution results. 展开更多
关键词 QILIAN OROGEN ZONE CRUSTAL structure multi-scale seismic tomography
在线阅读 下载PDF
Study on Multi-Scale Blending Initial Condition Perturbations for a Regional Ensemble Prediction System 被引量:36
17
作者 ZHANG Hanbin CHEN Jing +2 位作者 ZHI Xiefei WANG Yi WANG Yanan 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第8期1143-1155,共13页
An initial conditions (ICs) perturbation method was developed with the aim to improve an operational regional ensemble prediction system (REPS). Three issues were identified and investigated: (1) the impacts of... An initial conditions (ICs) perturbation method was developed with the aim to improve an operational regional ensemble prediction system (REPS). Three issues were identified and investigated: (1) the impacts of perturbation scale on the ensemble spread and forecast skill of the REPS; (2) the scale characteristic of the IC perturbations of the REPS; and (3) whether the REPS's skill could be improved by adding large-scale information to the IC perturbations. Numerical experiments were conducted to reveal the impact of perturbation scale on the ensemble spread and forecast skill. The scales of IC perturbations from the REPS and an operational global ensemble prediction system (GEPS) were analyzed. A "multi-scale blending" (MSB) IC perturbation scheme was developed, and the main findings can be summarized as follows: The growth rates of the ensemble spread of the REPS are sensitive to the scale of the IC perturbations; the ensemble forecast skills can benefit from large-scale perturbations; the global ensemble IC perturbations exhibit more power at larger scales, while the regional ensemble IC perturbations contain more power at smaller scales; the MSB method can generate IC perturbations by combining the small-scale component from the REPS and the large-scale component from the GEPS; the energy norm growth of the MSB-generated perturbations can be appropriate at all forecast lead times; and the MSB-based REPS shows higher skill than the original system, as determined by ensemble forecast verification. 展开更多
关键词 regional ensemble prediction system spectral analysis multi-scale blending initial condition perturbations
在线阅读 下载PDF
The Multi-Scale Numerical Modeling System for Research on the Relationship between Urban Planning and Meteorological Environment 被引量:37
18
作者 房小怡 蒋维楣 +7 位作者 苗世光 张宁 徐敏 季崇萍 陈鲜艳 魏建民 王志华 王晓云 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第1期103-112,共10页
Considering the urban characteristics, a customized multi-scale numerical modeling system is established to simulate the urban meteorological environment. The system mainly involves three spatial scales: the urban sca... Considering the urban characteristics, a customized multi-scale numerical modeling system is established to simulate the urban meteorological environment. The system mainly involves three spatial scales: the urban scale, urban sub-domain scale, and single to few buildings scale. In it, different underlying surface types are employed, the building drag factor is used to replace its roughness in the influence on the urban wind field, the effects of building distribution, azimuth and screening of shortwave radiation are added, and the influence of anthropogenic heating is also taken into account. All the numerical tests indicate that the simulated results are reasonably in agreement with the observational data, so the system can be used to simulate the urban meteorological environment. Making use of it, the characteristics of the meteorological environment from the urban to urban sub-domain scales, even the among-buildings scale, can be recognized. As long as the urban planning scheme is given, the corresponding simulated results can be obtained so as to meet the need of optimizing urban planning. 展开更多
关键词 developing planning in an urban area meteorological environment multi-scale modeling urban planning urban environment
在线阅读 下载PDF
Multi-scale strength analysis of bolted connections used in integral thermal protection system 被引量:12
19
作者 Heng LIANG Yuqing WANG +1 位作者 Mingbo TONG Junhua ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第8期1728-1740,共13页
Efficient and accurate strength analysis of bolted connections is essential in analyzing the integral thermal protection system(ITPS) of hypersonic vehicles, since the system bears severe loads and structural failur... Efficient and accurate strength analysis of bolted connections is essential in analyzing the integral thermal protection system(ITPS) of hypersonic vehicles, since the system bears severe loads and structural failures usually occur at the connections. Investigations of composite mechanical properties used in ITPS are still in progress as the architecture of the composites is complex. A new method is proposed in this paper for strength analysis of bolted connections by investigating the elastic behavior and failure strength of three-dimensional C/C orthogonal composites used in ITPS. In this method a multi-scale finite element method incorporating the global–local method is established to ensure high efficiency in macro-scale and precision in meso-scale in analysis.Simulation results reveal that predictions of material properties show reasonable accuracy compared with test results. And the multi-scale method can analyze the strength of connections efficiently and accurately. 展开更多
关键词 Bolted connection COMPOSITE multi-scale method Strength analysis Thermal Protection System
原文传递
Multi-scale variability of subsurface temperature in the South China Sea 被引量:4
20
作者 Gao Rongzhen(高荣珍) +3 位作者 Zhou Faxiu(周发琇) Wang Dongxiao(王东晓) 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2002年第2期165-173,共9页
Using Morlet wavelet transform and harmonic analysis the multi-scale variability of subsurface temperature in the South China Sea is studied by analyzing one-year (from April 1998 to April 1999) ATLAS mooring data. By... Using Morlet wavelet transform and harmonic analysis the multi-scale variability of subsurface temperature in the South China Sea is studied by analyzing one-year (from April 1998 to April 1999) ATLAS mooring data. By wavelet transform, annual and semi-annual cycle as well as intrasea-sonal variations are found, with different dominance, in subsurface temperature. For annual harmonic cycle, both the downward net surface heat flux and thermocline vertical movement partially control the subsurface temperature variability. For semi-annual cycle and intraseasonal variability, the subsurface temperature variability is mainly linked to the vertical displacement of thermocline. 展开更多
关键词 The South China Sea subsurface temperature multi-scale variability
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部