To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework ba...To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling.By constructing a joint tracking model centered on“intra-class independent tracking+cross-category dynamic binding”,designing a multi-modal matching metric with spatio-temporal and appearance constraints,and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy,this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion,cross-camera tracking,and crowded environments.Experiments on the Chokepoint_Face_Pedestrian_Track test set demonstrate that in complex scenes,the proposed method improves Face-Pedestrian Matching F1 area under the curve(F1 AUC)by approximately 4 to 43 percentage points compared to several traditional methods.The joint tracking model achieves overall performance metrics of IDF1:85.1825%and MOTA:86.5956%,representing improvements of 0.91 and 0.06 percentage points,respectively,over the baseline model.Ablation studies confirm the effectiveness of key modules such as the Intersection over Area(IoA)/Intersection over Union(IoU)joint metric and dynamic threshold adjustment,validating the significant role of the cross-category identity matching mechanism in enhancing tracking stability.Our_model shows a 16.7%frame per second(FPS)drop vs.fairness of detection and re-identification in multiple object tracking(FairMOT),with its cross-category binding module adding aboute 10%overhead,yet maintains near-real-time performance for essential face-pedestrian tracking at small resolutions.展开更多
The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus...The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.展开更多
The ubiquity of mobile devices has driven advancements in mobile object detection.However,challenges in multi-scale object detection in open,complex environments persist due to limited computational resources.Traditio...The ubiquity of mobile devices has driven advancements in mobile object detection.However,challenges in multi-scale object detection in open,complex environments persist due to limited computational resources.Traditional approaches like network compression,quantization,and lightweight design often sacrifice accuracy or feature representation robustness.This article introduces the Fast Multi-scale Channel Shuffling Network(FMCSNet),a novel lightweight detection model optimized for mobile devices.FMCSNet integrates a fully convolutional Multilayer Perceptron(MLP)module,offering global perception without significantly increasing parameters,effectively bridging the gap between CNNs and Vision Transformers.FMCSNet achieves a delicate balance between computation and accuracy mainly by two key modules:the ShiftMLP module,including a shift operation and an MLP module,and a Partial group Convolutional(PGConv)module,reducing computation while enhancing information exchange between channels.With a computational complexity of 1.4G FLOPs and 1.3M parameters,FMCSNet outperforms CNN-based and DWConv-based ShuffleNetv2 by 1%and 4.5%mAP on the Pascal VOC 2007 dataset,respectively.Additionally,FMCSNet achieves a mAP of 30.0(0.5:0.95 IoU threshold)with only 2.5G FLOPs and 2.0M parameters.It achieves 32 FPS on low-performance i5-series CPUs,meeting real-time detection requirements.The versatility of the PGConv module’s adaptability across scenarios further highlights FMCSNet as a promising solution for real-time mobile object detection.展开更多
With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods ...With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios.展开更多
Dear Editor,This letter proposes a novel Nash bargaining solution-based multiobjective model predictive control(MPC)scheme to deal with the interaction force control and the path-following problem of the constrained i...Dear Editor,This letter proposes a novel Nash bargaining solution-based multiobjective model predictive control(MPC)scheme to deal with the interaction force control and the path-following problem of the constrained interactive robot.Considering the elastic interaction force model,a mechanical trade-off always exists between the interaction force and position,which means that neither force nor path following can satisfy their desired demands completely.Based on this consideration,two irreconcilable control specifications,the force object function and the position track object function,are proposed,and a new multi-objective MPC scheme is then designed.展开更多
The ease of accessing a virtually unlimited pool of resources makes Infrastructure as a Service (IaaS) clouds an ideal platform for running data-intensive workflow applications comprising hundreds of computational tas...The ease of accessing a virtually unlimited pool of resources makes Infrastructure as a Service (IaaS) clouds an ideal platform for running data-intensive workflow applications comprising hundreds of computational tasks. However, executing scientific workflows in IaaS cloud environments poses significant challenges due to conflicting objectives, such as minimizing execution time (makespan) and reducing resource utilization costs. This study responds to the increasing need for efficient and adaptable optimization solutions in dynamic and complex environments, which are critical for meeting the evolving demands of modern users and applications. This study presents an innovative multi-objective approach for scheduling scientific workflows in IaaS cloud environments. The proposed algorithm, MOS-MWMC, aims to minimize total execution time (makespan) and resource utilization costs by leveraging key features of virtual machine instances, such as a high number of cores and fast local SSD storage. By integrating realistic simulations based on the WRENCH framework, the method effectively dimensions the cloud infrastructure and optimizes resource usage. Experimental results highlight the superiority of MOS-MWMC compared to benchmark algorithms HEFT and Max-Min. The Pareto fronts obtained for the CyberShake, Epigenomics, and Montage workflows demonstrate closer proximity to the optimal front, confirming the algorithm’s ability to balance conflicting objectives. This study contributes to optimizing scientific workflows in complex environments by providing solutions tailored to specific user needs while minimizing costs and execution times.展开更多
To accomplish the reliability analyses of the correlation of multi-analytical objectives,an innovative framework of Dimensional Synchronous Modeling(DSM)and correlation analysis is developed based on the stepwise mode...To accomplish the reliability analyses of the correlation of multi-analytical objectives,an innovative framework of Dimensional Synchronous Modeling(DSM)and correlation analysis is developed based on the stepwise modeling strategy,cell array operation principle,and Copula theory.Under this framework,we propose a DSM-based Enhanced Kriging(DSMEK)algorithm to synchronously derive the modeling of multi-objective,and explore an adaptive Copula function approach to analyze the correlation among multiple objectives and to assess the synthetical reliability level.In the proposed DSMEK and adaptive Copula methods,the Kriging model is treated as the basis function of DSMEK model,the Multi-Objective Snake Optimizer(MOSO)algorithm is used to search the optimal values of hyperparameters of basis functions,the cell array operation principle is adopted to establish a whole model of multiple objectives,the goodness of fit is utilized to determine the forms of Copula functions,and the determined Copula functions are employed to perform the reliability analyses of the correlation of multi-analytical objectives.Furthermore,three examples,including multi-objective complex function approximation,aeroengine turbine bladeddisc multi-failure mode reliability analyses and aircraft landing gear system brake temperature reliability analyses,are performed to verify the effectiveness of the proposed methods,from the viewpoints of mathematics and engineering.The results show that the DSMEK and adaptive Copula approaches hold obvious advantages in terms of modeling features and simulation performance.The efforts of this work provide a useful way for the modeling of multi-analytical objectives and synthetical reliability analyses of complex structure/system with multi-output responses.展开更多
Cropping structure has a close relationship with the optimal allocation of agricultural water resources. Based on the analysis of the relationship between agricultural water resources and sustainable development, this...Cropping structure has a close relationship with the optimal allocation of agricultural water resources. Based on the analysis of the relationship between agricultural water resources and sustainable development, this paper presents a multi objective fuzzy optimization model for cropping structure and water allocation, which overcomes the shortcoming of current models that only considered the economic objective,and ignored the social and environmental objectives. During the process, a new method named fuzzy deciding weight is developed to decide the objective weight. A case study shows that the model is reliable, the method is simple and objective, and the results are reasonable. This model is useful for agricultural management and sustainable development.展开更多
For dealing with the multi-objective optimization problems of parametric design for aircraft, a novel hybrid parallel multi-objective tabu search (HPMOTS) algorithm is used. First, a new multi-objective tabu search ...For dealing with the multi-objective optimization problems of parametric design for aircraft, a novel hybrid parallel multi-objective tabu search (HPMOTS) algorithm is used. First, a new multi-objective tabu search (MOTS) algorithm is proposed. Comparing with the traditional MOTS algorithm, this proposed algorithm adds some new methods such as the combination of MOTS algorithm and "Pareto solution", the strategy of "searching from many directions" and the reservation of good solutions. Second, this article also proposes the improved parallel multi-objective tabu search (PMOTS) algorithm. Finally, a new hybrid algorithm--HPMOTS algorithm which combines the PMOTS algorithm with the non-dominated sorting-based multi-objective genetic algorithm (NSGA) is presented. The computing results of these algorithms are compared with each other and it is shown that the optimal result can be obtained by the HPMOTS algorithm and the computing result of the PMOTS algorithm is better than that of MOTS algorithm.展开更多
In recent years,surrogate models derived from genuine data samples have proven to be efficient in addressing optimization challenges that are costly or time⁃intensive.However,the individuals in the population become i...In recent years,surrogate models derived from genuine data samples have proven to be efficient in addressing optimization challenges that are costly or time⁃intensive.However,the individuals in the population become indistinguishable as the curse of dimensionality increases in the objective space and the accumulation of surrogate approximated errors.Therefore,in this paper,each objective function is modeled using a radial basis function approach,and the optimal solution set of the surrogate model is located by the multi⁃objective evolutionary algorithm of strengthened dominance relation.The original objective function values of the true evaluations are converted to two indicator values,and then the surrogate models are set up for the two performance indicators.Finally,an adaptive infill sampling strategy that relies on approximate performance indicators is proposed to assist in selecting individuals for real evaluations from the potential optimal solution set.The algorithm is contrasted against several advanced surrogate⁃assisted evolutionary algorithms on two suites of test cases,and the experimental findings prove that the approach is competitive in solving expensive many⁃objective optimization problems.展开更多
In this paper,we propose a hybrid algorithm for finding a set of non dominated solutions of a multi objective optimization problem.In the proposed algorithm,a local search procedure is applied to each solution gener...In this paper,we propose a hybrid algorithm for finding a set of non dominated solutions of a multi objective optimization problem.In the proposed algorithm,a local search procedure is applied to each solution generated by genetic operations.The aim of the proposed algorithm is not to determine a single final solution but to try to find all the non dominated solutions of a multi objective optimization problem.The choice of the final solution is left to the decision makers preference.High search ability of the proposed algorithm is demonstrated by computer simulation.展开更多
A class of interactive multi objective decision making method by means of evaluation criterion is proposed for problems with linear value function,in which case,the decision maker(DM) usually has only unwhole infor...A class of interactive multi objective decision making method by means of evaluation criterion is proposed for problems with linear value function,in which case,the decision maker(DM) usually has only unwhole information of weights for objectives. The concept of fault measure of the evaluation criterion is proposed to measure the deviation of the evaluation criterion from the DMs preference structure.The approach to obtain an upper boundary of fault measure of an evaluation criterion,and the approach to modify the evaluation criterion to be one with smaller fault measure,and the approach to obtain a pre optimized objective set by evaluation criterion with certain fault measure are also proposed.展开更多
In this paper, for multi objective decision making, the defects on the commonly used interactive methods based on the satisfactoriness criterion is studied. Then a class of two stage interactive method based on the...In this paper, for multi objective decision making, the defects on the commonly used interactive methods based on the satisfactoriness criterion is studied. Then a class of two stage interactive method based on the satisfactoriness criterion is proposed for improvement with the satisfactoriness criterion being determined through the collection of the decision makers preference information. An application example is presented for illustration of applicability of the method.展开更多
A transonic airfoil designed by means of classical point-optimization may result in its dramatically inferior performance under off-design conditions. To overcome this shortcoming, robust design is proposed to find ou...A transonic airfoil designed by means of classical point-optimization may result in its dramatically inferior performance under off-design conditions. To overcome this shortcoming, robust design is proposed to find out the optimal profile of an airfoil to maintain its performance in an uncertain environment. The robust airfoil optimization is aimed to minimize mean values and variances of drag coefficients while satisfying the lift and thickness constraints over a range of Mach numbers. A multi-objective estimation of distribution algorithm is applied to the robust airfoil optimization on the base of the RAE2822 benchmark airfoil. The shape of the airfoil is obtained through superposing ten Hick-Henne shape functions upon the benchmark airfoil. A set of design points is selected according to a uniform design table for aerodynamic evaluation. A Kriging model of drag coefficient is constructed with those points to reduce computing costs. Over the Mach range from 0.7 to 0.8, the airfoil generated by the robust optimization has a configuration characterized by supercritical airfoil with low drag coefficients. The small fluctuation in its drag coefficients means that the performance of the robust airfoil is insensitive to variation of Mach number.展开更多
In this paper, a multi objective, multireservoir operation model is proposed using Genetic algorithm (GA) under fuzzy environment. A monthly Multi Objective Genetic Algorithm Fuzzy Optimization (MOGAFU-OPT) model for ...In this paper, a multi objective, multireservoir operation model is proposed using Genetic algorithm (GA) under fuzzy environment. A monthly Multi Objective Genetic Algorithm Fuzzy Optimization (MOGAFU-OPT) model for the present study is developed in ‘C’ Language. The GA parameters i.e. population size, number of generations, crossover probability, and mutation probability are decided based on optimized val-ues of fitness function. The GA operators adopted are stochastic remainder selection, one point crossover and binary mutation. Initially the model is run for maximization of irrigation releases. Then the model is run for maximization of hydropower production. These objectives are fuzzified by assuming a linear membership function. These fuzzified objectives are simultaneously maximized by defining level of satisfaction (?) and then maximizing it. This approach is applied to a multireservoir system in Godavari river sub basin in Ma-harashtra State, India. Problem is formulated with 4 reservoirs and a barrage. The optimal operation policy for maximization of irrigation releases, maximization of hydropower production and maximization of level of satisfaction is presented for existing demand in command area. This optimal operation policy so deter-mined is compared with the actual average operation policy for Jayakwadi Stage-I reservoir.展开更多
To research the effect of the selection method of multi — objects genetic algorithm problem on optimizing result, this method is analyzed theoretically and discussed by using an autonomous underwater vehicle (AUV) as...To research the effect of the selection method of multi — objects genetic algorithm problem on optimizing result, this method is analyzed theoretically and discussed by using an autonomous underwater vehicle (AUV) as an object. A changing weight value method is put forward and a selection formula is modified. Some experiments were implemented on an AUV, TwinBurger. The results shows that this method is effective and feasible.展开更多
Design change is an inevitable part of the product development process.This study proposes an improved binary multi‐objective PSO algorithm guided by problem char-acteristics(P‐BMOPSO)to solve the optimisation probl...Design change is an inevitable part of the product development process.This study proposes an improved binary multi‐objective PSO algorithm guided by problem char-acteristics(P‐BMOPSO)to solve the optimisation problem of complex product change plan considering service performance.Firstly,a complex product multi‐layer network with service performance is established for the first time to reveal the impact of change effect propagation on the product service performance.Secondly,the concept of service performance impact(SPI)is defined by decoupling the impact of strongly associated nodes on the service performance in the process of change affect propagation.Then,a triple‐objective selection model of change nodes is established,which includes the three indicators:SPI degree,change cost,and change time.Furthermore,an integer multi‐objective particle swarm optimisation algorithm guided by problem characteristics is developed to solve the model above.Experimental results on the design change problem of a certain type of Skyworth TV verify the effectiveness of the established optimisation model and the proposed P‐BMOPSO algorithm.展开更多
To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description ab...To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description about multi-objective (MO) optimization are introduced. Then some definitions and related terminologies are given. Furthermore several MO optimization methods including classical and current intelligent methods are discussed one by one succinctly. Finally evaluations on advantages and disadvantages about these methods are made at the end of the paper.展开更多
The Lancnag Mekong River is the most important international river across China and Southeast Asia, If it is developed according to 'Great Mekong Subregional Cooperation Plan' [9] prepared by ADB, the area di...The Lancnag Mekong River is the most important international river across China and Southeast Asia, If it is developed according to 'Great Mekong Subregional Cooperation Plan' [9] prepared by ADB, the area directly affected will be up to over 2.32 million km 2, the population over 220 million, and the natural environment, and socio-economic conditions within a large area will be greatly changed. 'Agreement on Cooperation for Sustainable Development of Mekong Basin' signed by the four riparian countries along the lower Mekong River on April 5, 1995 provides a new opportunity for sustainable development of the Basin. According to preliminary analysis, if the multipurpose utilization of the water resources is the target for carrying out integrated planning and management, and the efforts are made 1) to focus on energy exploitation on the Lancang River Mainstream and the tributaries of the lower Mekong River; 2) to build gated weirs at Tonle Sam; 3) to construct spillways at the Mekong Delta; 4) to facilitate flood dykes in big cities and on both banks of the mainstream which are concentrated with population and farmland and liable to be flooded, and 5) to strengthen networks for forecasting hydrological and meteorological conditions, then all problems such as power demand, irrigation, flood, salt water intrusion as well as acid water erosion to soil could be solved without constructing large cascaded stations and dams on the lower Mekong Mainstream. This will not only avoid input of great number of fund, large scale resettlement and land inundation, but also prevent aquatic organisms living in Mekong River from being injured due to dam construction, and promote the sustainable development of the Basin.展开更多
A multi-objective optimization and analysis model of the sintering process based on BP neural network is presented. Genetic algorithms are combined to simplify the BP neural network, which can reduce the learning time...A multi-objective optimization and analysis model of the sintering process based on BP neural network is presented. Genetic algorithms are combined to simplify the BP neural network, which can reduce the learning time and increase the forecasting accuracy of the network model. This model has been experimented in the sintering process, and the production cost, the energy consumption, the quality (revolving intensity), and the output are considered at the same time. Moreover, the relation between some factors and the multi-objectives has been analyzed, and the results are consistent with the process. Different objectives are emphasized at different practical periods, and this can provide a theoretical basis for the manager.展开更多
基金supported by the confidential research grant No.a8317。
文摘To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling.By constructing a joint tracking model centered on“intra-class independent tracking+cross-category dynamic binding”,designing a multi-modal matching metric with spatio-temporal and appearance constraints,and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy,this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion,cross-camera tracking,and crowded environments.Experiments on the Chokepoint_Face_Pedestrian_Track test set demonstrate that in complex scenes,the proposed method improves Face-Pedestrian Matching F1 area under the curve(F1 AUC)by approximately 4 to 43 percentage points compared to several traditional methods.The joint tracking model achieves overall performance metrics of IDF1:85.1825%and MOTA:86.5956%,representing improvements of 0.91 and 0.06 percentage points,respectively,over the baseline model.Ablation studies confirm the effectiveness of key modules such as the Intersection over Area(IoA)/Intersection over Union(IoU)joint metric and dynamic threshold adjustment,validating the significant role of the cross-category identity matching mechanism in enhancing tracking stability.Our_model shows a 16.7%frame per second(FPS)drop vs.fairness of detection and re-identification in multiple object tracking(FairMOT),with its cross-category binding module adding aboute 10%overhead,yet maintains near-real-time performance for essential face-pedestrian tracking at small resolutions.
基金Projects(U22B2084,52275483,52075142)supported by the National Natural Science Foundation of ChinaProject(2023ZY01050)supported by the Ministry of Industry and Information Technology High Quality Development,China。
文摘The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.
基金funded by the National Natural Science Foundation of China under Grant No.62371187the Open Program of Hunan Intelligent Rehabilitation Robot and Auxiliary Equipment Engineering Technology Research Center under Grant No.2024JS101.
文摘The ubiquity of mobile devices has driven advancements in mobile object detection.However,challenges in multi-scale object detection in open,complex environments persist due to limited computational resources.Traditional approaches like network compression,quantization,and lightweight design often sacrifice accuracy or feature representation robustness.This article introduces the Fast Multi-scale Channel Shuffling Network(FMCSNet),a novel lightweight detection model optimized for mobile devices.FMCSNet integrates a fully convolutional Multilayer Perceptron(MLP)module,offering global perception without significantly increasing parameters,effectively bridging the gap between CNNs and Vision Transformers.FMCSNet achieves a delicate balance between computation and accuracy mainly by two key modules:the ShiftMLP module,including a shift operation and an MLP module,and a Partial group Convolutional(PGConv)module,reducing computation while enhancing information exchange between channels.With a computational complexity of 1.4G FLOPs and 1.3M parameters,FMCSNet outperforms CNN-based and DWConv-based ShuffleNetv2 by 1%and 4.5%mAP on the Pascal VOC 2007 dataset,respectively.Additionally,FMCSNet achieves a mAP of 30.0(0.5:0.95 IoU threshold)with only 2.5G FLOPs and 2.0M parameters.It achieves 32 FPS on low-performance i5-series CPUs,meeting real-time detection requirements.The versatility of the PGConv module’s adaptability across scenarios further highlights FMCSNet as a promising solution for real-time mobile object detection.
文摘With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios.
基金supported by the National Natural Science Foundation of China(62303095)the Natural Science Foundation of Sichuan Province(2023NSFSC0872).
文摘Dear Editor,This letter proposes a novel Nash bargaining solution-based multiobjective model predictive control(MPC)scheme to deal with the interaction force control and the path-following problem of the constrained interactive robot.Considering the elastic interaction force model,a mechanical trade-off always exists between the interaction force and position,which means that neither force nor path following can satisfy their desired demands completely.Based on this consideration,two irreconcilable control specifications,the force object function and the position track object function,are proposed,and a new multi-objective MPC scheme is then designed.
文摘The ease of accessing a virtually unlimited pool of resources makes Infrastructure as a Service (IaaS) clouds an ideal platform for running data-intensive workflow applications comprising hundreds of computational tasks. However, executing scientific workflows in IaaS cloud environments poses significant challenges due to conflicting objectives, such as minimizing execution time (makespan) and reducing resource utilization costs. This study responds to the increasing need for efficient and adaptable optimization solutions in dynamic and complex environments, which are critical for meeting the evolving demands of modern users and applications. This study presents an innovative multi-objective approach for scheduling scientific workflows in IaaS cloud environments. The proposed algorithm, MOS-MWMC, aims to minimize total execution time (makespan) and resource utilization costs by leveraging key features of virtual machine instances, such as a high number of cores and fast local SSD storage. By integrating realistic simulations based on the WRENCH framework, the method effectively dimensions the cloud infrastructure and optimizes resource usage. Experimental results highlight the superiority of MOS-MWMC compared to benchmark algorithms HEFT and Max-Min. The Pareto fronts obtained for the CyberShake, Epigenomics, and Montage workflows demonstrate closer proximity to the optimal front, confirming the algorithm’s ability to balance conflicting objectives. This study contributes to optimizing scientific workflows in complex environments by providing solutions tailored to specific user needs while minimizing costs and execution times.
基金co-supported by the National Natural Science Foundation of China(Nos.52405293,52375237)China Postdoctoral Science Foundation(No.2024M754219)Shaanxi Province Postdoctoral Research Project Funding,China。
文摘To accomplish the reliability analyses of the correlation of multi-analytical objectives,an innovative framework of Dimensional Synchronous Modeling(DSM)and correlation analysis is developed based on the stepwise modeling strategy,cell array operation principle,and Copula theory.Under this framework,we propose a DSM-based Enhanced Kriging(DSMEK)algorithm to synchronously derive the modeling of multi-objective,and explore an adaptive Copula function approach to analyze the correlation among multiple objectives and to assess the synthetical reliability level.In the proposed DSMEK and adaptive Copula methods,the Kriging model is treated as the basis function of DSMEK model,the Multi-Objective Snake Optimizer(MOSO)algorithm is used to search the optimal values of hyperparameters of basis functions,the cell array operation principle is adopted to establish a whole model of multiple objectives,the goodness of fit is utilized to determine the forms of Copula functions,and the determined Copula functions are employed to perform the reliability analyses of the correlation of multi-analytical objectives.Furthermore,three examples,including multi-objective complex function approximation,aeroengine turbine bladeddisc multi-failure mode reliability analyses and aircraft landing gear system brake temperature reliability analyses,are performed to verify the effectiveness of the proposed methods,from the viewpoints of mathematics and engineering.The results show that the DSMEK and adaptive Copula approaches hold obvious advantages in terms of modeling features and simulation performance.The efforts of this work provide a useful way for the modeling of multi-analytical objectives and synthetical reliability analyses of complex structure/system with multi-output responses.
文摘Cropping structure has a close relationship with the optimal allocation of agricultural water resources. Based on the analysis of the relationship between agricultural water resources and sustainable development, this paper presents a multi objective fuzzy optimization model for cropping structure and water allocation, which overcomes the shortcoming of current models that only considered the economic objective,and ignored the social and environmental objectives. During the process, a new method named fuzzy deciding weight is developed to decide the objective weight. A case study shows that the model is reliable, the method is simple and objective, and the results are reasonable. This model is useful for agricultural management and sustainable development.
基金National Science Fund for Distinguished Young Scholars (10425208)Programme of Introducing Talents of Discipline to Universities (B07009)
文摘For dealing with the multi-objective optimization problems of parametric design for aircraft, a novel hybrid parallel multi-objective tabu search (HPMOTS) algorithm is used. First, a new multi-objective tabu search (MOTS) algorithm is proposed. Comparing with the traditional MOTS algorithm, this proposed algorithm adds some new methods such as the combination of MOTS algorithm and "Pareto solution", the strategy of "searching from many directions" and the reservation of good solutions. Second, this article also proposes the improved parallel multi-objective tabu search (PMOTS) algorithm. Finally, a new hybrid algorithm--HPMOTS algorithm which combines the PMOTS algorithm with the non-dominated sorting-based multi-objective genetic algorithm (NSGA) is presented. The computing results of these algorithms are compared with each other and it is shown that the optimal result can be obtained by the HPMOTS algorithm and the computing result of the PMOTS algorithm is better than that of MOTS algorithm.
基金Sponsored by Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(Grant No.2022L294)Taiyuan University of Science and Technology Scientific Research Initial Funding(Grant Nos.W2022018,W20242012)Foundamental Research Program of Shanxi Province(Grant No.202403021212170).
文摘In recent years,surrogate models derived from genuine data samples have proven to be efficient in addressing optimization challenges that are costly or time⁃intensive.However,the individuals in the population become indistinguishable as the curse of dimensionality increases in the objective space and the accumulation of surrogate approximated errors.Therefore,in this paper,each objective function is modeled using a radial basis function approach,and the optimal solution set of the surrogate model is located by the multi⁃objective evolutionary algorithm of strengthened dominance relation.The original objective function values of the true evaluations are converted to two indicator values,and then the surrogate models are set up for the two performance indicators.Finally,an adaptive infill sampling strategy that relies on approximate performance indicators is proposed to assist in selecting individuals for real evaluations from the potential optimal solution set.The algorithm is contrasted against several advanced surrogate⁃assisted evolutionary algorithms on two suites of test cases,and the experimental findings prove that the approach is competitive in solving expensive many⁃objective optimization problems.
文摘In this paper,we propose a hybrid algorithm for finding a set of non dominated solutions of a multi objective optimization problem.In the proposed algorithm,a local search procedure is applied to each solution generated by genetic operations.The aim of the proposed algorithm is not to determine a single final solution but to try to find all the non dominated solutions of a multi objective optimization problem.The choice of the final solution is left to the decision makers preference.High search ability of the proposed algorithm is demonstrated by computer simulation.
文摘A class of interactive multi objective decision making method by means of evaluation criterion is proposed for problems with linear value function,in which case,the decision maker(DM) usually has only unwhole information of weights for objectives. The concept of fault measure of the evaluation criterion is proposed to measure the deviation of the evaluation criterion from the DMs preference structure.The approach to obtain an upper boundary of fault measure of an evaluation criterion,and the approach to modify the evaluation criterion to be one with smaller fault measure,and the approach to obtain a pre optimized objective set by evaluation criterion with certain fault measure are also proposed.
文摘In this paper, for multi objective decision making, the defects on the commonly used interactive methods based on the satisfactoriness criterion is studied. Then a class of two stage interactive method based on the satisfactoriness criterion is proposed for improvement with the satisfactoriness criterion being determined through the collection of the decision makers preference information. An application example is presented for illustration of applicability of the method.
基金National Natural Science Foundation of China (10377015)
文摘A transonic airfoil designed by means of classical point-optimization may result in its dramatically inferior performance under off-design conditions. To overcome this shortcoming, robust design is proposed to find out the optimal profile of an airfoil to maintain its performance in an uncertain environment. The robust airfoil optimization is aimed to minimize mean values and variances of drag coefficients while satisfying the lift and thickness constraints over a range of Mach numbers. A multi-objective estimation of distribution algorithm is applied to the robust airfoil optimization on the base of the RAE2822 benchmark airfoil. The shape of the airfoil is obtained through superposing ten Hick-Henne shape functions upon the benchmark airfoil. A set of design points is selected according to a uniform design table for aerodynamic evaluation. A Kriging model of drag coefficient is constructed with those points to reduce computing costs. Over the Mach range from 0.7 to 0.8, the airfoil generated by the robust optimization has a configuration characterized by supercritical airfoil with low drag coefficients. The small fluctuation in its drag coefficients means that the performance of the robust airfoil is insensitive to variation of Mach number.
文摘In this paper, a multi objective, multireservoir operation model is proposed using Genetic algorithm (GA) under fuzzy environment. A monthly Multi Objective Genetic Algorithm Fuzzy Optimization (MOGAFU-OPT) model for the present study is developed in ‘C’ Language. The GA parameters i.e. population size, number of generations, crossover probability, and mutation probability are decided based on optimized val-ues of fitness function. The GA operators adopted are stochastic remainder selection, one point crossover and binary mutation. Initially the model is run for maximization of irrigation releases. Then the model is run for maximization of hydropower production. These objectives are fuzzified by assuming a linear membership function. These fuzzified objectives are simultaneously maximized by defining level of satisfaction (?) and then maximizing it. This approach is applied to a multireservoir system in Godavari river sub basin in Ma-harashtra State, India. Problem is formulated with 4 reservoirs and a barrage. The optimal operation policy for maximization of irrigation releases, maximization of hydropower production and maximization of level of satisfaction is presented for existing demand in command area. This optimal operation policy so deter-mined is compared with the actual average operation policy for Jayakwadi Stage-I reservoir.
文摘To research the effect of the selection method of multi — objects genetic algorithm problem on optimizing result, this method is analyzed theoretically and discussed by using an autonomous underwater vehicle (AUV) as an object. A changing weight value method is put forward and a selection formula is modified. Some experiments were implemented on an AUV, TwinBurger. The results shows that this method is effective and feasible.
基金supported by The National Key Research and Development Program of China(No.2020YFB1708200).
文摘Design change is an inevitable part of the product development process.This study proposes an improved binary multi‐objective PSO algorithm guided by problem char-acteristics(P‐BMOPSO)to solve the optimisation problem of complex product change plan considering service performance.Firstly,a complex product multi‐layer network with service performance is established for the first time to reveal the impact of change effect propagation on the product service performance.Secondly,the concept of service performance impact(SPI)is defined by decoupling the impact of strongly associated nodes on the service performance in the process of change affect propagation.Then,a triple‐objective selection model of change nodes is established,which includes the three indicators:SPI degree,change cost,and change time.Furthermore,an integer multi‐objective particle swarm optimisation algorithm guided by problem characteristics is developed to solve the model above.Experimental results on the design change problem of a certain type of Skyworth TV verify the effectiveness of the established optimisation model and the proposed P‐BMOPSO algorithm.
文摘To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description about multi-objective (MO) optimization are introduced. Then some definitions and related terminologies are given. Furthermore several MO optimization methods including classical and current intelligent methods are discussed one by one succinctly. Finally evaluations on advantages and disadvantages about these methods are made at the end of the paper.
文摘The Lancnag Mekong River is the most important international river across China and Southeast Asia, If it is developed according to 'Great Mekong Subregional Cooperation Plan' [9] prepared by ADB, the area directly affected will be up to over 2.32 million km 2, the population over 220 million, and the natural environment, and socio-economic conditions within a large area will be greatly changed. 'Agreement on Cooperation for Sustainable Development of Mekong Basin' signed by the four riparian countries along the lower Mekong River on April 5, 1995 provides a new opportunity for sustainable development of the Basin. According to preliminary analysis, if the multipurpose utilization of the water resources is the target for carrying out integrated planning and management, and the efforts are made 1) to focus on energy exploitation on the Lancang River Mainstream and the tributaries of the lower Mekong River; 2) to build gated weirs at Tonle Sam; 3) to construct spillways at the Mekong Delta; 4) to facilitate flood dykes in big cities and on both banks of the mainstream which are concentrated with population and farmland and liable to be flooded, and 5) to strengthen networks for forecasting hydrological and meteorological conditions, then all problems such as power demand, irrigation, flood, salt water intrusion as well as acid water erosion to soil could be solved without constructing large cascaded stations and dams on the lower Mekong Mainstream. This will not only avoid input of great number of fund, large scale resettlement and land inundation, but also prevent aquatic organisms living in Mekong River from being injured due to dam construction, and promote the sustainable development of the Basin.
文摘A multi-objective optimization and analysis model of the sintering process based on BP neural network is presented. Genetic algorithms are combined to simplify the BP neural network, which can reduce the learning time and increase the forecasting accuracy of the network model. This model has been experimented in the sintering process, and the production cost, the energy consumption, the quality (revolving intensity), and the output are considered at the same time. Moreover, the relation between some factors and the multi-objectives has been analyzed, and the results are consistent with the process. Different objectives are emphasized at different practical periods, and this can provide a theoretical basis for the manager.