期刊文献+
共找到11,101篇文章
< 1 2 250 >
每页显示 20 50 100
Rockburst Intensity Prediction based on Kernel Extreme Learning Machine(KELM)
1
作者 XIAO Yidong QI Shengwen +3 位作者 GUO Songfeng ZHANG Shishu WANG Zan GONG Fengqiang 《Acta Geologica Sinica(English Edition)》 2025年第1期284-295,共12页
As one of the most serious geological disasters in deep underground engineering,rockburst has caused a large number of casualties.However,because of the complex relationship between the inducing factors and rockburst ... As one of the most serious geological disasters in deep underground engineering,rockburst has caused a large number of casualties.However,because of the complex relationship between the inducing factors and rockburst intensity,the problem of rockburst intensity prediction has not been well solved until now.In this study,we collect 292 sets of rockburst data including eight parameters,such as the maximum tangential stress of the surrounding rock σ_(θ),the uniaxial compressive strength of the rockσc,the uniaxial tensile strength of the rock σ_(t),and the strain energy storage index W_(et),etc.from more than 20 underground projects as training sets and establish two new rockburst prediction models based on the kernel extreme learning machine(KELM)combined with the genetic algorithm(KELM-GA)and cross-entropy method(KELM-CEM).To further verify the effect of the two models,ten sets of rockburst data from Shuangjiangkou Hydropower Station are selected for analysis and the results show that new models are more accurate compared with five traditional empirical criteria,especially the model based on KELM-CEM which has the accuracy rate of 90%.Meanwhile,the results of 10 consecutive runs of the model based on KELM-CEM are almost the same,meaning that the model has good stability and reliability for engineering applications. 展开更多
关键词 rockburst intensity prediction kernel extreme learning machine genetic algorithm cross-entropy method
在线阅读 下载PDF
Optimization of Extrusion-based Silicone Additive Manufacturing Process Parameters Based on Improved Kernel Extreme Learning Machine
2
作者 Zi-Ning Li Xiao-Qing Tian +3 位作者 Dingyifei Ma Shahid Hussain Lian Xia Jiang Han 《Chinese Journal of Polymer Science》 2025年第5期848-862,共15页
Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors an... Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors and performance defects,leading to a decline in product quality and affecting its service life.This study proposes a process parameter optimization method that considers the mechanical properties of printed specimens and production costs.To improve the quality of silicone printing samples and reduce production costs,three machine learning models,kernel extreme learning machine(KELM),support vector regression(SVR),and random forest(RF),were developed to predict these three factors.Training data were obtained through a complete factorial experiment.A new dataset is obtained using the Euclidean distance method,which assigns the elimination factor.It is trained with Bayesian optimization algorithms for parameter optimization,the new dataset is input into the improved double Gaussian extreme learning machine,and finally obtains the improved KELM model.The results showed improved prediction accuracy over SVR and RF.Furthermore,a multi-objective optimization framework was proposed by combining genetic algorithm technology with the improved KELM model.The effectiveness and reasonableness of the model algorithm were verified by comparing the optimized results with the experimental results. 展开更多
关键词 Silicone material extrusion Process parameter optimization Double Gaussian kernel extreme learning machine Euclidean distance assigned to the elimination factor multi-objective optimization framework
原文传递
Strengthening human papillomavirus vaccination programs through multi-country peer learning:lessons from the CHIC initiative
3
作者 Christopher Morgan Mary Carol Jennings +8 位作者 Dur-e-Nayab Waheed Nicolas Theopold Anissa Sidibe Ana Bolio Elaine Charurat Felix Ricardo Burdier Emilie Karafillakis Shana Kagan Alex Vorsters 《Cancer Biology & Medicine》 2025年第9期997-1001,共5页
Introduction Human papillomavirus(HPV)vaccination is a cornerstone of cervical cancer prevention,particularly in low-and middle-income countries(LMICs),where the burden of disease remains high~1.The World Health Organ... Introduction Human papillomavirus(HPV)vaccination is a cornerstone of cervical cancer prevention,particularly in low-and middle-income countries(LMICs),where the burden of disease remains high~1.The World Health Organization(WHO)HPV Vaccine Introduction Clearing House reported that 147 countries(of 194 reporting)had fully introduced the HPV vaccine into their national schedules as of 20242.After COVID-19 pandemic disruptions,global coverage is again increasing. 展开更多
关键词 WHO HPV vaccine introduction clearing house multi country peer learning cervical cancer prevention CHIC initiative global coverage human papillomavirus vaccination human papillomavirus hpv vaccination low middle income countries
暂未订购
AI-Powered Threat Detection in Online Communities: A Multi-Modal Deep Learning Approach
4
作者 Ravi Teja Potla 《Journal of Computer and Communications》 2025年第2期155-171,共17页
The fast increase of online communities has brought about an increase in cyber threats inclusive of cyberbullying, hate speech, misinformation, and online harassment, making content moderation a pressing necessity. Tr... The fast increase of online communities has brought about an increase in cyber threats inclusive of cyberbullying, hate speech, misinformation, and online harassment, making content moderation a pressing necessity. Traditional single-modal AI-based detection systems, which analyze both text, photos, or movies in isolation, have established useless at taking pictures multi-modal threats, in which malicious actors spread dangerous content throughout a couple of formats. To cope with these demanding situations, we advise a multi-modal deep mastering framework that integrates Natural Language Processing (NLP), Convolutional Neural Networks (CNNs), and Long Short-Term Memory (LSTM) networks to become aware of and mitigate online threats effectively. Our proposed model combines BERT for text class, ResNet50 for photograph processing, and a hybrid LSTM-3-d CNN community for video content material analysis. We constructed a large-scale dataset comprising 500,000 textual posts, 200,000 offensive images, and 50,000 annotated motion pictures from more than one platform, which includes Twitter, Reddit, YouTube, and online gaming forums. The system became carefully evaluated using trendy gadget mastering metrics which include accuracy, precision, remember, F1-score, and ROC-AUC curves. Experimental outcomes demonstrate that our multi-modal method extensively outperforms single-modal AI classifiers, achieving an accuracy of 92.3%, precision of 91.2%, do not forget of 90.1%, and an AUC rating of 0.95. The findings validate the necessity of integrating multi-modal AI for actual-time, high-accuracy online chance detection and moderation. Future paintings will have consciousness on improving hostile robustness, enhancing scalability for real-world deployment, and addressing ethical worries associated with AI-driven content moderation. 展开更多
关键词 multi-Model AI Deep learning Natural Language Processing (NLP) Explainable AI (XI) Federated learning Cyber Threat Detection LSTM CNNS
在线阅读 下载PDF
Explainable machine learning for predicting mechanical properties of hot-rolled steel pipe 被引量:1
5
作者 Jing-dong Li You-zhao Sun +4 位作者 Xiao-chen Wang Quan Yang Guo-dong Liu Hao-tang Qie Feng-xia Li 《Journal of Iron and Steel Research International》 2025年第8期2475-2490,共16页
Mechanical properties are critical to the quality of hot-rolled steel pipe products.Accurately understanding the relationship between rolling parameters and mechanical properties is crucial for effective prediction an... Mechanical properties are critical to the quality of hot-rolled steel pipe products.Accurately understanding the relationship between rolling parameters and mechanical properties is crucial for effective prediction and control.To address this,an industrial big data platform was developed to collect and process multi-source heterogeneous data from the entire production process,providing a complete dataset for mechanical property prediction.The adaptive bandwidth kernel density estimation(ABKDE)method was proposed to adjust bandwidth dynamically based on data density.Combining long short-term memory neural networks with ABKDE offers robust prediction interval capabilities for mechanical properties.The proposed method was deployed in a large-scale steel plant,which demonstrated superior prediction interval performance compared to lower upper bound estimation,mean variance estimation,and extreme learning machine-adaptive bandwidth kernel density estimation,achieving a prediction interval normalized average width of 0.37,a prediction interval coverage probability of 0.94,and the lowest coverage width-based criterion of 1.35.Notably,shapley additive explanations-based explanations significantly improved the proposed model’s credibility by providing a clear analysis of feature impacts. 展开更多
关键词 Mechanical property Hot-rolled steel pipe Machine learning Adaptive bandwidth kernel density estimation Shapley additive explanations-based explanation
原文传递
Multi-perception large kernel convnet for efficient image super-resolution
6
作者 MIAO Xuan LI Zheng XU Wen-Zheng 《四川大学学报(自然科学版)》 北大核心 2025年第1期67-78,共12页
Significant advancements have been achieved in the field of Single Image Super-Resolution(SISR)through the utilization of Convolutional Neural Networks(CNNs)to attain state-of-the-art performance.Recent efforts have e... Significant advancements have been achieved in the field of Single Image Super-Resolution(SISR)through the utilization of Convolutional Neural Networks(CNNs)to attain state-of-the-art performance.Recent efforts have explored the incorporation of Transformers to augment network performance in SISR.However,the high computational cost of Transformers makes them less suitable for deployment on lightweight devices.Moreover,the majority of enhancements for CNNs rely predominantly on small spatial convolutions,thereby neglecting the potential advantages of large kernel convolution.In this paper,the authors propose a Multi-Perception Large Kernel convNet(MPLKN)which delves into the exploration of large kernel convolution.Specifically,the authors have architected a Multi-Perception Large Kernel(MPLK)module aimed at extracting multi-scale features and employ a stepwise feature fusion strategy to seamlessly integrate these features.In addition,to enhance the network's capacity for nonlinear spatial information processing,the authors have designed a Spatial-Channel Gated Feed-forward Network(SCGFN)that is capable of adapting to feature interactions across both spatial and channel dimensions.Experimental results demonstrate that MPLKN outperforms other lightweight image super-resolution models while maintaining a minimal number of parameters and FLOPs. 展开更多
关键词 Single Image Super-Resolution Lightweight model Deep learning Large kernel
在线阅读 下载PDF
Numerical Study of Dynamical System Using Deep Learning Approach
7
作者 Manana Chumburidze Miranda Mnatsakaniani +1 位作者 David Lekveishvili Nana Julakidze 《Open Journal of Applied Sciences》 2025年第2期425-432,共8页
This article is devoted to developing a deep learning method for the numerical solution of the partial differential equations (PDEs). Graph kernel neural networks (GKNN) approach to embedding graphs into a computation... This article is devoted to developing a deep learning method for the numerical solution of the partial differential equations (PDEs). Graph kernel neural networks (GKNN) approach to embedding graphs into a computationally numerical format has been used. In particular, for investigation mathematical models of the dynamical system of cancer cell invasion in inhomogeneous areas of human tissues have been considered. Neural operators were initially proposed to model the differential operator of PDEs. The GKNN mapping features between input data to the PDEs and their solutions have been constructed. The boundary integral method in combination with Green’s functions for a large number of boundary conditions is used. The tools applied in this development are based on the Fourier neural operators (FNOs), graph theory, theory elasticity, and singular integral equations. 展开更多
关键词 Deep learning Graph kernel Network Green’s Tensor
在线阅读 下载PDF
Machine Learning for Smart Soil Monitoring
8
作者 Khaoula Ben Abdellafou Kamel Zidi +2 位作者 Ahamed Aljuhani Okba Taouali Mohamed Faouzi Harkat 《Computers, Materials & Continua》 2025年第5期3007-3023,共17页
Environmental protection requires identifying,investigating,and raising awareness about safeguarding nature from the harmful effects of both anthropogenic and natural events.This process of environmental protection is... Environmental protection requires identifying,investigating,and raising awareness about safeguarding nature from the harmful effects of both anthropogenic and natural events.This process of environmental protection is essential for maintaining human well-being.In this context,it is critical to monitor and safeguard the personal environment,which includes maintaining a healthy diet and ensuring plant safety.Living in a balanced environment and ensuring the safety of plants for green spaces and a healthy diet require controlling the nature and quality of the soil in our environment.To ensure soil quality,it is imperative to monitor and assess the levels of various soil parameters.Therefore,an Optimized Reduced Kernel Partial Least Squares(ORKPLS)method is proposed to monitor and control soil parameters.This approach is designed to detect increases or deviations in soil parameter quantities.A Tabu search approach was used to select the appropriate kernel parameter.Subsequently,soil analyses were conducted to evaluate the performance of the developed techniques.The simulation results were analyzed and compared.Through this study,deficiencies or exceedances in soil parameter quantities can be identified.The proposed method involves determining whether each soil parameter falls within a normal range.This allows for the assessment of soil parameter conditions based on the principle of fault detection. 展开更多
关键词 Systems security soil analyses kernel partial least squares(KPLS) optimized reduced kernel partial least squares(ORKPLS) tabu search process monitoring machine learning fault detection(FD)
在线阅读 下载PDF
面向物流机器人的改进Q-Learning动态避障算法研究 被引量:1
9
作者 王力 赵全海 黄石磊 《计算机测量与控制》 2025年第3期267-274,共8页
为提升物流机器人(AMR)在复杂环境中的自主导航与避障能力,改善传统Q-Learning算法在动态环境中的收敛速度慢、路径规划不够优化等问题;研究引入模糊退火算法对Q-Learning算法进行路径节点和搜索路径优化,删除多余节点和非必要转折;并... 为提升物流机器人(AMR)在复杂环境中的自主导航与避障能力,改善传统Q-Learning算法在动态环境中的收敛速度慢、路径规划不够优化等问题;研究引入模糊退火算法对Q-Learning算法进行路径节点和搜索路径优化,删除多余节点和非必要转折;并为平衡好Q-Learning算法的探索和利用问题,提出以贪婪法优化搜索策略,并借助改进动态窗口法对进行路径节点和平滑加速改进,实现局部路径规划,以提高改进Q-Learning算法在AMR动态避障中的搜索性能和效率;结果表明,改进Q-Learning算法能有效优化搜索路径,能较好避开动态障碍物和静态障碍物,与其他算法的距离差幅至少大于1 m;改进算法在局部路径中的避障轨迹更趋近于期望值,最大搜索时间不超过3 s,优于其他算法,且其在不同场景下的避障路径长度和运动时间减少幅度均超过10%,避障成功率超过90%;研究方法能满足智慧仓储、智能制造等工程领域对物流机器人高效、安全作业的需求。 展开更多
关键词 物流机器人 Q-learning算法 DWA 多目标规划 障碍物 避障
在线阅读 下载PDF
Improving Multiple Sclerosis Disease Prediction Using Hybrid Deep Learning Model
10
作者 Stephen Ojo Moez Krichen +3 位作者 Meznah A.Alamro Alaeddine Mihoub Gabriel Avelino Sampedro Jaroslava Kniezova 《Computers, Materials & Continua》 SCIE EI 2024年第10期643-661,共19页
Myelin damage and a wide range of symptoms are caused by the immune system targeting the central nervous system in Multiple Sclerosis(MS),a chronic autoimmune neurological condition.It disrupts signals between the bra... Myelin damage and a wide range of symptoms are caused by the immune system targeting the central nervous system in Multiple Sclerosis(MS),a chronic autoimmune neurological condition.It disrupts signals between the brain and body,causing symptoms including tiredness,muscle weakness,and difficulty with memory and balance.Traditional methods for detecting MS are less precise and time-consuming,which is a major gap in addressing this problem.This gap has motivated the investigation of new methods to improve MS detection consistency and accuracy.This paper proposed a novel approach named FAD consisting of Deep Neural Network(DNN)fused with an Artificial Neural Network(ANN)to detect MS with more efficiency and accuracy,utilizing regularization and combat over-fitting.We use gene expression data for MS research in the GEO GSE17048 dataset.The dataset is preprocessed by performing encoding,standardization using min-max-scaler,and feature selection using Recursive Feature Elimination with Cross-Validation(RFECV)to optimize and refine the dataset.Meanwhile,for experimenting with the dataset,another deep-learning hybrid model is integrated with different ML models,including Random Forest(RF),Gradient Boosting(GB),XGBoost(XGB),K-Nearest Neighbors(KNN)and Decision Tree(DT).Results reveal that FAD performed exceptionally well on the dataset,which was evident with an accuracy of 96.55%and an F1-score of 96.71%.The use of the proposed FAD approach helps in achieving remarkable results with better accuracy than previous studies. 展开更多
关键词 multi Sclerosis(MS) machine learning deep learning artificial neural network healthcare
在线阅读 下载PDF
A Robust Approach for Multi Classification-Based Intrusion Detection through Stacking Deep Learning Models
11
作者 Samia Allaoua Chelloug 《Computers, Materials & Continua》 SCIE EI 2024年第6期4845-4861,共17页
Intrusion detection is a predominant task that monitors and protects the network infrastructure.Therefore,many datasets have been published and investigated by researchers to analyze and understand the problem of intr... Intrusion detection is a predominant task that monitors and protects the network infrastructure.Therefore,many datasets have been published and investigated by researchers to analyze and understand the problem of intrusion prediction and detection.In particular,the Network Security Laboratory-Knowledge Discovery in Databases(NSL-KDD)is an extensively used benchmark dataset for evaluating intrusion detection systems(IDSs)as it incorporates various network traffic attacks.It is worth mentioning that a large number of studies have tackled the problem of intrusion detection using machine learning models,but the performance of these models often decreases when evaluated on new attacks.This has led to the utilization of deep learning techniques,which have showcased significant potential for processing large datasets and therefore improving detection accuracy.For that reason,this paper focuses on the role of stacking deep learning models,including convolution neural network(CNN)and deep neural network(DNN)for improving the intrusion detection rate of the NSL-KDD dataset.Each base model is trained on the NSL-KDD dataset to extract significant features.Once the base models have been trained,the stacking process proceeds to the second stage,where a simple meta-model has been trained on the predictions generated from the proposed base models.The combination of the predictions allows the meta-model to distinguish different classes of attacks and increase the detection rate.Our experimental evaluations using the NSL-KDD dataset have shown the efficacy of stacking deep learning models for intrusion detection.The performance of the ensemble of base models,combined with the meta-model,exceeds the performance of individual models.Our stacking model has attained an accuracy of 99%and an average F1-score of 93%for the multi-classification scenario.Besides,the training time of the proposed ensemble model is lower than the training time of benchmark techniques,demonstrating its efficiency and robustness. 展开更多
关键词 Intrusion detection multi classification deep learning STACKING NSL-KDD
在线阅读 下载PDF
Convergence analysis for complementary-label learning with kernel ridge regression
12
作者 NIE Wei-lin WANG Cheng XIE Zhong-hua 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第3期533-544,共12页
Complementary-label learning(CLL)aims at finding a classifier via samples with complementary labels.Such data is considered to contain less information than ordinary-label samples.The transition matrix between the tru... Complementary-label learning(CLL)aims at finding a classifier via samples with complementary labels.Such data is considered to contain less information than ordinary-label samples.The transition matrix between the true label and the complementary label,and some loss functions have been developed to handle this problem.In this paper,we show that CLL can be transformed into ordinary classification under some mild conditions,which indicates that the complementary labels can supply enough information in most cases.As an example,an extensive misclassification error analysis was performed for the Kernel Ridge Regression(KRR)method applied to multiple complementary-label learning(MCLL),which demonstrates its superior performance compared to existing approaches. 展开更多
关键词 multiple complementary-label learning partial label learning error analysis reproducing kernel Hilbert spaces
在线阅读 下载PDF
Driving mechanism and nonlinear threshold identification of vegetation in China:Based on causal inference and machine learning
13
作者 ZHANG Houtian WANG Shidong DING Junjie 《Journal of Arid Land》 2025年第10期1341-1360,共20页
Climate change significantly affects vegetation dynamics.Thus,understanding interactions between vegetation and climatic factors is essential for ecological management.This study used kernel Normalized Difference Vege... Climate change significantly affects vegetation dynamics.Thus,understanding interactions between vegetation and climatic factors is essential for ecological management.This study used kernel Normalized Difference Vegetation Index(kNDVI)and climatic data(temperature,precipitation,humidity,and vapor pressure deficit(VPD))of China from 2000 to 2022,integrating Geographic Convergent Cross Mapping(GCCM)causal modeling,Extreme Gradient Boosting-Shapley Additive Explanations(XGBoost-SHAP)nonlinear threshold identification,and Geographical Simulation and Optimization Systems-Future Land Use Simulation(GeoSOS-FLUS)spatial prediction modeling to investigate vegetation spatiotemporal characteristics,driving mechanisms,nonlinear thresholds,and future spatial patterns.Results indicated that from 2000 to 2022,China's kNDVI showed an overall increasing trend(annual average ranging from 0.29 to 0.33 with distinct spatial differentiation:52.77%of areas locating in agricultural and ecological restoration regions in the central-eastern plain)experienced vegetation improvement,whereas 2.68%of areas locating in the southeastern coastal urbanized regions and the Yangtze River Delta experience vegetation degradation.The coefficient of variation(CV)of kNDVI at 0.30–0.40(accounting for 10.61%)was significantly higher than that of NDVI(accounting for 1.80%).Climate-driven mechanisms exhibited notable library length(L)dependence.At short-term scales(L<50),vegetation-driven transpiration regulated local microclimate,with a causal strength from kNDVI to temperature of 0.04–0.15;at long-term scales(L>100),cumulative temperature effects dominated vegetation dynamics,with a causal strength from temperature to kNDVI of 0.33.Humidity and kNDVI formed bidirectional positive feedback at long-term scales(L=210,causal strength>0.70),whereas the long-term suppressive effect of VPD was particularly pronounced(causal strength=0.21)in arid areas.The optimal threshold intervals identified were temperature at–12.18℃–0.67℃,precipitation at 24.00–159.74 mm,humidity of lower than 22.00%,and VPD of<0.07,0.17–0.24,and>0.30 kPa;notably,the lower precipitation threshold(24.00 mm)represented the minimum water requirements for vegetation recovery in arid areas.Future kNDVI spatial patterns are projected to continue the trend of"southeastern optimization and northwestern delay"from 2025 to 2040:the area proportion of high kNDVI value(>0.50)will rise from 40.43%to 41.85%,concentrated in the Sichuan Basin and the southern hills;meanwhile,the proportion of low-value areas of kNDVI(0.00–0.10)in the arid northwestern areas will decline by only 1.25%,constrained by sustained temperature and VPD stress.This study provides a scientific basis for vegetation dynamic regulation and sustainable development under climate change. 展开更多
关键词 kernel Normalized Difference Vegetation Index(kNDVI) climate drivers machine learning Geographic Convergent Cross Mapping(GCCM) Extreme Gradient Boosting-Shapley Additive Explanations(XGBoost-SHAP) Geographical Simulation and Optimization Systems-Future Land Use Simulation(GeoSOS-FLUS)model
在线阅读 下载PDF
Incremental support vector machine algorithm based on multi-kernel learning 被引量:7
14
作者 Zhiyu Li Junfeng Zhang Shousong Hu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期702-706,共5页
A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning. Through introducing multiple kernel learning into the SVM incremental learning, large scale data set l... A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning. Through introducing multiple kernel learning into the SVM incremental learning, large scale data set learning problem can be solved effectively. Furthermore, different punishments are adopted in allusion to the training subset and the acquired support vectors, which may help to improve the performance of SVM. Simulation results indicate that the proposed algorithm can not only solve the model selection problem in SVM incremental learning, but also improve the classification or prediction precision. 展开更多
关键词 support vector machine (SVM) incremental learning multiple kernel learning (MKL).
在线阅读 下载PDF
基于Q-Learning的双无人机覆盖路径规划
15
作者 陈佳雨 李文 +3 位作者 李泰融 李志茹 王子怡 陈鹏云 《遥测遥控》 2025年第4期96-104,共9页
覆盖路径规划的目标是确保无人机能够实现对目标区域的完全覆盖。在以往的研究中,无人机的工作模式为分别负责每个子区域的覆盖任务,而本研究中两架无人机在整个搜索区域中协同工作,能够在提高覆盖效率的基础上更加灵活地实现覆盖任务... 覆盖路径规划的目标是确保无人机能够实现对目标区域的完全覆盖。在以往的研究中,无人机的工作模式为分别负责每个子区域的覆盖任务,而本研究中两架无人机在整个搜索区域中协同工作,能够在提高覆盖效率的基础上更加灵活地实现覆盖任务。针对传统方法求解无人机覆盖路径规划易导致规划总代价高的问题,本文提出一种基于Q-Learning(Q学习)的双无人机覆盖路径规划算法。为了节省无人机完成覆盖搜索任务的时间,采用基于网格的旋转区域划分算法最小化待搜索区域。通过建立无人机覆盖路径规划模型,将路径规划转化为多目标函数优化问题,并利用Double-Q-Learning(双Q学习)算法均衡算法全局搜索与局部开发能力,以综合考虑距离代价和转折代价的总代价函数,对路径规划迭代寻优。仿真实验结果表明:所提算法规划的路径能够以更低的总代价在不同的目标区域中实现两架无人机对目标区域的完全覆盖。 展开更多
关键词 覆盖路径规划 双无人机 Double-Q-learning 协同控制 旋转区域 多目标函数
在线阅读 下载PDF
Elastic Multiple Kernel Learning 被引量:6
16
作者 WU Zheng-Peng ZHANG Xue-Gong 《自动化学报》 EI CSCD 北大核心 2011年第6期693-699,共7页
(MKL ) 多重核学习被建议处理核熔化。MKL 听说线性联合几个核并且解决同时与联合的核联系的支持的向量机器(SVM ) 。MKL 的当前的框架鼓励核联合系数的稀少。核的重要部分什么时候是增进知识的,强迫稀少,趋于选择仅仅一些核并且可以... (MKL ) 多重核学习被建议处理核熔化。MKL 听说线性联合几个核并且解决同时与联合的核联系的支持的向量机器(SVM ) 。MKL 的当前的框架鼓励核联合系数的稀少。核的重要部分什么时候是增进知识的,强迫稀少,趋于选择仅仅一些核并且可以忽略有用信息。在这份报纸,我们建议学习的有弹性的多重核(EMKL ) 完成适应的核熔化。EMKL 使用混合规则化功能损害稀少和非稀少。MKL 和 SVM 能被认为是 EMKL 的特殊情况。为 MKL 问题基于坡度降下算法,我们建议一个快算法解决 EMKL 问题。模拟数据集上的结果证明 EMKL 的表演有利地比作 MKL 和 SVM。我们进一步把 EMKL 用于基因集合分析并且得到有希望的结果。最后,我们学习比作另外的非稀少的 MKL 的 EMKL 的理论优点。 展开更多
关键词 《自动化学报》 期刊 摘要 编辑部
在线阅读 下载PDF
A Multi-Task Deep Learning Framework for Simultaneous Detection of Thoracic Pathology through Image Classification
17
作者 Nada Al Zahrani Ramdane Hedjar +4 位作者 Mohamed Mekhtiche Mohamed Bencherif Taha Al Fakih Fattoh Al-Qershi Muna Alrazghan 《Journal of Computer and Communications》 2024年第4期153-170,共18页
Thoracic diseases pose significant risks to an individual's chest health and are among the most perilous medical diseases. They can impact either one or both lungs, which leads to a severe impairment of a person’... Thoracic diseases pose significant risks to an individual's chest health and are among the most perilous medical diseases. They can impact either one or both lungs, which leads to a severe impairment of a person’s ability to breathe normally. Some notable examples of such diseases encompass pneumonia, lung cancer, coronavirus disease 2019 (COVID-19), tuberculosis, and chronic obstructive pulmonary disease (COPD). Consequently, early and precise detection of these diseases is paramount during the diagnostic process. Traditionally, the primary methods employed for the detection involve the use of X-ray imaging or computed tomography (CT) scans. Nevertheless, due to the scarcity of proficient radiologists and the inherent similarities between these diseases, the accuracy of detection can be compromised, leading to imprecise or erroneous results. To address this challenge, scientists have turned to computer-based solutions, aiming for swift and accurate diagnoses. The primary objective of this study is to develop two machine learning models, utilizing single-task and multi-task learning frameworks, to enhance classification accuracy. Within the multi-task learning architecture, two principal approaches exist soft parameter sharing and hard parameter sharing. Consequently, this research adopts a multi-task deep learning approach that leverages CNNs to achieve improved classification performance for the specified tasks. These tasks, focusing on pneumonia and COVID-19, are processed and learned simultaneously within a multi-task model. To assess the effectiveness of the trained model, it is rigorously validated using three different real-world datasets for training and testing. 展开更多
关键词 PNEUMONIA Thoracic Pathology COVID-19 Deep learning multi-Task learning
暂未订购
Enhancing Collaborative and Geometric Multi-Kernel Learning Using Deep Neural Network 被引量:1
18
作者 Bareera Zafar Syed Abbas Zilqurnain Naqvi +3 位作者 Muhammad Ahsan Allah Ditta Ummul Baneen Muhammad Adnan Khan 《Computers, Materials & Continua》 SCIE EI 2022年第9期5099-5116,共18页
This research proposes a method called enhanced collaborative andgeometric multi-kernel learning (E-CGMKL) that can enhance the CGMKLalgorithm which deals with multi-class classification problems with non-lineardata d... This research proposes a method called enhanced collaborative andgeometric multi-kernel learning (E-CGMKL) that can enhance the CGMKLalgorithm which deals with multi-class classification problems with non-lineardata distributions. CGMKL combines multiple kernel learning with softmaxfunction using the framework of multi empirical kernel learning (MEKL) inwhich empirical kernel mapping (EKM) provides explicit feature constructionin the high dimensional kernel space. CGMKL ensures the consistent outputof samples across kernel spaces and minimizes the within-class distance tohighlight geometric features of multiple classes. However, the kernels constructed by CGMKL do not have any explicit relationship among them andtry to construct high dimensional feature representations independently fromeach other. This could be disadvantageous for learning on datasets with complex hidden structures. To overcome this limitation, E-CGMKL constructskernel spaces from hidden layers of trained deep neural networks (DNN).Due to the nature of the DNN architecture, these kernel spaces not onlyprovide multiple feature representations but also inherit the compositionalhierarchy of the hidden layers, which might be beneficial for enhancing thepredictive performance of the CGMKL algorithm on complex data withnatural hierarchical structures, for example, image data. Furthermore, ourproposed scheme handles image data by constructing kernel spaces from aconvolutional neural network (CNN). Considering the effectiveness of CNNarchitecture on image data, these kernel spaces provide a major advantageover the CGMKL algorithm which does not exploit the CNN architecture forconstructing kernel spaces from image data. Additionally, outputs of hiddenlayers directly provide features for kernel spaces and unlike CGMKL, do notrequire an approximate MEKL framework. E-CGMKL combines the consistency and geometry preserving aspects of CGMKL with the compositionalhierarchy of kernel spaces extracted from DNN hidden layers to enhance the predictive performance of CGMKL significantly. The experimental results onvarious data sets demonstrate the superior performance of the E-CGMKLalgorithm compared to other competing methods including the benchmarkCGMKL. 展开更多
关键词 CGMKL multi-class classification deep neural network multiplekernel learning hierarchical kernel spaces
在线阅读 下载PDF
A deep learning fusion model for accurate classification of brain tumours in Magnetic Resonance images 被引量:1
19
作者 Nechirvan Asaad Zebari Chira Nadheef Mohammed +8 位作者 Dilovan Asaad Zebari Mazin Abed Mohammed Diyar Qader Zeebaree Haydar Abdulameer Marhoon Karrar Hameed Abdulkareem Seifedine Kadry Wattana Viriyasitavat Jan Nedoma Radek Martinek 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期790-804,共15页
Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods... Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods still need to solve this problem despite the numerous available approaches. Precise analysis of Magnetic Resonance Imaging (MRI) is crucial for detecting, segmenting, and classifying brain tumours in medical diagnostics. Magnetic Resonance Imaging is a vital component in medical diagnosis, and it requires precise, efficient, careful, efficient, and reliable image analysis techniques. The authors developed a Deep Learning (DL) fusion model to classify brain tumours reliably. Deep Learning models require large amounts of training data to achieve good results, so the researchers utilised data augmentation techniques to increase the dataset size for training models. VGG16, ResNet50, and convolutional deep belief networks networks extracted deep features from MRI images. Softmax was used as the classifier, and the training set was supplemented with intentionally created MRI images of brain tumours in addition to the genuine ones. The features of two DL models were combined in the proposed model to generate a fusion model, which significantly increased classification accuracy. An openly accessible dataset from the internet was used to test the model's performance, and the experimental results showed that the proposed fusion model achieved a classification accuracy of 98.98%. Finally, the results were compared with existing methods, and the proposed model outperformed them significantly. 展开更多
关键词 brain tumour deep learning feature fusion model MRI images multi‐classification
暂未订购
多无人机辅助边缘计算场景下基于Q-learning的任务卸载优化 被引量:2
20
作者 张露 王康 +2 位作者 燕晶 张博文 王茂励 《曲阜师范大学学报(自然科学版)》 CAS 2024年第4期74-82,共9页
引入多无人机辅助边缘计算系统,由多个无人机和原有边缘服务器共同为移动用户提供通信和计算资源;将优化问题建模为资源竞争和卸载决策约束下的系统总效用最大化问题,系统总效用由用户满意度、任务延迟和系统能耗3个因素组成.由于优化... 引入多无人机辅助边缘计算系统,由多个无人机和原有边缘服务器共同为移动用户提供通信和计算资源;将优化问题建模为资源竞争和卸载决策约束下的系统总效用最大化问题,系统总效用由用户满意度、任务延迟和系统能耗3个因素组成.由于优化模型是一个具有NP难属性的非凸问题,故采用强化学习方法求解得到使系统总效用最大的最优任务卸载决策集.仿真实验结果表明,与贪心顺序调优卸载方案和随机选择卸载方案相比,该文提出的Q-learning方案的系统总效用分别提高了15%和43%以上. 展开更多
关键词 多无人机辅助边缘计算系统 任务卸载 Q-learning算法
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部