[Objective] The aim was to extract red tide information in Haizhou Bay on the basis of multi-source remote sensing data.[Method] Red tide in Haizhou Bay was studied based on multi-source remote sensing data,such as IR...[Objective] The aim was to extract red tide information in Haizhou Bay on the basis of multi-source remote sensing data.[Method] Red tide in Haizhou Bay was studied based on multi-source remote sensing data,such as IRS-P6 data on October 8,2005,Landsat 5-TM data on May 20,2006,MODIS 1B data on October 6,2006 and HY-1B second-grade data on April 22,2009,which were firstly preprocessed through geometric correction,atmospheric correction,image resizing and so on.At the same time,the synchronous environment monitoring data of red tide water were acquired.Then,band ratio method,chlorophyll-a concentration method and secondary filtering method were adopted to extract red tide information.[Result] On October 8,2005,the area of red tide was about 20.0 km2 in Haizhou Bay.There was no red tide in Haizhou bay on May 20,2006.On October 6,2006,large areas of red tide occurred in Haizhou bay,with area of 436.5 km2.On April 22,2009,red tide scattered in Haizhou bay,and its area was about 10.8 km2.[Conclusion] The research would provide technical ideas for the environmental monitoring department of Lianyungang to implement red tide forecast and warning effectively.展开更多
Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi...Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi-direction Harris algorithm and a novel compound feature. Multi-scale circle Gaussian combined invariant moments and multi-direction gray level co-occurrence matrix are extracted as features for image matching. The proposed algorithm is evaluated on numerous multi-source remote sensor images with noise and illumination changes. Extensive experimental studies prove that our proposed method is capable of receiving stable and even distribution of key points as well as obtaining robust and accurate correspondence matches. It is a promising scheme in multi-source remote sensing image registration.展开更多
The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has ...The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has been embedded into the ERDAS IMAGINE software of version 9.0 and above. The registration accuracies of the module verified for the remote sensing images obtained from different platforms or their different spatial resolution. Four tested registration experiments are discussed in this article to analyze the accuracy differences based on the remote sensing data which have different spatial resolution. The impact factors inducing the differences of registration accuracy are also analyzed.展开更多
Dear Editor,Remote sensing data formats are essential for storing,organizing,and managing imagery collected by satellites and sensors.These formats store remote sensing images and their related information,such as geo...Dear Editor,Remote sensing data formats are essential for storing,organizing,and managing imagery collected by satellites and sensors.These formats store remote sensing images and their related information,such as geographic coordinates and band information.It specifies the data storage order,encoding method,header file(which includes the basic information of the image,including the number of rows,columns,bands,and data types),and the organization of the data body.展开更多
Remote sensing, in particular satellite imagery, has been widely used to map cropland, analyze cropping systems, monitor crop changes, and estimate yield and production. However, although satellite imagery is useful w...Remote sensing, in particular satellite imagery, has been widely used to map cropland, analyze cropping systems, monitor crop changes, and estimate yield and production. However, although satellite imagery is useful within large scale agriculture applications (such as on a national or provincial scale), it may not supply sufifcient information with adequate resolution, accurate geo-referencing, and specialized biological parameters for use in relation to the rapid developments being made in modern agriculture. Information that is more sophisticated and accurate is required to support reliable decision-making, thereby guaranteeing agricultural sustainability and national food security. To achieve this, strong integration of information is needed from multi-sources, multi-sensors, and multi-scales. In this paper, we propose a new framework of satellite, aerial, and ground-integrated (SAGI) agricultural remote sensing for use in comprehensive agricultural monitoring, modeling, and management. The prototypes of SAGI agriculture remote sensing are ifrst described, followed by a discussion of the key techniques used in joint data processing, image sequence registration and data assimilation. Finally, the possible applications of the SAGI system in supporting national food security are discussed.展开更多
Snow depth (SD) is a key parameter for research into global climate changes and land surface processes. A method was developed to obtain daily SD images at a higher 4 km spatial resolution and higher precision with ...Snow depth (SD) is a key parameter for research into global climate changes and land surface processes. A method was developed to obtain daily SD images at a higher 4 km spatial resolution and higher precision with SD measurements from in situ observations and passive microwave remote sensing of Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and snow cover measurements of the Interactive Multisensor Snow and Ice Mapping System (IMS). AMSR-E SD at 25 km spatial resolution was retrieved from AMSR-E products of snow density and snow water equivalent and then corrected using the SD from in situ observations and IMS snow cover. Corrected AMSR-E SD images were then resampled to act as "virtual" in situ observations to combine with the real in situ observations to interpolate at 4 km spatial resolution SD using the Cressman method. Finally, daily SD data generation for several regions of China demonstrated that the method is well suited to the generation of higher spatial resolution SD data in regions with a lower Digital Elevation Model (DEM) but not so well suited to regions at high altitude and with an undulating terrain, such as the Tibetan Plateau. Analysis of the longer time period SD data generation for January between 2003 and 2010 in northern Xinjiang also demonstrated the feasibility of the method.展开更多
基金Supported by Science and Technology Project of Lianyungang City(SH0917)
文摘[Objective] The aim was to extract red tide information in Haizhou Bay on the basis of multi-source remote sensing data.[Method] Red tide in Haizhou Bay was studied based on multi-source remote sensing data,such as IRS-P6 data on October 8,2005,Landsat 5-TM data on May 20,2006,MODIS 1B data on October 6,2006 and HY-1B second-grade data on April 22,2009,which were firstly preprocessed through geometric correction,atmospheric correction,image resizing and so on.At the same time,the synchronous environment monitoring data of red tide water were acquired.Then,band ratio method,chlorophyll-a concentration method and secondary filtering method were adopted to extract red tide information.[Result] On October 8,2005,the area of red tide was about 20.0 km2 in Haizhou Bay.There was no red tide in Haizhou bay on May 20,2006.On October 6,2006,large areas of red tide occurred in Haizhou bay,with area of 436.5 km2.On April 22,2009,red tide scattered in Haizhou bay,and its area was about 10.8 km2.[Conclusion] The research would provide technical ideas for the environmental monitoring department of Lianyungang to implement red tide forecast and warning effectively.
基金supported by National Nature Science Foundation of China (Nos. 61462046 and 61762052)Natural Science Foundation of Jiangxi Province (Nos. 20161BAB202049 and 20161BAB204172)+2 种基金the Bidding Project of the Key Laboratory of Watershed Ecology and Geographical Environment Monitoring, NASG (Nos. WE2016003, WE2016013 and WE2016015)the Science and Technology Research Projects of Jiangxi Province Education Department (Nos. GJJ160741, GJJ170632 and GJJ170633)the Art Planning Project of Jiangxi Province (Nos. YG2016250 and YG2017381)
文摘Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi-direction Harris algorithm and a novel compound feature. Multi-scale circle Gaussian combined invariant moments and multi-direction gray level co-occurrence matrix are extracted as features for image matching. The proposed algorithm is evaluated on numerous multi-source remote sensor images with noise and illumination changes. Extensive experimental studies prove that our proposed method is capable of receiving stable and even distribution of key points as well as obtaining robust and accurate correspondence matches. It is a promising scheme in multi-source remote sensing image registration.
文摘The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has been embedded into the ERDAS IMAGINE software of version 9.0 and above. The registration accuracies of the module verified for the remote sensing images obtained from different platforms or their different spatial resolution. Four tested registration experiments are discussed in this article to analyze the accuracy differences based on the remote sensing data which have different spatial resolution. The impact factors inducing the differences of registration accuracy are also analyzed.
基金supported by the National Key Research and Development Program of China(grant no.2022YFF0904400)the National Science and Technology Major Project of the Ministry of Science and Technology of China(grant no.2024ZD10021)the Key Program of the National Natural Science Foundation of China(grant no.41830108).
文摘Dear Editor,Remote sensing data formats are essential for storing,organizing,and managing imagery collected by satellites and sensors.These formats store remote sensing images and their related information,such as geographic coordinates and band information.It specifies the data storage order,encoding method,header file(which includes the basic information of the image,including the number of rows,columns,bands,and data types),and the organization of the data body.
基金supported by the Opening Project of the Key Laboratory of Agri-Informatics,Ministry of Agriculture of China(2012004)the National Basic Research Program of China(973 Program,2010CB951500)+2 种基金the Innovation Project of Chinese Academy of Agricultural Sciencesthe National Natural Science Foundation of China(41301365)the National High-Tech R&D Program of China(863 Program,2013AA12A401)
文摘Remote sensing, in particular satellite imagery, has been widely used to map cropland, analyze cropping systems, monitor crop changes, and estimate yield and production. However, although satellite imagery is useful within large scale agriculture applications (such as on a national or provincial scale), it may not supply sufifcient information with adequate resolution, accurate geo-referencing, and specialized biological parameters for use in relation to the rapid developments being made in modern agriculture. Information that is more sophisticated and accurate is required to support reliable decision-making, thereby guaranteeing agricultural sustainability and national food security. To achieve this, strong integration of information is needed from multi-sources, multi-sensors, and multi-scales. In this paper, we propose a new framework of satellite, aerial, and ground-integrated (SAGI) agricultural remote sensing for use in comprehensive agricultural monitoring, modeling, and management. The prototypes of SAGI agriculture remote sensing are ifrst described, followed by a discussion of the key techniques used in joint data processing, image sequence registration and data assimilation. Finally, the possible applications of the SAGI system in supporting national food security are discussed.
基金Meteorological Research in the Public Interest,No.GYHY201106014Beijing Nova Program,No.2010B037China Special Fund for the National High Technology Research and Development Program of China(863 Program),No.412230
文摘Snow depth (SD) is a key parameter for research into global climate changes and land surface processes. A method was developed to obtain daily SD images at a higher 4 km spatial resolution and higher precision with SD measurements from in situ observations and passive microwave remote sensing of Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and snow cover measurements of the Interactive Multisensor Snow and Ice Mapping System (IMS). AMSR-E SD at 25 km spatial resolution was retrieved from AMSR-E products of snow density and snow water equivalent and then corrected using the SD from in situ observations and IMS snow cover. Corrected AMSR-E SD images were then resampled to act as "virtual" in situ observations to combine with the real in situ observations to interpolate at 4 km spatial resolution SD using the Cressman method. Finally, daily SD data generation for several regions of China demonstrated that the method is well suited to the generation of higher spatial resolution SD data in regions with a lower Digital Elevation Model (DEM) but not so well suited to regions at high altitude and with an undulating terrain, such as the Tibetan Plateau. Analysis of the longer time period SD data generation for January between 2003 and 2010 in northern Xinjiang also demonstrated the feasibility of the method.