To investigate the hydrodynamic characteristic of pontoon bridge, the multi-block grid generation technique with numerical methods for viscous fluid dynamics is applied to numerical simulations on the hydrodynamic cha...To investigate the hydrodynamic characteristic of pontoon bridge, the multi-block grid generation technique with numerical methods for viscous fluid dynamics is applied to numerical simulations on the hydrodynamic characteristic of a ribbon ferrying raft model at a series of towing speeds. Comparison of the simulated results with the experimental data indicates that the simulated results are acceptable. It shows that the multi-block grid generation technique is effective in the computation on pontoon bridge hydrodynamics.展开更多
We propose a hierarchical multi-scale attention mechanism-based model in response to the low accuracy and inefficient manual classification of existing oceanic biological image classification methods. Firstly, the hie...We propose a hierarchical multi-scale attention mechanism-based model in response to the low accuracy and inefficient manual classification of existing oceanic biological image classification methods. Firstly, the hierarchical efficient multi-scale attention(H-EMA) module is designed for lightweight feature extraction, achieving outstanding performance at a relatively low cost. Secondly, an improved EfficientNetV2 block is used to integrate information from different scales better and enhance inter-layer message passing. Furthermore, introducing the convolutional block attention module(CBAM) enhances the model's perception of critical features, optimizing its generalization ability. Lastly, Focal Loss is introduced to adjust the weights of complex samples to address the issue of imbalanced categories in the dataset, further improving the model's performance. The model achieved 96.11% accuracy on the intertidal marine organism dataset of Nanji Islands and 84.78% accuracy on the CIFAR-100 dataset, demonstrating its strong generalization ability to meet the demands of oceanic biological image classification.展开更多
Optical solitons,as self-sustaining waveforms in a nonlinear medium where dispersion and nonlinear effects are balanced,have key applications in ultrafast laser systems and optical communications.Physics-informed neur...Optical solitons,as self-sustaining waveforms in a nonlinear medium where dispersion and nonlinear effects are balanced,have key applications in ultrafast laser systems and optical communications.Physics-informed neural networks(PINN)provide a new way to solve the nonlinear Schrodinger equation describing the soliton evolution by fusing data-driven and physical constraints.However,the grid point sampling strategy of traditional PINN suffers from high computational complexity and unstable gradient flow,which makes it difficult to capture the physical details efficiently.In this paper,we propose a residual-based adaptive multi-distribution(RAMD)sampling method to optimize the PINN training process by dynamically constructing a multi-modal loss distribution.With a 50%reduction in the number of grid points,RAMD significantly reduces the relative error of PINN and,in particular,optimizes the solution error of the(2+1)Ginzburg–Landau equation from 4.55%to 1.98%.RAMD breaks through the lack of physical constraints in the purely data-driven model by the innovative combination of multi-modal distribution modeling and autonomous sampling control for the design of all-optical communication devices.RAMD provides a high-precision numerical simulation tool for the design of all-optical communication devices,optimization of nonlinear laser devices,and other studies.展开更多
The paper presents an over modification multi grid method of the ship propulsion mechanism of Weis Fogh, and obtains the complex potential integral formula by distributing vortices on the wing. The numerical formula i...The paper presents an over modification multi grid method of the ship propulsion mechanism of Weis Fogh, and obtains the complex potential integral formula by distributing vortices on the wing. The numerical formula is given on fine grid and coarse grid. The numerical results show that the algorithm is best when over modification factor is 1.5.展开更多
We investigate the dynamics of pedestrian counter flow by using a multi-grid topological pedestrian counter flow model. In the model, each pedestrian occupies multi- rather than only one grid, and interacts with other...We investigate the dynamics of pedestrian counter flow by using a multi-grid topological pedestrian counter flow model. In the model, each pedestrian occupies multi- rather than only one grid, and interacts with others in the form of topological interaction, which means that a moving pedestrian interacts with a fixed number of those nearest neighbours coming from the opposite direction to determine his/her own moving direction. Thus the discretization of space and time are much finer, the decision making process of the pedestrian is more reliable, which all together makes the moving behaviour and boundary conditions much more realistic. When compared with field observations, it can be found that the modified model is able to reproduce well fitted pedestrian collective behaviour such as dynamical variation of lane formation, clustering of pedestrians in the same direction, etc. The fundamental diagram produced by the model fits also well with field data in thc frce flow region. Further analyses indicate that with the increase of the size of pedestrian counter flow system, it becomes harder for the system to transit into a jamming state, while the increase of interaction range does not change the transition point from free flow to jamming flow in the multi-grid topological counter flow model. It is also found that the asymmetry of the injection rate of pedestrians on the boundaries has direct influence on the process of transition from free flow to jamming flow, i.e., a symmetric injection makes it easier for the system to transit into jamming flow.展开更多
This paper proposed a method of generating two attractors in a novel grid multi-scroll chaotic system. Based on a newly generated three-dimensional system, a two-attractor grid multi-scroll attractor system can be gen...This paper proposed a method of generating two attractors in a novel grid multi-scroll chaotic system. Based on a newly generated three-dimensional system, a two-attractor grid multi-scroll attractor system can be generated by adding two triangular waves and a sign function. Some basic dynamical properties, such as equilibrium points, bifurcations, and phase diagrams, were studied. Furthermore, the system was experimentally confirmed by an electronic circuit. The circuit simulation results and numerical simulation results verified the feasibility of this method.展开更多
There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capaci...There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capacitor components showa continuous and stable charging and discharging state,a hierarchical time-sharing configuration algorithm of distributed energy storage cloud group end region on the power grid side based on multi-scale and multi feature convolution neural network is proposed.Firstly,a voltage stability analysis model based onmulti-scale and multi feature convolution neural network is constructed,and the multi-scale and multi feature convolution neural network is optimized based on Self-OrganizingMaps(SOM)algorithm to analyze the voltage stability of the cloud group end region of distributed energy storage on the grid side under the framework of credibility.According to the optimal scheduling objectives and network size,the distributed robust optimal configuration control model is solved under the framework of coordinated optimal scheduling at multiple time scales;Finally,the time series characteristics of regional power grid load and distributed generation are analyzed.According to the regional hierarchical time-sharing configuration model of“cloud”,“group”and“end”layer,the grid side distributed energy storage cloud group end regional hierarchical time-sharing configuration algorithm is realized.The experimental results show that after applying this algorithm,the best grid side distributed energy storage configuration scheme can be determined,and the stability of grid side distributed energy storage cloud group end region layered timesharing configuration can be improved.展开更多
The distinct element method(DEM)has been used successfully for the dynamic analysis of rigid block sys- tems.One of many difficulties associated with DEM is modeling of damping.In this paper,new procedures are propose...The distinct element method(DEM)has been used successfully for the dynamic analysis of rigid block sys- tems.One of many difficulties associated with DEM is modeling of damping.In this paper,new procedures are proposed for the damping modeling and its numerical implementation in distinct element analysis of rigid muhi-block systems.The stiff- ness proportional damping is constructed for the prescribed damping ratio,based on the non-zero fundamental frequency ef- fective during the time interval while the boundary conditions remain essentially constant.At this time interval,the funda- mental frequency can be estimated without complete eigenvalue analysis.The damping coefficients will vary while the damp- ing ratio remains the same throughout the entire analysis.A new numerical procedure is developed to prevent unnecessary energy loss that can occur during the separation phases.These procedures were implemented in the development of the dis- tinet element method for the dynamic analyses of piled multi-block systems.The analysis results |or the single-block and two-block systems were in a good agreement with the analytic predictions.Applications to the seismic analyses of piled four- block systems revealed that the new procedures can make a significant difference and may lead to much-improved results.展开更多
This paper builds multi-objective effect evaluation indicator system of smart grid construction from five connotations including strong and reliable, clean and green, friendly and interactive, transparent and open, ec...This paper builds multi-objective effect evaluation indicator system of smart grid construction from five connotations including strong and reliable, clean and green, friendly and interactive, transparent and open, economical and effective, which is embodied in the power generation, transmission, transformation, distribution, consumption, dispatching and information communication platform of smart grid. Taking the construction of smart grid in a certain area of China as an example, this paper uses analytic hierarchy process (AHP) to make an empirical analysis on it, and makes a comprehensive and objective evaluation on its construction effect.展开更多
The analog-to-information convertor (AIC) is a successful practice of compressive sensing (CS) theory in the analog signal acquisition. This paper presents a multi-narrowband signals sampling and reconstruction model ...The analog-to-information convertor (AIC) is a successful practice of compressive sensing (CS) theory in the analog signal acquisition. This paper presents a multi-narrowband signals sampling and reconstruction model based on AIC and block sparsity. To overcome the practical problems, the block sparsity is divided into uniform block and non-uniform block situations, and the block restricted isometry property and sub-sampling limit in different situations are analyzed respectively in detail. Theoretical analysis proves that using the block sparsity in AIC can reduce the restricted isometric constant, increase the reconstruction probability and reduce the sub -sampling rate. Simulation results show that the proposed model can complete sub -sampling and reconstruction for multi-narrowband signals. This paper extends the application range of AIC from the finite information rate signal to the multi-narrowband signals by using the potential relevance of support sets. The proposed receiving model has low complexity and is easy to implement, which can promote the application of CS theory in the radar receiver to reduce the burden of analog-to digital convertor (ADC) and solve bandwidth limitations of ADC.展开更多
In this paper the algebraic multi-grid principle is applied to the multilevel moment method, which makes the new multilevel method easier to implement and more adaptive to structure. Moreover, the error spectrum is an...In this paper the algebraic multi-grid principle is applied to the multilevel moment method, which makes the new multilevel method easier to implement and more adaptive to structure. Moreover, the error spectrum is analyzed, and the reason why conjugate gradient iteration is not a good relaxation scheme for multi-grid algorithm is explored. The numerical results show that our algebraic block Gauss Seidel multi-grid algorithm is very effective.展开更多
This paper discusses the applications of a hybrid multi-agent framework for self-healing applications in an intelligent smart grid system following catastrophic disturbances such as loss of generators or during system...This paper discusses the applications of a hybrid multi-agent framework for self-healing applications in an intelligent smart grid system following catastrophic disturbances such as loss of generators or during system fault.The proposed hybrid multi-agent framework is a hybrid of both centralized and decentralized scheme to allow distributed intelligent agent in the smart grid system to make fast local decision while allowing the slower central controller to judge the effectiveness of the decision made by the local agents and to suggest more optimal solutions.展开更多
This study proposes a novel multi-fractal spectrumbasedapproach to distinguish linear block codes from its selfsynchronousscrambled codes. Given that the linear block codeand self-synchronous scrambled linear block co...This study proposes a novel multi-fractal spectrumbasedapproach to distinguish linear block codes from its selfsynchronousscrambled codes. Given that the linear block codeand self-synchronous scrambled linear block code share the propertyof linear correlation, the existing linear correlation-basedidentification method is invalid for this case. This drawback can becircumvented by introducing a novel multi-fractal spectrum-basedmethod. Simulation results show that the new method has highrobustness and under the same conditions of bit error, the lowerthe code rate, the higher the recognition rate. Thus, the methodhas significant potential for future application in engineering.展开更多
In order to analyze the hydrodynamic performance of the ducted propeller with high precision, this paper proposes a new method which combines Multi-Block Hybrid Mesh and Reynolds Stress Model (MBHM & RSM). The cal...In order to analyze the hydrodynamic performance of the ducted propeller with high precision, this paper proposes a new method which combines Multi-Block Hybrid Mesh and Reynolds Stress Model (MBHM & RSM). The calculation errors of MBHM & RSM and standard two-equation model (standard k-ε model) on the ducted propeller JD7704 +Ka4-55 are compared. The maximum error of the total thrust coefficient KT, the duct thrust coefficient KTN, the torque coefficient KQ and the open-water efficiency η0 of MBHM & RSM are 2.98%, 4.01%, 1.46%, and 0.89%, respectively, which are lower than those of standard k-ε model. Indeed, the pressure distribution on the propeller surfaces, the pressure and the velocity vector distribution of the flow field are also analyzed, which are consistent with the theory. It is demonstrated that MBHM & RSM on the thruster dynamics analysis are feasible. This paper provides reference in the thruster designing of underwater robot.展开更多
Based on studies of palaeogeography, palaeobiogeography, palaeomagnetism, geochemistry and volcanism, this paper proposes that the Zhen'an-Xichuan area was a small Early Palaeozoic block rifted away from South Qin...Based on studies of palaeogeography, palaeobiogeography, palaeomagnetism, geochemistry and volcanism, this paper proposes that the Zhen'an-Xichuan area was a small Early Palaeozoic block rifted away from South Qinling and suturing onto North Qinling earlier than the other parts of South Qinling. In the Early Palaeozoic Qinling was a small archipelagic ocean basin with 5 rows of islands including the Zhen'an-Xichuan block. The drifting of the Yangtze and North China plates and the islands between them in the same direction at different speeds caused their suturing process to be different from the classic plate collision, which is the major feature of the suturing of the multi-island Tethys ocean basin. This also explains the problem that the Caledonian collision did not result in orogeny in eastern Qinling.展开更多
In this paper, we propose multi-characteristics based data scheduling over smart grid. Three different pricing strategies are presented based on user priority and load rate. Then the corresponding novel scheduling alg...In this paper, we propose multi-characteristics based data scheduling over smart grid. Three different pricing strategies are presented based on user priority and load rate. Then the corresponding novel scheduling algorithms are introduced by the proposed data priority and pricing strategies. The simulation experiments are carried out to evaluate the proposed algorithms based on trace data. And the results show that our methods can outperform the conventional method.展开更多
A series of liquid crystalline multi-block copolymers poly[1.6-bis(4-oxybenzoyl-oxy)hexane terephthalate]-b-bisphenol A polycarbonate (PHTH-6-b-PC) with different segment lengths were synthesized in tetrachloroethane ...A series of liquid crystalline multi-block copolymers poly[1.6-bis(4-oxybenzoyl-oxy)hexane terephthalate]-b-bisphenol A polycarbonate (PHTH-6-b-PC) with different segment lengths were synthesized in tetrachloroethane by solution polycondensation in which hydroxyl terminated PC and acyl chloride terminated PHTH-6 were used. It is found that block copolymers with high molecular weight and well-defined structures were obtained. All the block copolymers exhibit a nematic liquid crystalline texture.展开更多
In order to improve the interference rejection performance in the measurement of average ion velocity by multi-grid probe, an integral expression is proposed. The integral expression, differing from other expressions ...In order to improve the interference rejection performance in the measurement of average ion velocity by multi-grid probe, an integral expression is proposed. The integral expression, differing from other expressions for probe measurement, avoids the differential operation on the I-V characteristics of multi-grid probe measurement; and by this method, the ion average velocity can be figured out directly by the I-V characteristics of multi-grid probe measurement.展开更多
This paper presents the operation of a Multi-agent system (MAS) for the control of a smart grid. The proposed Multi-agent system consists of seven types of agents: Single Smart Grid Controller (SGC), Load Agents (LAGs...This paper presents the operation of a Multi-agent system (MAS) for the control of a smart grid. The proposed Multi-agent system consists of seven types of agents: Single Smart Grid Controller (SGC), Load Agents (LAGs), a Wind Turbine Agent (WTAG), Photo-Voltaic Agents (PVAGs), a Micro-Hydro Turbine Agent (MHTAG), Diesel Agents (DGAGs) and a Battery Agent (BAG). In a smart grid LAGs act as consumers or buyers, WTAG, PVAGs, MHTAG & DGAGs acts as producers or sellers and BAG act as producer/consumer or seller/buyer. The paper demonstrates the use of a Multi-agent system to control the smart grid in a simulated environment. In order to validate the performance of the proposed system, it has been applied to a simple model system with different time zone i.e. day time and night time and when power is available from the grid and when there is power shedding. Simulation results show that the proposed Multi-agent system can perform the operation of the smart grid efficiently.展开更多
文摘To investigate the hydrodynamic characteristic of pontoon bridge, the multi-block grid generation technique with numerical methods for viscous fluid dynamics is applied to numerical simulations on the hydrodynamic characteristic of a ribbon ferrying raft model at a series of towing speeds. Comparison of the simulated results with the experimental data indicates that the simulated results are acceptable. It shows that the multi-block grid generation technique is effective in the computation on pontoon bridge hydrodynamics.
基金supported by the National Natural Science Foundation of China (Nos.61806107 and 61702135)。
文摘We propose a hierarchical multi-scale attention mechanism-based model in response to the low accuracy and inefficient manual classification of existing oceanic biological image classification methods. Firstly, the hierarchical efficient multi-scale attention(H-EMA) module is designed for lightweight feature extraction, achieving outstanding performance at a relatively low cost. Secondly, an improved EfficientNetV2 block is used to integrate information from different scales better and enhance inter-layer message passing. Furthermore, introducing the convolutional block attention module(CBAM) enhances the model's perception of critical features, optimizing its generalization ability. Lastly, Focal Loss is introduced to adjust the weights of complex samples to address the issue of imbalanced categories in the dataset, further improving the model's performance. The model achieved 96.11% accuracy on the intertidal marine organism dataset of Nanji Islands and 84.78% accuracy on the CIFAR-100 dataset, demonstrating its strong generalization ability to meet the demands of oceanic biological image classification.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1604200)National Natural Science Foundation of China(Grant No.12261131495)+1 种基金Beijing Municipal Science and Technology Commission,Adminitrative Commission of Zhongguancun Science Park(Grant No.Z231100006623006)Institute of Systems Science,Beijing Wuzi University(Grant No.BWUISS21)。
文摘Optical solitons,as self-sustaining waveforms in a nonlinear medium where dispersion and nonlinear effects are balanced,have key applications in ultrafast laser systems and optical communications.Physics-informed neural networks(PINN)provide a new way to solve the nonlinear Schrodinger equation describing the soliton evolution by fusing data-driven and physical constraints.However,the grid point sampling strategy of traditional PINN suffers from high computational complexity and unstable gradient flow,which makes it difficult to capture the physical details efficiently.In this paper,we propose a residual-based adaptive multi-distribution(RAMD)sampling method to optimize the PINN training process by dynamically constructing a multi-modal loss distribution.With a 50%reduction in the number of grid points,RAMD significantly reduces the relative error of PINN and,in particular,optimizes the solution error of the(2+1)Ginzburg–Landau equation from 4.55%to 1.98%.RAMD breaks through the lack of physical constraints in the purely data-driven model by the innovative combination of multi-modal distribution modeling and autonomous sampling control for the design of all-optical communication devices.RAMD provides a high-precision numerical simulation tool for the design of all-optical communication devices,optimization of nonlinear laser devices,and other studies.
文摘The paper presents an over modification multi grid method of the ship propulsion mechanism of Weis Fogh, and obtains the complex potential integral formula by distributing vortices on the wing. The numerical formula is given on fine grid and coarse grid. The numerical results show that the algorithm is best when over modification factor is 1.5.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50678164)the Program for New Century Excellent Talents in University (Grant No. NCET-08-0518)the National Science and Technology Pillar Program,China(Grant No. 2006BAK06B00)
文摘We investigate the dynamics of pedestrian counter flow by using a multi-grid topological pedestrian counter flow model. In the model, each pedestrian occupies multi- rather than only one grid, and interacts with others in the form of topological interaction, which means that a moving pedestrian interacts with a fixed number of those nearest neighbours coming from the opposite direction to determine his/her own moving direction. Thus the discretization of space and time are much finer, the decision making process of the pedestrian is more reliable, which all together makes the moving behaviour and boundary conditions much more realistic. When compared with field observations, it can be found that the modified model is able to reproduce well fitted pedestrian collective behaviour such as dynamical variation of lane formation, clustering of pedestrians in the same direction, etc. The fundamental diagram produced by the model fits also well with field data in thc frce flow region. Further analyses indicate that with the increase of the size of pedestrian counter flow system, it becomes harder for the system to transit into a jamming state, while the increase of interaction range does not change the transition point from free flow to jamming flow in the multi-grid topological counter flow model. It is also found that the asymmetry of the injection rate of pedestrians on the boundaries has direct influence on the process of transition from free flow to jamming flow, i.e., a symmetric injection makes it easier for the system to transit into jamming flow.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60972069)the Science and Technology Foundation of the Education Department of Chongqing (Grant No. KJ090513)
文摘This paper proposed a method of generating two attractors in a novel grid multi-scroll chaotic system. Based on a newly generated three-dimensional system, a two-attractor grid multi-scroll attractor system can be generated by adding two triangular waves and a sign function. Some basic dynamical properties, such as equilibrium points, bifurcations, and phase diagrams, were studied. Furthermore, the system was experimentally confirmed by an electronic circuit. The circuit simulation results and numerical simulation results verified the feasibility of this method.
基金supported by State Grid Corporation Limited Science and Technology Project Funding(Contract No.SGCQSQ00YJJS2200380).
文摘There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capacitor components showa continuous and stable charging and discharging state,a hierarchical time-sharing configuration algorithm of distributed energy storage cloud group end region on the power grid side based on multi-scale and multi feature convolution neural network is proposed.Firstly,a voltage stability analysis model based onmulti-scale and multi feature convolution neural network is constructed,and the multi-scale and multi feature convolution neural network is optimized based on Self-OrganizingMaps(SOM)algorithm to analyze the voltage stability of the cloud group end region of distributed energy storage on the grid side under the framework of credibility.According to the optimal scheduling objectives and network size,the distributed robust optimal configuration control model is solved under the framework of coordinated optimal scheduling at multiple time scales;Finally,the time series characteristics of regional power grid load and distributed generation are analyzed.According to the regional hierarchical time-sharing configuration model of“cloud”,“group”and“end”layer,the grid side distributed energy storage cloud group end regional hierarchical time-sharing configuration algorithm is realized.The experimental results show that after applying this algorithm,the best grid side distributed energy storage configuration scheme can be determined,and the stability of grid side distributed energy storage cloud group end region layered timesharing configuration can be improved.
文摘The distinct element method(DEM)has been used successfully for the dynamic analysis of rigid block sys- tems.One of many difficulties associated with DEM is modeling of damping.In this paper,new procedures are proposed for the damping modeling and its numerical implementation in distinct element analysis of rigid muhi-block systems.The stiff- ness proportional damping is constructed for the prescribed damping ratio,based on the non-zero fundamental frequency ef- fective during the time interval while the boundary conditions remain essentially constant.At this time interval,the funda- mental frequency can be estimated without complete eigenvalue analysis.The damping coefficients will vary while the damp- ing ratio remains the same throughout the entire analysis.A new numerical procedure is developed to prevent unnecessary energy loss that can occur during the separation phases.These procedures were implemented in the development of the dis- tinet element method for the dynamic analyses of piled multi-block systems.The analysis results |or the single-block and two-block systems were in a good agreement with the analytic predictions.Applications to the seismic analyses of piled four- block systems revealed that the new procedures can make a significant difference and may lead to much-improved results.
文摘This paper builds multi-objective effect evaluation indicator system of smart grid construction from five connotations including strong and reliable, clean and green, friendly and interactive, transparent and open, economical and effective, which is embodied in the power generation, transmission, transformation, distribution, consumption, dispatching and information communication platform of smart grid. Taking the construction of smart grid in a certain area of China as an example, this paper uses analytic hierarchy process (AHP) to make an empirical analysis on it, and makes a comprehensive and objective evaluation on its construction effect.
基金supported by the National Natural Science Foundation of China(61172159)
文摘The analog-to-information convertor (AIC) is a successful practice of compressive sensing (CS) theory in the analog signal acquisition. This paper presents a multi-narrowband signals sampling and reconstruction model based on AIC and block sparsity. To overcome the practical problems, the block sparsity is divided into uniform block and non-uniform block situations, and the block restricted isometry property and sub-sampling limit in different situations are analyzed respectively in detail. Theoretical analysis proves that using the block sparsity in AIC can reduce the restricted isometric constant, increase the reconstruction probability and reduce the sub -sampling rate. Simulation results show that the proposed model can complete sub -sampling and reconstruction for multi-narrowband signals. This paper extends the application range of AIC from the finite information rate signal to the multi-narrowband signals by using the potential relevance of support sets. The proposed receiving model has low complexity and is easy to implement, which can promote the application of CS theory in the radar receiver to reduce the burden of analog-to digital convertor (ADC) and solve bandwidth limitations of ADC.
基金Supported by the Natlonal Natural Science Foundation of China
文摘In this paper the algebraic multi-grid principle is applied to the multilevel moment method, which makes the new multilevel method easier to implement and more adaptive to structure. Moreover, the error spectrum is analyzed, and the reason why conjugate gradient iteration is not a good relaxation scheme for multi-grid algorithm is explored. The numerical results show that our algebraic block Gauss Seidel multi-grid algorithm is very effective.
基金funded by the ARC Linkage Grant LP LP0991428a URC Research Partnerships Grants Scheme, from the University of Wollongong
文摘This paper discusses the applications of a hybrid multi-agent framework for self-healing applications in an intelligent smart grid system following catastrophic disturbances such as loss of generators or during system fault.The proposed hybrid multi-agent framework is a hybrid of both centralized and decentralized scheme to allow distributed intelligent agent in the smart grid system to make fast local decision while allowing the slower central controller to judge the effectiveness of the decision made by the local agents and to suggest more optimal solutions.
基金supported by the National Natural Science Foundation of China(61171170) the Natural Science Foundation of Anhui Province(1408085QF115)
文摘This study proposes a novel multi-fractal spectrumbasedapproach to distinguish linear block codes from its selfsynchronousscrambled codes. Given that the linear block codeand self-synchronous scrambled linear block code share the propertyof linear correlation, the existing linear correlation-basedidentification method is invalid for this case. This drawback can becircumvented by introducing a novel multi-fractal spectrum-basedmethod. Simulation results show that the new method has highrobustness and under the same conditions of bit error, the lowerthe code rate, the higher the recognition rate. Thus, the methodhas significant potential for future application in engineering.
文摘In order to analyze the hydrodynamic performance of the ducted propeller with high precision, this paper proposes a new method which combines Multi-Block Hybrid Mesh and Reynolds Stress Model (MBHM & RSM). The calculation errors of MBHM & RSM and standard two-equation model (standard k-ε model) on the ducted propeller JD7704 +Ka4-55 are compared. The maximum error of the total thrust coefficient KT, the duct thrust coefficient KTN, the torque coefficient KQ and the open-water efficiency η0 of MBHM & RSM are 2.98%, 4.01%, 1.46%, and 0.89%, respectively, which are lower than those of standard k-ε model. Indeed, the pressure distribution on the propeller surfaces, the pressure and the velocity vector distribution of the flow field are also analyzed, which are consistent with the theory. It is demonstrated that MBHM & RSM on the thruster dynamics analysis are feasible. This paper provides reference in the thruster designing of underwater robot.
基金China National Natural Science Foundation Grant No.49290100
文摘Based on studies of palaeogeography, palaeobiogeography, palaeomagnetism, geochemistry and volcanism, this paper proposes that the Zhen'an-Xichuan area was a small Early Palaeozoic block rifted away from South Qinling and suturing onto North Qinling earlier than the other parts of South Qinling. In the Early Palaeozoic Qinling was a small archipelagic ocean basin with 5 rows of islands including the Zhen'an-Xichuan block. The drifting of the Yangtze and North China plates and the islands between them in the same direction at different speeds caused their suturing process to be different from the classic plate collision, which is the major feature of the suturing of the multi-island Tethys ocean basin. This also explains the problem that the Caledonian collision did not result in orogeny in eastern Qinling.
基金supported in part by the Fundamental Key Research Project of Shanghai Municipal Science and Technology Commission(No.12JC1404201)
文摘In this paper, we propose multi-characteristics based data scheduling over smart grid. Three different pricing strategies are presented based on user priority and load rate. Then the corresponding novel scheduling algorithms are introduced by the proposed data priority and pricing strategies. The simulation experiments are carried out to evaluate the proposed algorithms based on trace data. And the results show that our methods can outperform the conventional method.
文摘A series of liquid crystalline multi-block copolymers poly[1.6-bis(4-oxybenzoyl-oxy)hexane terephthalate]-b-bisphenol A polycarbonate (PHTH-6-b-PC) with different segment lengths were synthesized in tetrachloroethane by solution polycondensation in which hydroxyl terminated PC and acyl chloride terminated PHTH-6 were used. It is found that block copolymers with high molecular weight and well-defined structures were obtained. All the block copolymers exhibit a nematic liquid crystalline texture.
基金National Natural Science Foundation of China(No.50676026)
文摘In order to improve the interference rejection performance in the measurement of average ion velocity by multi-grid probe, an integral expression is proposed. The integral expression, differing from other expressions for probe measurement, avoids the differential operation on the I-V characteristics of multi-grid probe measurement; and by this method, the ion average velocity can be figured out directly by the I-V characteristics of multi-grid probe measurement.
文摘This paper presents the operation of a Multi-agent system (MAS) for the control of a smart grid. The proposed Multi-agent system consists of seven types of agents: Single Smart Grid Controller (SGC), Load Agents (LAGs), a Wind Turbine Agent (WTAG), Photo-Voltaic Agents (PVAGs), a Micro-Hydro Turbine Agent (MHTAG), Diesel Agents (DGAGs) and a Battery Agent (BAG). In a smart grid LAGs act as consumers or buyers, WTAG, PVAGs, MHTAG & DGAGs acts as producers or sellers and BAG act as producer/consumer or seller/buyer. The paper demonstrates the use of a Multi-agent system to control the smart grid in a simulated environment. In order to validate the performance of the proposed system, it has been applied to a simple model system with different time zone i.e. day time and night time and when power is available from the grid and when there is power shedding. Simulation results show that the proposed Multi-agent system can perform the operation of the smart grid efficiently.