期刊文献+
共找到2,676篇文章
< 1 2 134 >
每页显示 20 50 100
Support vector machine-based multi-model predictive control 被引量:3
1
作者 Zhejing BAO Youxian SUN 《控制理论与应用(英文版)》 EI 2008年第3期305-310,共6页
In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression ... In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression and the support vector machine network-based model predictive control (SVMN-MPC) algorithm corresponding to each environment is developed, and then a multi-class SVM model is established to recognize multiple operating conditions. As for control, the current environment is identified by the multi-class SVM model and then the corresponding SVMN-MPC controller is activated at each sampling instant. The proposed modeling, switching and controller design is demonstrated in simulation results. 展开更多
关键词 multi-model predictive control Support vector machine network multi-class support vector machine multi-model switching
在线阅读 下载PDF
Vector Dominating Multi-objective Evolution Algorithm for Aerodynamic-Structure Integrative Design of Wind Turbine Blade 被引量:1
2
作者 Wang Long Wang Tongguang +1 位作者 Wu Jianghai Ke Shitang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第1期1-8,共8页
A novel multi-objective optimization algorithm incorporating vector method and evolution strategies,referred as vector dominant multi-objective evolutionary algorithm(VD-MOEA),is developed and applied to the aerodynam... A novel multi-objective optimization algorithm incorporating vector method and evolution strategies,referred as vector dominant multi-objective evolutionary algorithm(VD-MOEA),is developed and applied to the aerodynamic-structural integrative design of wind turbine blades.A set of virtual vectors are elaborately constructed,guiding population to fast move forward to the Pareto optimal front and dominating the distribution uniformity with high efficiency.In comparison to conventional evolution algorithms,VD-MOEA displays dramatic improvement of algorithm performance in both convergence and diversity preservation when handling complex problems of multi-variables,multi-objectives and multi-constraints.As an example,a 1.5 MW wind turbine blade is subsequently designed taking the maximum annual energy production,the minimum blade mass,and the minimum blade root thrust as the optimization objectives.The results show that the Pareto optimal set can be obtained in one single simulation run and that the obtained solutions in the optimal set are distributed quite uniformly,maximally maintaining the population diversity.The efficiency of VD-MOEA has been elevated by two orders of magnitude compared with the classical NSGA-II.This provides a reliable high-performance optimization approach for the aerodynamic-structural integrative design of wind turbine blade. 展开更多
关键词 wind turbine multi-objective optimization vector method evolution algorithm
在线阅读 下载PDF
Cloud removal of remote sensing image based on multi-output support vector regression 被引量:3
3
作者 Gensheng Hu Xiaoqi Sun +1 位作者 Dong Liang Yingying Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第6期1082-1088,共7页
Removal of cloud cover on the satellite remote sensing image can effectively improve the availability of remote sensing images. For thin cloud cover, support vector value contourlet transform is used to achieve multi-... Removal of cloud cover on the satellite remote sensing image can effectively improve the availability of remote sensing images. For thin cloud cover, support vector value contourlet transform is used to achieve multi-scale decomposition of the area of thin cloud cover on remote sensing images. Through enhancing coefficients of high frequency and suppressing coefficients of low frequency, the thin cloud is removed. For thick cloud cover, if the areas of thick cloud cover on multi-source or multi-temporal remote sensing images do not overlap, the multi-output support vector regression learning method is used to remove this kind of thick clouds. If the thick cloud cover areas overlap, by using the multi-output learning of the surrounding areas to predict the surface features of the overlapped thick cloud cover areas, this kind of thick cloud is removed. Experimental results show that the proposed cloud removal method can effectively solve the problems of the cloud overlapping and radiation difference among multi-source images. The cloud removal image is clear and smooth. 展开更多
关键词 remote sensing image cloud removal support vector regression multi-OUTPUT
在线阅读 下载PDF
Multi-camera calibration method based on minimizing the difference of reprojection error vectors 被引量:6
4
作者 HUO Ju LI Yunhui YANG Ming 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第4期844-853,共10页
In order to achieve a high precision in three-dimensional(3D) multi-camera measurement system, an efficient multi-cameracalibration method is proposed. A stitching method of large scalecalibration targets is deduced... In order to achieve a high precision in three-dimensional(3D) multi-camera measurement system, an efficient multi-cameracalibration method is proposed. A stitching method of large scalecalibration targets is deduced, and a fundamental of multi-cameracalibration based on the large scale calibration target is provided.To avoid the shortcomings of the method, the vector differencesof reprojection error with the presence of the constraint conditionof the constant rigid body transformation is modelled, and mini-mized by the Levenberg-Marquardt (LM) method. Results of thesimulation and observation data calibration experiment show thatthe accuracy of the system calibrated by the proposed methodreaches 2 mm when measuring distance section of 20 000 mmand scale section of 7 000 mm × 7 000 mm. Consequently, theproposed method of multi-camera calibration performs better thanthe fundamental in stability. This technique offers a more uniformerror distribution for measuring large scale space. 展开更多
关键词 vision measurement multi-camera calibration field stitching vector error
在线阅读 下载PDF
Fault Diagnosis for Aero-engine Applying a New Multi-class Support Vector Algorithm 被引量:4
5
作者 徐启华 师军 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第3期175-182,共8页
Hierarchical Support Vector Machine (H-SVM) is faster in training and classification than other usual multi-class SVMs such as "1-V-R"and "1-V-1". In this paper, a new multi-class fault diagnosis algorithm based... Hierarchical Support Vector Machine (H-SVM) is faster in training and classification than other usual multi-class SVMs such as "1-V-R"and "1-V-1". In this paper, a new multi-class fault diagnosis algorithm based on H-SVM is proposed and applied to aero-engine. Before SVM training, the training data are first clustered according to their class-center Euclid distances in some feature spaces. The samples which have close distances are divided into the same sub-classes for training, and this makes the H-SVM have reasonable hierarchical construction and good generalization performance. Instead of the common C-SVM, the v-SVM is selected as the binary classifier, in which the parameter v varies only from 0 to 1 and can be determined more easily. The simulation results show that the designed H-SVMs can fast diagnose the multi-class single faults and combination faults for the gas path components of an aero-engine. The fault classifiers have good diagnosis accuracy and can keep robust even when the measurement inputs are disturbed by noises. 展开更多
关键词 support vector machine fault diagnosis multi-class classification
在线阅读 下载PDF
Multi-Fault Diagnosis for Autonomous Underwater Vehicle Based on Fuzzy Weighted Support Vector Domain Description 被引量:4
6
作者 张铭钧 吴娟 褚振忠 《China Ocean Engineering》 SCIE EI CSCD 2014年第5期599-616,共18页
This paper addresses the multi-fault diagnosis problem of thrusters and sensors for autonomous underwater vehicles (AUVs). Traditional support vector domain description (SVDD) has low classification accuracy in the pr... This paper addresses the multi-fault diagnosis problem of thrusters and sensors for autonomous underwater vehicles (AUVs). Traditional support vector domain description (SVDD) has low classification accuracy in the process of AUV multi-fault pattern classification because of the effect of sample sparse density and the uneven distribution of samples, and so on. Thus, a fuzzy weighted support vector domain description (FWSVDD) method based on positive and negative class samples is proposed. In this method, the negative class sample is introduced during classifier training, and the local density and the class weight are introduced for each sample. To improve the multi-fault pattern classifier training speed and fault diagnosis accuracy of FWSVDD, a multi-fault mode classification method based on a hierarchical strategy is proposed. This method adds fault contain detection surface for each thruster and sensor to isolate fault components during fault diagnosis. By considering the problem of pattern classification for a fuzzy sample, which may be located in the overlapping area of hyper-spheres or may not belong to any hyper-sphere in the process of multi-fault classification based on FWSVDD, a relative distance judgment method is given. The effectiveness of the proposed multi-fault diagnosis approach is demonstrated through water tank experiments with an experimental AUV prototype. 展开更多
关键词 underwater vehicle support vector domain description multi-fault diagnosis fault classification
在线阅读 下载PDF
Multi-mode process monitoring based on a novel weighted local standardization strategy and support vector data description 被引量:9
7
作者 赵付洲 宋冰 侍洪波 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2896-2905,共10页
There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because the... There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring. 展开更多
关键词 multiple operating modes weighted local standardization support vector data description multi-mode monitoring
在线阅读 下载PDF
Multi-class classification method for strip steel surface defects based on support vector machine with adjustable hyper-sphere 被引量:2
8
作者 Mao-xiang Chu Xiao-ping Liu +1 位作者 Rong-fen Gong Jie Zhao 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第7期706-716,共11页
Focusing on strip steel surface defects classification, a novel support vector machine with adjustable hyper-sphere (AHSVM) is formulated. Meanwhile, a new multi-class classification method is proposed. Originated f... Focusing on strip steel surface defects classification, a novel support vector machine with adjustable hyper-sphere (AHSVM) is formulated. Meanwhile, a new multi-class classification method is proposed. Originated from support vector data description, AHSVM adopts hyper-sphere to solve classification problem. AHSVM can obey two principles: the margin maximization and inner-class dispersion minimization. Moreover, the hyper-sphere of AHSVM is adjustable, which makes the final classification hyper-sphere optimal for training dataset. On the other hand, AHSVM is combined with binary tree to solve multi-class classification for steel surface defects. A scheme of samples pruning in mapped feature space is provided, which can reduce the number of training samples under the premise of classification accuracy, resulting in the improvements of classification speed. Finally, some testing experiments are done for eight types of strip steel surface defects. Experimental results show that multi-class AHSVM classifier exhibits satisfactory results in classification accuracy and efficiency. 展开更多
关键词 Strip steel surface defect multi-class classification Supporting vector machine Adjustable hyper-sphere
原文传递
A method for rapid transmission of multi-scale vector river data via the Internet 被引量:1
9
作者 Yang Weifang Jonathon Li 《Geodesy and Geodynamics》 2012年第2期34-41,共8页
Due to the conflict between huge amount of map data and limited network bandwidth, rapid trans- mission of vector map data over the Internet has become a bottleneck of spatial data delivery in web-based environment. T... Due to the conflict between huge amount of map data and limited network bandwidth, rapid trans- mission of vector map data over the Internet has become a bottleneck of spatial data delivery in web-based environment. This paper proposed an approach to organizing and transmitting multi-scale vector river network data via the Internet progressively. This approach takes account of two levels of importance, i.e. the importance of river branches and the importance of the points belonging to each river branch, and forms data packages ac- cording to these. Our experiments have shown that the proposed approach can reduce 90% of original data while preserving the river structure well. 展开更多
关键词 vector river data multi-SCALE progressive transmission river structure
原文传递
Multi-Class Support Vector Machine Classifier Based on Jeffries-Matusita Distance and Directed Acyclic Graph 被引量:1
10
作者 Miao Zhang Zhen-Zhou Lai +1 位作者 Dan Li Yi Shen 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第5期113-118,共6页
Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise... Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise the multi-class classification accuracies. The topology structure of DAG is constructed by rearranging the nodes' sequence in the graph. DAG is equivalent to guided operating SVM on a list, and the classification performance depends on the nodes' sequence in the graph. Jeffries-Matusita distance (JMD) is introduced to estimate the separability of each class, and the implementation list is initialized with all classes organized according to certain sequence in the list. To testify the effectiveness of the proposed method, numerical analysis is conducted on UCI data and hyperspectral data. Meanwhile, comparative studies using standard OAO and DAG classification methods are also conducted and the results illustrate better performance and higher accuracy of the orooosed JMD-DAG method. 展开更多
关键词 multi-class classification support vector machine directed acyclic graph Jeffries-Matusitadistance hyperspcctral data
在线阅读 下载PDF
Multi-coupled single scattering method of solving vector radiative transfer equations
11
作者 孙斌 王涵 +2 位作者 孙晓兵 洪津 张运杰 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期576-581,共6页
A new method of multi-coupled single scattering (MCSS) for solving a vector radiative transfer equation is de- veloped and made public on Internet. Recent solutions from Chandrasekhar's X-Y method is used to valida... A new method of multi-coupled single scattering (MCSS) for solving a vector radiative transfer equation is de- veloped and made public on Internet. Recent solutions from Chandrasekhar's X-Y method is used to validate the MCSS's result, which shows high precision. The MCSS method is theoretically simple and clear, so it can be easily and credibly extended to the simulation of aerosol/cloud atmosphere's radiative properties, which provides effective support for research into polarized remote sensing. 展开更多
关键词 vector radiative transfer multi-coupled single scattering method
原文传递
Multi-Response Variable Optimization in Sensor Drift Monitoring System Using Support Vector Regression
12
作者 In-Yong Seo Bok-Nam Ha Won Nam Koong 《通讯和计算机(中英文版)》 2012年第7期752-758,共7页
关键词 支持向量回归 传感器漂移 变量优化 监控系统 传感器信号 灵敏度 正常运行 安全操作
在线阅读 下载PDF
Multi-Step Model Predictive Control Based on Online Support Vector Regression Optimized by Multi-Agent Particle Swarm Optimization Algorithm 被引量:2
13
作者 TANG Xianlun LIU Nianci +1 位作者 WAN Yali GUO Fei 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第5期607-612,共6页
As optimization of parameters affects prediction accuracy and generalization ability of support vector regression(SVR) greatly and the predictive model often mismatches nonlinear system model predictive control,a mult... As optimization of parameters affects prediction accuracy and generalization ability of support vector regression(SVR) greatly and the predictive model often mismatches nonlinear system model predictive control,a multi-step model predictive control based on online SVR(OSVR) optimized by multi-agent particle swarm optimization algorithm(MAPSO) is put forward. By integrating the online learning ability of OSVR, the predictive model can self-correct and adapt to the dynamic changes in nonlinear process well. 展开更多
关键词 online support vector regression (OSVR) model PREDICTIVE CONTROLLER (MPC) multi-AGENT particleswarm optimization (MAPSO) nonlinear systems
原文传递
Image Processing on Geological Data in Vector Format and Multi-Source Spatial Data Fusion
14
作者 Liu Xing Hu Guangdao Qiu Yubao Faculty of Earth Resources, China University of Geosciences, Wuhan 430074 《Journal of China University of Geosciences》 SCIE CSCD 2003年第3期278-282,共5页
The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper... The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly. 展开更多
关键词 geological data GIS-based vector data conversion image processing multi-source data fusion
在线阅读 下载PDF
基于Vector Fitting的光伏并网逆变器控制器参数频域辨识方法 被引量:17
15
作者 王哲 吕敬 +3 位作者 吴林林 王潇 宗皓翔 蔡旭 《电力自动化设备》 EI CSCD 北大核心 2022年第5期118-124,共7页
光伏并网逆变器通常含有内外环、锁相环等不同带宽控制环节,且控制器参数往往并不可知,即存在“灰箱”问题。为准确辨识不同带宽控制器参数,提出一种基于端口导纳特性的光伏并网逆变器控制器参数频域辨识方法。首先,建立典型控制下光伏... 光伏并网逆变器通常含有内外环、锁相环等不同带宽控制环节,且控制器参数往往并不可知,即存在“灰箱”问题。为准确辨识不同带宽控制器参数,提出一种基于端口导纳特性的光伏并网逆变器控制器参数频域辨识方法。首先,建立典型控制下光伏并网逆变器交流端口的dq理论导纳模型,得到其理论导纳标准式;然后,通过扫频手段获得光伏并网逆变器交流端口的测量导纳数据,并采用Vector Fitting算法对测量的端口导纳数据进行矢量拟合,得到拟合导纳标准式;最后,运用最小二乘原理使理论导纳标准式与拟合导纳标准式对应项系数差值的平方和最小,从而辨识得到光伏并网逆变器控制器参数的估计值。参数辨识实例表明,所提方法能够同时准确辨识出不同带宽控制器参数。 展开更多
关键词 光伏并网逆变器 参数辨识 导纳特性 vector Fitting算法 多带宽控制
在线阅读 下载PDF
基于多特征I-Vector的说话人识别算法 被引量:2
16
作者 赵宏 岳鲁鹏 +1 位作者 常兆斌 王伟杰 《兰州理工大学学报》 CAS 北大核心 2021年第5期93-98,共6页
针对单一声学特征无法精准高效地辨识说话人身份的问题,提出了一种基于多特征I-Vector的说话人识别算法.该算法首先采集不同的声学特征并将其构成一个高维特征向量,然后通过主成分分析法有效地剔除高维特征向量的关联,确保各种特征之间... 针对单一声学特征无法精准高效地辨识说话人身份的问题,提出了一种基于多特征I-Vector的说话人识别算法.该算法首先采集不同的声学特征并将其构成一个高维特征向量,然后通过主成分分析法有效地剔除高维特征向量的关联,确保各种特征之间正交化,最后采用概率线性判别分析进行建模和打分,并在一定程度上降低空间维度.在TIMIT语料库上利用Kaldi进行实验,算法运行结果表明,该算法较当前流行的基于I-Vector的单一梅尔频率倒谱系数和感知线性预测系数的特征系统在等错误率上分别提高了8.18%和1.71%,在模型训练时间上分别减少了60.4%和47.5%,具有更好的识别效果和效率. 展开更多
关键词 说话人识别算法 多特征I-vector 主成分分析 概率线性判别分析 Kaldi
在线阅读 下载PDF
不完备故障类别下基于Multi-SVDD的高压隔离开关故障诊断方法 被引量:23
17
作者 陈士刚 关永刚 +2 位作者 张小青 杨元威 张一茗 《电工技术学报》 EI CSCD 北大核心 2018年第11期2439-2447,共9页
针对高压隔离开关故障诊断时特征库中故障类别不完备的问题,提出了基于多重支持向量域描述(Multi-SVDD)的故障诊断方法。首先通过主成分分析将正常和已知故障样本特征量按贡献度进行排序作为新的特征向量,并以特征量贡献度构造加权高斯... 针对高压隔离开关故障诊断时特征库中故障类别不完备的问题,提出了基于多重支持向量域描述(Multi-SVDD)的故障诊断方法。首先通过主成分分析将正常和已知故障样本特征量按贡献度进行排序作为新的特征向量,并以特征量贡献度构造加权高斯核函数,提高对类间特征差异的辨识能力。然后利用粒子群算法对核参数进行优化,提高模型的推广能力和对样本类别识别的正确率。其次对正常和已知故障样本集进行训练,建立描述隔离开关不同工作状态的超球体作为预测模型。最后利用Multi-SVDD对样本空间进行划分并计算待测样本点至各超球体中心的距离,确定样本所属的种类。试验结果表明,该方法可以有效处理高压隔离开关故障诊断中故障类别不完备的问题,在诊断出已知故障的同时可对未知故障给出判断。 展开更多
关键词 隔离开关 类别不完备 多重支持向量域 核函数 故障诊断
在线阅读 下载PDF
基于SVM-MultiCNN模型的视觉感知跌倒检测算法 被引量:7
18
作者 蔡文郁 郑雪晨 +1 位作者 郭嘉豪 阮智祥 《杭州电子科技大学学报(自然科学版)》 2020年第5期59-66,共8页
现有的基于视频的跌倒检测算法大多通过构建人体模型来检测跌倒,对类跌倒行为误判率较高且计算量过大,耗时过长。为此,提出一种基于SVM-MultiCNN模型的视觉感知跌倒检测算法。首先,从原始视频中提取人体关节点数据,从中提取跌倒特征送入... 现有的基于视频的跌倒检测算法大多通过构建人体模型来检测跌倒,对类跌倒行为误判率较高且计算量过大,耗时过长。为此,提出一种基于SVM-MultiCNN模型的视觉感知跌倒检测算法。首先,从原始视频中提取人体关节点数据,从中提取跌倒特征送入SVM分类器进行初次分类;然后,将判决为类跌倒行为的分类数据输入MultiCNN分类器进行跌倒行为的二次分类。实验结果表明:与SVM,CNN,MultiCNN模型相比,改进算法的检测准确度较高,达到96.8%,且单帧检测耗时缩短近一倍,提高了检测效率。 展开更多
关键词 跌倒检测 OpenPose 支持向量机 卷积神经网络 多尺度卷积神经网络
在线阅读 下载PDF
基于Multi-class SVM的车辆换道行为识别模型研究 被引量:19
19
作者 陈亮 冯延超 李巧茹 《安全与环境学报》 CAS CSCD 北大核心 2020年第1期193-199,共7页
自动安全换道是车辆实现无人驾驶的关键,为精确识别行驶车辆换道状态,保证行车安全,设计了一种基于多分类支持向量机(Multi-class Support Vector Machine,Multiclass SVM)的车辆换道识别模型。从NGSIM数据集中选取美国101公路车辆轨迹... 自动安全换道是车辆实现无人驾驶的关键,为精确识别行驶车辆换道状态,保证行车安全,设计了一种基于多分类支持向量机(Multi-class Support Vector Machine,Multiclass SVM)的车辆换道识别模型。从NGSIM数据集中选取美国101公路车辆轨迹数据进行分类处理,并将车辆换道过程划分为车辆跟驰阶段、车辆换道准备阶段和车辆换道执行阶段。采用网格搜索结合粒子群优化算法(Grid Search-PSO)对SVM模型中惩罚参数C和核参数g进行寻优标定,利用多分类支持向量机换道识别模型对样本数据进行训练和测试,模型测试精度达97.68%。研究表明,模型能够很好地识别车辆在换道过程中的行为状态,为车辆换道阶段的研究提供支持。 展开更多
关键词 安全工程 多分类支持向量机 NGSIM数据 车辆换道识别
原文传递
基于多特征i-vector的短语音说话人识别算法 被引量:7
20
作者 孙念 张毅 +1 位作者 林海波 黄超 《计算机应用》 CSCD 北大核心 2018年第10期2839-2843,共5页
当测试语音时长充足时,单一特征的信息量和区分性足够完成说话人识别任务,但是在测试语音很短的情况下,语音信号里缺乏充分的说话人信息,使得说话人识别性能急剧下降。针对短语音条件下的说话人信息不足的问题,提出一种基于多特征i-vec... 当测试语音时长充足时,单一特征的信息量和区分性足够完成说话人识别任务,但是在测试语音很短的情况下,语音信号里缺乏充分的说话人信息,使得说话人识别性能急剧下降。针对短语音条件下的说话人信息不足的问题,提出一种基于多特征i-vector的短语音说话人识别算法。该算法首先提取不同的声学特征向量组合成一个高维特征向量,然后利用主成分分析(PCA)去除高维特征向量的相关性,使特征之间正交化,最后采用线性判别分析(LDA)挑选出最具区分性的特征,并且在一定程度上降低空间维度,从而实现更好的说话人识别性能。结合TIMIT语料库进行实验,同一时长的短语音(2 s)条件下,所提算法比基于i-vector的单一的梅尔频率倒谱系数(MFCC)、线性预测倒谱系数(LPCC)、感知对数面积比系数(PLAR)特征系统在等错误率(EER)上分别有相对72. 16%、69. 47%和73. 62%的下降。不同时长的短语音条件下,所提算法比基于i-vector的单一特征系统在EER和检测代价函数(DCF)上大致都有50%的降低。基于以上两种实验的结果充分表明了所提算法在短语音说话人识别系统中可以充分提取说话人的个性信息,有利地提高说话人识别性能。 展开更多
关键词 说话人识别 i-vector 短语音 多特征 主成分分析 线性判别分析
在线阅读 下载PDF
上一页 1 2 134 下一页 到第
使用帮助 返回顶部