In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression ...In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression and the support vector machine network-based model predictive control (SVMN-MPC) algorithm corresponding to each environment is developed, and then a multi-class SVM model is established to recognize multiple operating conditions. As for control, the current environment is identified by the multi-class SVM model and then the corresponding SVMN-MPC controller is activated at each sampling instant. The proposed modeling, switching and controller design is demonstrated in simulation results.展开更多
A novel multi-objective optimization algorithm incorporating vector method and evolution strategies,referred as vector dominant multi-objective evolutionary algorithm(VD-MOEA),is developed and applied to the aerodynam...A novel multi-objective optimization algorithm incorporating vector method and evolution strategies,referred as vector dominant multi-objective evolutionary algorithm(VD-MOEA),is developed and applied to the aerodynamic-structural integrative design of wind turbine blades.A set of virtual vectors are elaborately constructed,guiding population to fast move forward to the Pareto optimal front and dominating the distribution uniformity with high efficiency.In comparison to conventional evolution algorithms,VD-MOEA displays dramatic improvement of algorithm performance in both convergence and diversity preservation when handling complex problems of multi-variables,multi-objectives and multi-constraints.As an example,a 1.5 MW wind turbine blade is subsequently designed taking the maximum annual energy production,the minimum blade mass,and the minimum blade root thrust as the optimization objectives.The results show that the Pareto optimal set can be obtained in one single simulation run and that the obtained solutions in the optimal set are distributed quite uniformly,maximally maintaining the population diversity.The efficiency of VD-MOEA has been elevated by two orders of magnitude compared with the classical NSGA-II.This provides a reliable high-performance optimization approach for the aerodynamic-structural integrative design of wind turbine blade.展开更多
Removal of cloud cover on the satellite remote sensing image can effectively improve the availability of remote sensing images. For thin cloud cover, support vector value contourlet transform is used to achieve multi-...Removal of cloud cover on the satellite remote sensing image can effectively improve the availability of remote sensing images. For thin cloud cover, support vector value contourlet transform is used to achieve multi-scale decomposition of the area of thin cloud cover on remote sensing images. Through enhancing coefficients of high frequency and suppressing coefficients of low frequency, the thin cloud is removed. For thick cloud cover, if the areas of thick cloud cover on multi-source or multi-temporal remote sensing images do not overlap, the multi-output support vector regression learning method is used to remove this kind of thick clouds. If the thick cloud cover areas overlap, by using the multi-output learning of the surrounding areas to predict the surface features of the overlapped thick cloud cover areas, this kind of thick cloud is removed. Experimental results show that the proposed cloud removal method can effectively solve the problems of the cloud overlapping and radiation difference among multi-source images. The cloud removal image is clear and smooth.展开更多
In order to achieve a high precision in three-dimensional(3D) multi-camera measurement system, an efficient multi-cameracalibration method is proposed. A stitching method of large scalecalibration targets is deduced...In order to achieve a high precision in three-dimensional(3D) multi-camera measurement system, an efficient multi-cameracalibration method is proposed. A stitching method of large scalecalibration targets is deduced, and a fundamental of multi-cameracalibration based on the large scale calibration target is provided.To avoid the shortcomings of the method, the vector differencesof reprojection error with the presence of the constraint conditionof the constant rigid body transformation is modelled, and mini-mized by the Levenberg-Marquardt (LM) method. Results of thesimulation and observation data calibration experiment show thatthe accuracy of the system calibrated by the proposed methodreaches 2 mm when measuring distance section of 20 000 mmand scale section of 7 000 mm × 7 000 mm. Consequently, theproposed method of multi-camera calibration performs better thanthe fundamental in stability. This technique offers a more uniformerror distribution for measuring large scale space.展开更多
Hierarchical Support Vector Machine (H-SVM) is faster in training and classification than other usual multi-class SVMs such as "1-V-R"and "1-V-1". In this paper, a new multi-class fault diagnosis algorithm based...Hierarchical Support Vector Machine (H-SVM) is faster in training and classification than other usual multi-class SVMs such as "1-V-R"and "1-V-1". In this paper, a new multi-class fault diagnosis algorithm based on H-SVM is proposed and applied to aero-engine. Before SVM training, the training data are first clustered according to their class-center Euclid distances in some feature spaces. The samples which have close distances are divided into the same sub-classes for training, and this makes the H-SVM have reasonable hierarchical construction and good generalization performance. Instead of the common C-SVM, the v-SVM is selected as the binary classifier, in which the parameter v varies only from 0 to 1 and can be determined more easily. The simulation results show that the designed H-SVMs can fast diagnose the multi-class single faults and combination faults for the gas path components of an aero-engine. The fault classifiers have good diagnosis accuracy and can keep robust even when the measurement inputs are disturbed by noises.展开更多
This paper addresses the multi-fault diagnosis problem of thrusters and sensors for autonomous underwater vehicles (AUVs). Traditional support vector domain description (SVDD) has low classification accuracy in the pr...This paper addresses the multi-fault diagnosis problem of thrusters and sensors for autonomous underwater vehicles (AUVs). Traditional support vector domain description (SVDD) has low classification accuracy in the process of AUV multi-fault pattern classification because of the effect of sample sparse density and the uneven distribution of samples, and so on. Thus, a fuzzy weighted support vector domain description (FWSVDD) method based on positive and negative class samples is proposed. In this method, the negative class sample is introduced during classifier training, and the local density and the class weight are introduced for each sample. To improve the multi-fault pattern classifier training speed and fault diagnosis accuracy of FWSVDD, a multi-fault mode classification method based on a hierarchical strategy is proposed. This method adds fault contain detection surface for each thruster and sensor to isolate fault components during fault diagnosis. By considering the problem of pattern classification for a fuzzy sample, which may be located in the overlapping area of hyper-spheres or may not belong to any hyper-sphere in the process of multi-fault classification based on FWSVDD, a relative distance judgment method is given. The effectiveness of the proposed multi-fault diagnosis approach is demonstrated through water tank experiments with an experimental AUV prototype.展开更多
There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because the...There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring.展开更多
Focusing on strip steel surface defects classification, a novel support vector machine with adjustable hyper-sphere (AHSVM) is formulated. Meanwhile, a new multi-class classification method is proposed. Originated f...Focusing on strip steel surface defects classification, a novel support vector machine with adjustable hyper-sphere (AHSVM) is formulated. Meanwhile, a new multi-class classification method is proposed. Originated from support vector data description, AHSVM adopts hyper-sphere to solve classification problem. AHSVM can obey two principles: the margin maximization and inner-class dispersion minimization. Moreover, the hyper-sphere of AHSVM is adjustable, which makes the final classification hyper-sphere optimal for training dataset. On the other hand, AHSVM is combined with binary tree to solve multi-class classification for steel surface defects. A scheme of samples pruning in mapped feature space is provided, which can reduce the number of training samples under the premise of classification accuracy, resulting in the improvements of classification speed. Finally, some testing experiments are done for eight types of strip steel surface defects. Experimental results show that multi-class AHSVM classifier exhibits satisfactory results in classification accuracy and efficiency.展开更多
Due to the conflict between huge amount of map data and limited network bandwidth, rapid trans- mission of vector map data over the Internet has become a bottleneck of spatial data delivery in web-based environment. T...Due to the conflict between huge amount of map data and limited network bandwidth, rapid trans- mission of vector map data over the Internet has become a bottleneck of spatial data delivery in web-based environment. This paper proposed an approach to organizing and transmitting multi-scale vector river network data via the Internet progressively. This approach takes account of two levels of importance, i.e. the importance of river branches and the importance of the points belonging to each river branch, and forms data packages ac- cording to these. Our experiments have shown that the proposed approach can reduce 90% of original data while preserving the river structure well.展开更多
Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise...Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise the multi-class classification accuracies. The topology structure of DAG is constructed by rearranging the nodes' sequence in the graph. DAG is equivalent to guided operating SVM on a list, and the classification performance depends on the nodes' sequence in the graph. Jeffries-Matusita distance (JMD) is introduced to estimate the separability of each class, and the implementation list is initialized with all classes organized according to certain sequence in the list. To testify the effectiveness of the proposed method, numerical analysis is conducted on UCI data and hyperspectral data. Meanwhile, comparative studies using standard OAO and DAG classification methods are also conducted and the results illustrate better performance and higher accuracy of the orooosed JMD-DAG method.展开更多
A new method of multi-coupled single scattering (MCSS) for solving a vector radiative transfer equation is de- veloped and made public on Internet. Recent solutions from Chandrasekhar's X-Y method is used to valida...A new method of multi-coupled single scattering (MCSS) for solving a vector radiative transfer equation is de- veloped and made public on Internet. Recent solutions from Chandrasekhar's X-Y method is used to validate the MCSS's result, which shows high precision. The MCSS method is theoretically simple and clear, so it can be easily and credibly extended to the simulation of aerosol/cloud atmosphere's radiative properties, which provides effective support for research into polarized remote sensing.展开更多
As optimization of parameters affects prediction accuracy and generalization ability of support vector regression(SVR) greatly and the predictive model often mismatches nonlinear system model predictive control,a mult...As optimization of parameters affects prediction accuracy and generalization ability of support vector regression(SVR) greatly and the predictive model often mismatches nonlinear system model predictive control,a multi-step model predictive control based on online SVR(OSVR) optimized by multi-agent particle swarm optimization algorithm(MAPSO) is put forward. By integrating the online learning ability of OSVR, the predictive model can self-correct and adapt to the dynamic changes in nonlinear process well.展开更多
The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper...The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly.展开更多
自动安全换道是车辆实现无人驾驶的关键,为精确识别行驶车辆换道状态,保证行车安全,设计了一种基于多分类支持向量机(Multi-class Support Vector Machine,Multiclass SVM)的车辆换道识别模型。从NGSIM数据集中选取美国101公路车辆轨迹...自动安全换道是车辆实现无人驾驶的关键,为精确识别行驶车辆换道状态,保证行车安全,设计了一种基于多分类支持向量机(Multi-class Support Vector Machine,Multiclass SVM)的车辆换道识别模型。从NGSIM数据集中选取美国101公路车辆轨迹数据进行分类处理,并将车辆换道过程划分为车辆跟驰阶段、车辆换道准备阶段和车辆换道执行阶段。采用网格搜索结合粒子群优化算法(Grid Search-PSO)对SVM模型中惩罚参数C和核参数g进行寻优标定,利用多分类支持向量机换道识别模型对样本数据进行训练和测试,模型测试精度达97.68%。研究表明,模型能够很好地识别车辆在换道过程中的行为状态,为车辆换道阶段的研究提供支持。展开更多
基金the 973 Program of China (No.2002CB312200)the National Science Foundation of China (No.60574019)
文摘In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression and the support vector machine network-based model predictive control (SVMN-MPC) algorithm corresponding to each environment is developed, and then a multi-class SVM model is established to recognize multiple operating conditions. As for control, the current environment is identified by the multi-class SVM model and then the corresponding SVMN-MPC controller is activated at each sampling instant. The proposed modeling, switching and controller design is demonstrated in simulation results.
基金funded jointly by the National Basic Research Program of China(″973″Program)(No2014CB046200)the National Natural Science Foundation of China(No.51506089)+1 种基金the Jiangsu Provincial Natural Science Foundation(No.BK20140059)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A novel multi-objective optimization algorithm incorporating vector method and evolution strategies,referred as vector dominant multi-objective evolutionary algorithm(VD-MOEA),is developed and applied to the aerodynamic-structural integrative design of wind turbine blades.A set of virtual vectors are elaborately constructed,guiding population to fast move forward to the Pareto optimal front and dominating the distribution uniformity with high efficiency.In comparison to conventional evolution algorithms,VD-MOEA displays dramatic improvement of algorithm performance in both convergence and diversity preservation when handling complex problems of multi-variables,multi-objectives and multi-constraints.As an example,a 1.5 MW wind turbine blade is subsequently designed taking the maximum annual energy production,the minimum blade mass,and the minimum blade root thrust as the optimization objectives.The results show that the Pareto optimal set can be obtained in one single simulation run and that the obtained solutions in the optimal set are distributed quite uniformly,maximally maintaining the population diversity.The efficiency of VD-MOEA has been elevated by two orders of magnitude compared with the classical NSGA-II.This provides a reliable high-performance optimization approach for the aerodynamic-structural integrative design of wind turbine blade.
基金supported by the National Natural Science Foundation of China(61172127)the Natural Science Foundation of Anhui Province(1408085MF121)
文摘Removal of cloud cover on the satellite remote sensing image can effectively improve the availability of remote sensing images. For thin cloud cover, support vector value contourlet transform is used to achieve multi-scale decomposition of the area of thin cloud cover on remote sensing images. Through enhancing coefficients of high frequency and suppressing coefficients of low frequency, the thin cloud is removed. For thick cloud cover, if the areas of thick cloud cover on multi-source or multi-temporal remote sensing images do not overlap, the multi-output support vector regression learning method is used to remove this kind of thick clouds. If the thick cloud cover areas overlap, by using the multi-output learning of the surrounding areas to predict the surface features of the overlapped thick cloud cover areas, this kind of thick cloud is removed. Experimental results show that the proposed cloud removal method can effectively solve the problems of the cloud overlapping and radiation difference among multi-source images. The cloud removal image is clear and smooth.
基金supported by the National Natural Science Foundation of China(61473100)
文摘In order to achieve a high precision in three-dimensional(3D) multi-camera measurement system, an efficient multi-cameracalibration method is proposed. A stitching method of large scalecalibration targets is deduced, and a fundamental of multi-cameracalibration based on the large scale calibration target is provided.To avoid the shortcomings of the method, the vector differencesof reprojection error with the presence of the constraint conditionof the constant rigid body transformation is modelled, and mini-mized by the Levenberg-Marquardt (LM) method. Results of thesimulation and observation data calibration experiment show thatthe accuracy of the system calibrated by the proposed methodreaches 2 mm when measuring distance section of 20 000 mmand scale section of 7 000 mm × 7 000 mm. Consequently, theproposed method of multi-camera calibration performs better thanthe fundamental in stability. This technique offers a more uniformerror distribution for measuring large scale space.
基金University Science Foundation of Jiangsu Province (04KJD510018)
文摘Hierarchical Support Vector Machine (H-SVM) is faster in training and classification than other usual multi-class SVMs such as "1-V-R"and "1-V-1". In this paper, a new multi-class fault diagnosis algorithm based on H-SVM is proposed and applied to aero-engine. Before SVM training, the training data are first clustered according to their class-center Euclid distances in some feature spaces. The samples which have close distances are divided into the same sub-classes for training, and this makes the H-SVM have reasonable hierarchical construction and good generalization performance. Instead of the common C-SVM, the v-SVM is selected as the binary classifier, in which the parameter v varies only from 0 to 1 and can be determined more easily. The simulation results show that the designed H-SVMs can fast diagnose the multi-class single faults and combination faults for the gas path components of an aero-engine. The fault classifiers have good diagnosis accuracy and can keep robust even when the measurement inputs are disturbed by noises.
基金supported by the National Natural Science Foundation of China(Grant No.51279040)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20112304110024)
文摘This paper addresses the multi-fault diagnosis problem of thrusters and sensors for autonomous underwater vehicles (AUVs). Traditional support vector domain description (SVDD) has low classification accuracy in the process of AUV multi-fault pattern classification because of the effect of sample sparse density and the uneven distribution of samples, and so on. Thus, a fuzzy weighted support vector domain description (FWSVDD) method based on positive and negative class samples is proposed. In this method, the negative class sample is introduced during classifier training, and the local density and the class weight are introduced for each sample. To improve the multi-fault pattern classifier training speed and fault diagnosis accuracy of FWSVDD, a multi-fault mode classification method based on a hierarchical strategy is proposed. This method adds fault contain detection surface for each thruster and sensor to isolate fault components during fault diagnosis. By considering the problem of pattern classification for a fuzzy sample, which may be located in the overlapping area of hyper-spheres or may not belong to any hyper-sphere in the process of multi-fault classification based on FWSVDD, a relative distance judgment method is given. The effectiveness of the proposed multi-fault diagnosis approach is demonstrated through water tank experiments with an experimental AUV prototype.
基金Project(61374140)supported by the National Natural Science Foundation of China
文摘There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring.
文摘Focusing on strip steel surface defects classification, a novel support vector machine with adjustable hyper-sphere (AHSVM) is formulated. Meanwhile, a new multi-class classification method is proposed. Originated from support vector data description, AHSVM adopts hyper-sphere to solve classification problem. AHSVM can obey two principles: the margin maximization and inner-class dispersion minimization. Moreover, the hyper-sphere of AHSVM is adjustable, which makes the final classification hyper-sphere optimal for training dataset. On the other hand, AHSVM is combined with binary tree to solve multi-class classification for steel surface defects. A scheme of samples pruning in mapped feature space is provided, which can reduce the number of training samples under the premise of classification accuracy, resulting in the improvements of classification speed. Finally, some testing experiments are done for eight types of strip steel surface defects. Experimental results show that multi-class AHSVM classifier exhibits satisfactory results in classification accuracy and efficiency.
文摘Due to the conflict between huge amount of map data and limited network bandwidth, rapid trans- mission of vector map data over the Internet has become a bottleneck of spatial data delivery in web-based environment. This paper proposed an approach to organizing and transmitting multi-scale vector river network data via the Internet progressively. This approach takes account of two levels of importance, i.e. the importance of river branches and the importance of the points belonging to each river branch, and forms data packages ac- cording to these. Our experiments have shown that the proposed approach can reduce 90% of original data while preserving the river structure well.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61201310)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.201160)the China Postdoctoral Science Foundation(Grant No.20110491067)
文摘Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise the multi-class classification accuracies. The topology structure of DAG is constructed by rearranging the nodes' sequence in the graph. DAG is equivalent to guided operating SVM on a list, and the classification performance depends on the nodes' sequence in the graph. Jeffries-Matusita distance (JMD) is introduced to estimate the separability of each class, and the implementation list is initialized with all classes organized according to certain sequence in the list. To testify the effectiveness of the proposed method, numerical analysis is conducted on UCI data and hyperspectral data. Meanwhile, comparative studies using standard OAO and DAG classification methods are also conducted and the results illustrate better performance and higher accuracy of the orooosed JMD-DAG method.
基金Project supported by the Science Foundation of the Airborne Remote Sensing System,Large Research Infrastructure of the Chinese Academy of Sciences
文摘A new method of multi-coupled single scattering (MCSS) for solving a vector radiative transfer equation is de- veloped and made public on Internet. Recent solutions from Chandrasekhar's X-Y method is used to validate the MCSS's result, which shows high precision. The MCSS method is theoretically simple and clear, so it can be easily and credibly extended to the simulation of aerosol/cloud atmosphere's radiative properties, which provides effective support for research into polarized remote sensing.
基金the National Natural Science Foundation of China(No.60905066)the Natural Science Foundation of Chongqing(No.cstc2018jcyjA0667)
文摘As optimization of parameters affects prediction accuracy and generalization ability of support vector regression(SVR) greatly and the predictive model often mismatches nonlinear system model predictive control,a multi-step model predictive control based on online SVR(OSVR) optimized by multi-agent particle swarm optimization algorithm(MAPSO) is put forward. By integrating the online learning ability of OSVR, the predictive model can self-correct and adapt to the dynamic changes in nonlinear process well.
文摘The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly.