Timely crop acreage and distribution information are the basic data which drive many agriculture related applications.For identifying crop types based on remote sensing,methods using only a single image type have sign...Timely crop acreage and distribution information are the basic data which drive many agriculture related applications.For identifying crop types based on remote sensing,methods using only a single image type have significant limitations.Current research that integrates fine and coarser spatial resolution images,using techniques such as unmixing methods,regression models,and others,usually results in coarse resolution abundance without sufficient detail within pixels,and limited attention has been paid to the spatial relationship between the pixels from these two kinds of images.Here we propose a new solution to identify winter wheat by integrating spectral and temporal information derived from multi-resolution remote sensing data and determine the spatial distribution of sub-pixels within the coarse resolution pixels.Firstly,the membership of pixels which belong to winter wheat is calculated using a 25-m resolution resampled Landsat Thematic Mapper(TM)image based on the Bayesian equation.Then,the winter wheat abundance(acreage fraction in a pixel)is assessed by using a multiple regression model based on the unique temporal change features from moderate resolution imaging spectroradiometer(MODIS)time series data.Finally,winter wheat is identified by the proposed Abundance-Membership(AM)model based on the spatial relationship between the two types of pixels.Specifically,winter wheat is identified by comparing the spatially corresponding 10×10 membership pixels of each abundance pixel.In other words,this method takes advantage of the relative size of membership in a local space,rather than the absolute size in the entire study area.This method is tested in the major agricultural area of Yiluo Basin,China,and the results show that acreage accuracy(Aa)is 93.01%and sampling accuracy(As)is 91.40%.Confusion matrix shows that overall accuracy(OA)is 91.4%and the kappa coefficient(Kappa)is 0.755.These values are significantly improved compared to the traditional Maximum Likelihood classification(MLC)and Random Forest classification(RFC)which rely on spectral features.The results demonstrate that the identification accuracy can be improved by integrating spectral and temporal information.Since the identification of winter wheat is performed in the space corresponding to each MODIS pixel,the influence of differences of environmental conditions is greatly reduced.This advantage allows the proposed method to be effectively applied in other places.展开更多
Estimating wheat grain protein content by remote sensing is important for assessing wheat quality at maturity and making grains harvest and purchase policies. However, spatial variability of soil condition, temperatur...Estimating wheat grain protein content by remote sensing is important for assessing wheat quality at maturity and making grains harvest and purchase policies. However, spatial variability of soil condition, temperature, and precipitation will affect grain protein contents and these factors usually cannot be monitored accurately by remote sensing data from single image. In this research, the relationships between wheat protein content at maturity and wheat agronomic parameters at different growing stages were analyzed and multi-temporal images of Landsat TM were used to estimate grain protein content by partial least squares regression. Experiment data were acquired in the suburb of Beijing during a 2-yr experiment in the period from 2003 to 2004. Determination coefficient, average deviation of self-modeling, and deviation of cross- validation were employed to assess the estimation accuracy of wheat grain protein content. Their values were 0.88, 1.30%, 3.81% and 0.72, 5.22%, 12.36% for 2003 and 2004, respectively. The research laid an agronomic foundation for GPC (grain protein content) estimation by multi-temporal remote sensing. The results showed that it is feasible to estimate GPC of wheat from multi-temporal remote sensing data in large area.展开更多
Land subsidence is a major factor that affects metro line (ML) stability. In this study, an improved multi- temporal interferometric synthetic aperture radar (InSAR) (MTI) method to detect land subsidence near M...Land subsidence is a major factor that affects metro line (ML) stability. In this study, an improved multi- temporal interferometric synthetic aperture radar (InSAR) (MTI) method to detect land subsidence near MLs is presented. In particular, our multi-temporal InSAR method provides surface subsidence measurements with high observation density. The MTI method tracks both point-like targets and distributed targets with temporal radar back- scattering steadiness. First, subsidence rates at the point targets with low-amplitude dispersion index (ADI) values are extracted by applying a least-squared estimator on an optimized freely connected network. Second, to reduce error propagation, the pixels with high-ADI values are classified into several groups according to ADI intervals and processed using a Pearson correlation coefficient and hierarchical analysis strategy to obtain the distributed targets. Then, nonlinear subsidence components at all point-like and distributed targets are estimated using phase unwrapping and spatiotemporal filtering on the phase residuals. The proposed MTI method was applied to detect land subsidence near MLs of No. 1 and 3 in the Baoshan district of Shanghai using 18 TerraSAR-X images acquired between April 21, 2008 and October 30, 2010. The results show that the mean subsidence rates of the stations distributed along the two MLs are -12.9 and -14.0 ram/year. Furthermore, three subsidence funnels near the MLs are discovered through the hierarchical analysis. The testing results demonstrate the satisfactory capacity of the proposed MTI method in providing detailed subsidence information near MLs.展开更多
This study conducted computer-aided image analysis of land use and land cover in Xilin River Basin, Inner Mongolia, using 4 sets of Landsat TM/ETM+ images acquired on July 31, 1987, August 11, 1991, Sep...This study conducted computer-aided image analysis of land use and land cover in Xilin River Basin, Inner Mongolia, using 4 sets of Landsat TM/ETM+ images acquired on July 31, 1987, August 11, 1991, September 27, 1997 and May 23, 2000, respectively. Primarily, 17 sub-class land cover types were recognized, including nine grassland types at community level: F.sibiricum steppe, S.baicalensis steppe, A.chinensis+ forbs steppe, A.chinensis+ bunchgrass steppe, A.chinensis+ Ar.frigida steppe, S.grandis+ A.chinensis steppe, S.grandis+ bunchgrass steppe, S.krylavii steppe, Ar.frigida steppe and eight non-grassland types: active cropland, harvested cropland, urban area, wetland, desertified land, saline and alkaline land, cloud, water body + cloud shadow. To eliminate the classification error existing among different sub-types of the same gross type, the 17 sub-class land cover types were grouped into five gross types: meadow grassland, temperate grassland, desert grassland, cropland and non-grassland. The overall classification accuracy of the five land cover types was 81.0% for 1987, 81.7% for 1991, 80.1% for 1997 and 78.2% for 2000.展开更多
Background: The Shelduck (Tadorna tadorna) is a characteristic waterbird species of inland wetlands in northeastern Algeria. Its wintering behavior in relation to changes of local abundances and foraging group density...Background: The Shelduck (Tadorna tadorna) is a characteristic waterbird species of inland wetlands in northeastern Algeria. Its wintering behavior in relation to changes of local abundances and foraging group density is poorly known. Objectives: This study aims at monitoring patterns of diurnal activities and the variation of behavioral time-budgets in relation to numbers of wintering Shelducks. We investigate temporal variations of diurnal activities across multipletime scales and consider their interrelationships. Methods: Assessments of local population abundance were weekly surveyed during two wintering seasons (2010– 2012), whereas diurnal activities (feeding, sleeping, swimming, preening, loafing, flying, courtship, and antagonism) were studied three times a month during seven hours (08:00–16:00) using the Scan method. Time budget variations of each behavioral activity were tested using nested ANOVAs following multiple time scales. Generalized linear mixedeffects models (GLMM) tested whether variations in diurnal activities were density-dependent. Results: During the wintering season, Shelduck’s numbers followed a bell-shaped trend, which indicated that the species was typically a wintering migrant in Sabkha Djendli. The first individuals arrived onsite in October–November then numbers reached a peak in January (up to 2400 individuals in 2012) with steady density during December–February, afterward individuals left the site progressively until late April when the site is deserted. During both wintering seasons, diurnal activities were dominated by feeding (60%), followed by sleeping (12%) then swimming and preening with 9% and 8%, respectively. The rest of the activities (loafing, flying, courtship and antagonistic behaviors) had low proportions of time budget. ANOVAs showed that activity time budgets varied significantly following multiple time scales (year, season, month, day, semi-hour). Time budgets of diurnal activities during each wintering season were significantly interrelated. Correlations patterns between the two seasons were similar. GLMMs revealed that the variations of diurnal activities were not density-dependent, except for preening and swimming. Conclusion: During the wintering season, habitats of Sabkha Djendli are important for waterbirds, including the Shelduck that used the lake mainly for food-foraging and resting. The 2400 individuals censused in mid-winter are important locally and at the North African scale. This stresses the need to strengthen the protection status of this wetland and mitigate degradation sources that threaten wintering waterfowl.展开更多
Satellite images are considered reliable data that preserve land cover information. In the field of remote sensing, these images allow relevant analyses of changes in space over time through the use of computer tools....Satellite images are considered reliable data that preserve land cover information. In the field of remote sensing, these images allow relevant analyses of changes in space over time through the use of computer tools. In this study, we have applied the “discriminant” change detection algorithm. In this, we have verified its effectiveness in multi-temporal studies. Also, we have determined the change in forest dynamics in the Ikongo district of Madagascar between 2000 and 2015. During the treatments, we have used the Landsat TM satellite images for the years 2000, 2005 and 2010 as well as ETM+ for 2015. Thus, analyses carried out have allowed us to note that between 2000-2005, 1.4% of natural forest disappeared. And, between 2005-2010, forests degradation<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">was 1.8%. Also, between 2010-2015, about 0.5% of the natural forest conserved in 2010 disappeared. Furthermore, we have found that the discriminant algorithm is considerably efficient in terms of monitoring the dynamics of forest cover change.</span></span></span>展开更多
In this paper, we present a distributed multi-level cache system based on cloud storage, which is aimed at the low access efficiency of small spatio-temporal data files in information service system of Smart City. Tak...In this paper, we present a distributed multi-level cache system based on cloud storage, which is aimed at the low access efficiency of small spatio-temporal data files in information service system of Smart City. Taking classification attribute of small spatio-temporal data files in Smart City as the basis of cache content selection, the cache system adopts different cache pool management strategies in different levels of cache. The results of experiment in prototype system indicate that multi-level cache in this paper effectively increases the access bandwidth of small spatio-temporal files in Smart City and greatly improves service quality of multiple concurrent access in system.展开更多
Climate sequences can be applied to defining sensitive climate zones, and then the mining of spatio-temporal teleconnection patterns is useful for learning from the past and preparing for the future. However, scale-de...Climate sequences can be applied to defining sensitive climate zones, and then the mining of spatio-temporal teleconnection patterns is useful for learning from the past and preparing for the future. However, scale-dependency in this kind of pattern is still not well handled by existing work. Therefore, in this study, the multi-scale regionalization is embedded into the spatio-temporal teleconnection pattern mining between anomalous sea and land climatic events. A modified scale-space clustering algorithm is first developed to group climate sequences into multi-scale climate zones. Then, scale variance analysis method is employed to identify climate zones at characteristic scales, indicating the main characteristics of geographical phenomena. Finally, by using the climate zones identified at characteristic scales, a time association rule mining algorithm based on sliding time windows is employed to discover spatio-temporal teleconnection patterns. Experiments on sea surface temperature, sea level pressure, land precipitation and land temperature datasets show that many patterns obtained by the multi-scale approach are coincident with prior knowledge, indicating that this method is effective and reasonable. In addition, some unknown teleconnection patterns discovered from the multi-scale approach can be further used to guide the prediction of land climate.展开更多
As landmass of the world is covered by vegetation, taking into account phenology when performing land cover classification may yield more accurate maps. The availability of no-cost Moderate Resolution Imaging Spectrom...As landmass of the world is covered by vegetation, taking into account phenology when performing land cover classification may yield more accurate maps. The availability of no-cost Moderate Resolution Imaging Spectrometer (MODIS) NDVI dataset that provides high-quality continuous time series data is representing a potentially significant source of land cover information especially for detection natural forest distribution. This study intends to assess the advantage of MODIS 250 m Normalized Difference Vegetation Index (NDVI) multi-temporal imagery for detection of densely vegetation cover distribution in Java and then for identification of remaining natural forest in Java from densely vegetation cover distribution. Result of this study successfully demonstrated the contribution of MODIS NDVI 250 m for detection the natural forest distribution in Java Island. Therefore, the approach described herein provided classification accuracy comparable to those of maps derived from higher resolution data and will be a viable alternative for regional or national classifications.展开更多
Creation of a spectral signature reflectance data, which aids in the identification of the crops is important in determining size and location crop fields. Therefore, we developed a spectral signature reflectance for ...Creation of a spectral signature reflectance data, which aids in the identification of the crops is important in determining size and location crop fields. Therefore, we developed a spectral signature reflectance for the vegetative stage of the green gram (Vigna. radiata L.) over 5 years (2020, 2018, 2017, 2015, and 2013) for agroecological zone IV and V in Kenya. The years chosen were those whose satellite resolution data was available for the vegetative stage of crop growth in the short rain season (October, November, December (OND)). We used Landsat 8 OLI satellite imagery in this study. Cropping pattern data for the study area were evaluated by calculating the Top of Atmosphere reflectance. Farms geo-referencing, along with field data collection, was undertaken to extract Top of Atmosphere reflectance for bands 2, 3, 4 and 7. We also carried a spectral similarity assessment on the various cropping patterns. The spectral reflectance ranged from 0.07696 - 0.09632, 0.07466 - 0.09467, 0.0704047 - 0.12188,0.19822 - 0.24387, 0.19269 - 0.26900, and 0.11354 - 0.20815 for bands 2, 3, 4, 5, 6, and 7 for green gram, respectively. The results showed a dissimilarity among the various cropping patterns. The lowest dissimilarity index was 0.027 for the maize (Zea mays L.) bean (Phaseolus vulgaris) versus the maize-pigeon pea (Cajanus cajan) crop, while the highest dissimilarity index was 0.443 for the maize bean versus the maize bean and cowpea cropping patterns. High crop dissimilarities experienced across the cropping pattern through these spectral reflectance values confirm that the green gram was potentially identifiable. The results can be used in crop type identification in agroecological lower midland zone IV and V for mung bean management. This study therefore suggests that use of reflectance data in remote sensing of agricultural ecosystems would aid in planning, management, and crop allocation to different ecozones.展开更多
The Multi-angle imaging spectroradiometer(MISR) land-surface(LS) bidirectional reflectance factor(BRF) product(MILS_BRF) has unique semi-simultaneous multi-angle sampling and global coverage. However, unlike on-satell...The Multi-angle imaging spectroradiometer(MISR) land-surface(LS) bidirectional reflectance factor(BRF) product(MILS_BRF) has unique semi-simultaneous multi-angle sampling and global coverage. However, unlike on-satellite observations, the spatio-temporal characteristics of MILS_BRF data have rarely been explicitly and comprehensively analysed. Results from 5-yr(2011–2015) of MILS_BRF dataset from a typical region in central Northeast Asia as the study area showed that the monthly area coverage as well as MILS_BRF data quantity varies significantly, from the highest in October(99.05%) through median in June/July(78.09%/75.21%) to lowest in January(18.97%), and a large data-vacant area exists in the study area during four consecutive winter months(December through March). The data-vacant area is mainly composed of crop lands and cropland/natural vegetation mosaic. The amount of data within the principal plane(PP)±30°(nPP) or cross PP ±30°(nCP), varies intra-annually with significant differences from different view zeniths or forward/backward scattering directions. For example, multiple off-nadir cameras have nPP but no nCP data for up to six months(September through February), with the opposite occurring in June and July. This study provides explicit and comprehensive information about the spatio-temporal characteristics of product coverage and observation geometry of MILS_BRF in the study area. Results provide required user reference information for MILS_BRF to evaluate performance of BRDF models or to compare with other satellite-derived BRF or albedo products. Comparing this final product to on-satellite observations, what was found here reveals a new perspective on product spatial coverage and observation geometry for multi-angle remote sensing.展开更多
The spatial-temporal evolution of coherent structures (CS) is significant for turbulence control and drag re- duction. Among the CS, low and high speed streak structures show typical burst phenomena. The analysis wa...The spatial-temporal evolution of coherent structures (CS) is significant for turbulence control and drag re- duction. Among the CS, low and high speed streak structures show typical burst phenomena. The analysis was based on a time series of three-dimensional and three-component (3D-3C) velocity fields of the flat plate turbulent boundary layer (TBL) measured by a Tomographic and Time-resolved PIV (Tomo TRPIV) system. Using multi-resolution wavelet transform and conditional sampling method, we extracted the intrinsic topologies and found that the streak structures appear in bar-like patterns. Furthermore, we seized locations and velocity information of transient CS, and then calculated the propagation velocity of CS based on spatial-temporal cross-correlation scanning. This laid a foundation for further studies on relevant dynamics properties.展开更多
Precision Agriculture (PA) recognizes and manages intra-field spatial variability to increase profitability and reduced environmental impact. Site Specific Crop Management (SSCM), a form of PA, subdivides a cropping f...Precision Agriculture (PA) recognizes and manages intra-field spatial variability to increase profitability and reduced environmental impact. Site Specific Crop Management (SSCM), a form of PA, subdivides a cropping field into uniformly manageable zones, based on quantitative measurement of yield limiting factors. In Mediterranean environments, the spatial and temporal yield variability of rain-fed cropping system is strongly influenced by the spatial variability of Plant Available Water-holding Capacity (PAWC) and its strong interaction with temporally variable seasonal rainfall. The successful adoption of SSCM depends on the understanding of both spatial and temporal variabilities in cropping fields. Remote sensing phenological metrics provide information about the biophysical growth conditions of crops across fields. In this paper, we examine the potential of phenological metrics to assess the spatial and temporal crop yield variability across a wheat cropping field at Minnipa, South Australia. The Minnipa field was classified into three management zones using prolonged observations including soil assessment and multiple year yield data. The main analytical steps followed in this study were: calculation of the phenological metrics using time series NDVI data from Moderate Resolution Imaging Spectroscope (MODIS) for 15 years (2001-2015);producing spatial trend and temporal variability maps of phenological metrics;and finally, assessment of association between the spatial patterns and temporal variability of the metrics with management zones of the cropping field. The spatial trend of the seasonal peak NDVI metric showed significant association with the management zone pattern. In terms of temporal variability, Time-integrated NDVI (TINDVI) showed higher variability in the “good” zone compared with the “poor” zone. This indicates that the magnitude of the seasonal peak is more sensitive to soil related factors across the field, whereas TINDVI is more sensitive to seasonal variability. The interpretation of the association between phenological metrics and the management zone site conditions was discussed in relation to soil-climate interaction. The results demonstrate the potential of the phenological metrics to assess the spatial and temporal variability across cropping fields and to understand the soil-climate interaction. The approach presented in this paper provides a pathway to utilize phenological metrics for precision agricultural management application.展开更多
为了提升运动想象脑电(MI-EEG)信号的分类精度,提出多尺度滑窗注意力时序卷积网络(MSWATCN),充分挖掘MI-EEG信号的时空信息.结合多尺度双流分组卷积、滑动窗口多头注意力机制和窗口化时间卷积模块,实现对MI-EEG信号复杂时空特性的精准解...为了提升运动想象脑电(MI-EEG)信号的分类精度,提出多尺度滑窗注意力时序卷积网络(MSWATCN),充分挖掘MI-EEG信号的时空信息.结合多尺度双流分组卷积、滑动窗口多头注意力机制和窗口化时间卷积模块,实现对MI-EEG信号复杂时空特性的精准解码.利用多尺度卷积模块提取信号的底层时空特征,通过滑动窗口注意力机制聚焦局部关键特征,突出对分类任务重要的信息.窗口化时间卷积模块通过建模时间序列中的长期依赖关系,增强模型处理时序信息的能力.实验结果表明,MSWATCN在BCI Competition IV 2a和2b数据集上的分类准确率和一致性优于对比网络和基准模型.展开更多
基金the financial support provided by the National Science & Technology Infrastructure Construction Project of China (2005DKA32300)the Key Science and Technology Project of Henan Province, China (152102110047)+2 种基金the Major Research Project of the Ministry of Education, China(16JJD770019)the Major Scientific and Technological Special Project of Henan Province, China (121100111300)the Cooperation Base Open Fund of the Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River regions and CPGIS (JOF 201602)
文摘Timely crop acreage and distribution information are the basic data which drive many agriculture related applications.For identifying crop types based on remote sensing,methods using only a single image type have significant limitations.Current research that integrates fine and coarser spatial resolution images,using techniques such as unmixing methods,regression models,and others,usually results in coarse resolution abundance without sufficient detail within pixels,and limited attention has been paid to the spatial relationship between the pixels from these two kinds of images.Here we propose a new solution to identify winter wheat by integrating spectral and temporal information derived from multi-resolution remote sensing data and determine the spatial distribution of sub-pixels within the coarse resolution pixels.Firstly,the membership of pixels which belong to winter wheat is calculated using a 25-m resolution resampled Landsat Thematic Mapper(TM)image based on the Bayesian equation.Then,the winter wheat abundance(acreage fraction in a pixel)is assessed by using a multiple regression model based on the unique temporal change features from moderate resolution imaging spectroradiometer(MODIS)time series data.Finally,winter wheat is identified by the proposed Abundance-Membership(AM)model based on the spatial relationship between the two types of pixels.Specifically,winter wheat is identified by comparing the spatially corresponding 10×10 membership pixels of each abundance pixel.In other words,this method takes advantage of the relative size of membership in a local space,rather than the absolute size in the entire study area.This method is tested in the major agricultural area of Yiluo Basin,China,and the results show that acreage accuracy(Aa)is 93.01%and sampling accuracy(As)is 91.40%.Confusion matrix shows that overall accuracy(OA)is 91.4%and the kappa coefficient(Kappa)is 0.755.These values are significantly improved compared to the traditional Maximum Likelihood classification(MLC)and Random Forest classification(RFC)which rely on spectral features.The results demonstrate that the identification accuracy can be improved by integrating spectral and temporal information.Since the identification of winter wheat is performed in the space corresponding to each MODIS pixel,the influence of differences of environmental conditions is greatly reduced.This advantage allows the proposed method to be effectively applied in other places.
基金the National Natural Science Foundation of China (41171281, 40701120)the Beijing Nova Program, China (2008B33)
文摘Estimating wheat grain protein content by remote sensing is important for assessing wheat quality at maturity and making grains harvest and purchase policies. However, spatial variability of soil condition, temperature, and precipitation will affect grain protein contents and these factors usually cannot be monitored accurately by remote sensing data from single image. In this research, the relationships between wheat protein content at maturity and wheat agronomic parameters at different growing stages were analyzed and multi-temporal images of Landsat TM were used to estimate grain protein content by partial least squares regression. Experiment data were acquired in the suburb of Beijing during a 2-yr experiment in the period from 2003 to 2004. Determination coefficient, average deviation of self-modeling, and deviation of cross- validation were employed to assess the estimation accuracy of wheat grain protein content. Their values were 0.88, 1.30%, 3.81% and 0.72, 5.22%, 12.36% for 2003 and 2004, respectively. The research laid an agronomic foundation for GPC (grain protein content) estimation by multi-temporal remote sensing. The results showed that it is feasible to estimate GPC of wheat from multi-temporal remote sensing data in large area.
文摘Land subsidence is a major factor that affects metro line (ML) stability. In this study, an improved multi- temporal interferometric synthetic aperture radar (InSAR) (MTI) method to detect land subsidence near MLs is presented. In particular, our multi-temporal InSAR method provides surface subsidence measurements with high observation density. The MTI method tracks both point-like targets and distributed targets with temporal radar back- scattering steadiness. First, subsidence rates at the point targets with low-amplitude dispersion index (ADI) values are extracted by applying a least-squared estimator on an optimized freely connected network. Second, to reduce error propagation, the pixels with high-ADI values are classified into several groups according to ADI intervals and processed using a Pearson correlation coefficient and hierarchical analysis strategy to obtain the distributed targets. Then, nonlinear subsidence components at all point-like and distributed targets are estimated using phase unwrapping and spatiotemporal filtering on the phase residuals. The proposed MTI method was applied to detect land subsidence near MLs of No. 1 and 3 in the Baoshan district of Shanghai using 18 TerraSAR-X images acquired between April 21, 2008 and October 30, 2010. The results show that the mean subsidence rates of the stations distributed along the two MLs are -12.9 and -14.0 ram/year. Furthermore, three subsidence funnels near the MLs are discovered through the hierarchical analysis. The testing results demonstrate the satisfactory capacity of the proposed MTI method in providing detailed subsidence information near MLs.
基金Knowledge Innovation Project of CAS No.KZCX02-308+1 种基金 The NASA Land Use and Land Cover Change Program No.NAG5-11160
文摘This study conducted computer-aided image analysis of land use and land cover in Xilin River Basin, Inner Mongolia, using 4 sets of Landsat TM/ETM+ images acquired on July 31, 1987, August 11, 1991, September 27, 1997 and May 23, 2000, respectively. Primarily, 17 sub-class land cover types were recognized, including nine grassland types at community level: F.sibiricum steppe, S.baicalensis steppe, A.chinensis+ forbs steppe, A.chinensis+ bunchgrass steppe, A.chinensis+ Ar.frigida steppe, S.grandis+ A.chinensis steppe, S.grandis+ bunchgrass steppe, S.krylavii steppe, Ar.frigida steppe and eight non-grassland types: active cropland, harvested cropland, urban area, wetland, desertified land, saline and alkaline land, cloud, water body + cloud shadow. To eliminate the classification error existing among different sub-types of the same gross type, the 17 sub-class land cover types were grouped into five gross types: meadow grassland, temperate grassland, desert grassland, cropland and non-grassland. The overall classification accuracy of the five land cover types was 81.0% for 1987, 81.7% for 1991, 80.1% for 1997 and 78.2% for 2000.
文摘Background: The Shelduck (Tadorna tadorna) is a characteristic waterbird species of inland wetlands in northeastern Algeria. Its wintering behavior in relation to changes of local abundances and foraging group density is poorly known. Objectives: This study aims at monitoring patterns of diurnal activities and the variation of behavioral time-budgets in relation to numbers of wintering Shelducks. We investigate temporal variations of diurnal activities across multipletime scales and consider their interrelationships. Methods: Assessments of local population abundance were weekly surveyed during two wintering seasons (2010– 2012), whereas diurnal activities (feeding, sleeping, swimming, preening, loafing, flying, courtship, and antagonism) were studied three times a month during seven hours (08:00–16:00) using the Scan method. Time budget variations of each behavioral activity were tested using nested ANOVAs following multiple time scales. Generalized linear mixedeffects models (GLMM) tested whether variations in diurnal activities were density-dependent. Results: During the wintering season, Shelduck’s numbers followed a bell-shaped trend, which indicated that the species was typically a wintering migrant in Sabkha Djendli. The first individuals arrived onsite in October–November then numbers reached a peak in January (up to 2400 individuals in 2012) with steady density during December–February, afterward individuals left the site progressively until late April when the site is deserted. During both wintering seasons, diurnal activities were dominated by feeding (60%), followed by sleeping (12%) then swimming and preening with 9% and 8%, respectively. The rest of the activities (loafing, flying, courtship and antagonistic behaviors) had low proportions of time budget. ANOVAs showed that activity time budgets varied significantly following multiple time scales (year, season, month, day, semi-hour). Time budgets of diurnal activities during each wintering season were significantly interrelated. Correlations patterns between the two seasons were similar. GLMMs revealed that the variations of diurnal activities were not density-dependent, except for preening and swimming. Conclusion: During the wintering season, habitats of Sabkha Djendli are important for waterbirds, including the Shelduck that used the lake mainly for food-foraging and resting. The 2400 individuals censused in mid-winter are important locally and at the North African scale. This stresses the need to strengthen the protection status of this wetland and mitigate degradation sources that threaten wintering waterfowl.
文摘Satellite images are considered reliable data that preserve land cover information. In the field of remote sensing, these images allow relevant analyses of changes in space over time through the use of computer tools. In this study, we have applied the “discriminant” change detection algorithm. In this, we have verified its effectiveness in multi-temporal studies. Also, we have determined the change in forest dynamics in the Ikongo district of Madagascar between 2000 and 2015. During the treatments, we have used the Landsat TM satellite images for the years 2000, 2005 and 2010 as well as ETM+ for 2015. Thus, analyses carried out have allowed us to note that between 2000-2005, 1.4% of natural forest disappeared. And, between 2005-2010, forests degradation<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">was 1.8%. Also, between 2010-2015, about 0.5% of the natural forest conserved in 2010 disappeared. Furthermore, we have found that the discriminant algorithm is considerably efficient in terms of monitoring the dynamics of forest cover change.</span></span></span>
基金Supported by the Natural Science Foundation of Hubei Province(2012FFC034,2014CFC1100)
文摘In this paper, we present a distributed multi-level cache system based on cloud storage, which is aimed at the low access efficiency of small spatio-temporal data files in information service system of Smart City. Taking classification attribute of small spatio-temporal data files in Smart City as the basis of cache content selection, the cache system adopts different cache pool management strategies in different levels of cache. The results of experiment in prototype system indicate that multi-level cache in this paper effectively increases the access bandwidth of small spatio-temporal files in Smart City and greatly improves service quality of multiple concurrent access in system.
基金Projects(41601424,41171351)supported by the National Natural Science Foundation of ChinaProject(2012CB719906)supported by the National Basic Research Program of China(973 Program)+2 种基金Project(14JJ1007)supported by the Hunan Natural Science Fund for Distinguished Young Scholars,ChinaProject(2017M610486)supported by the China Postdoctoral Science FoundationProjects(2017YFB0503700,2017YFB0503601)supported by the National Key Research and Development Foundation of China
文摘Climate sequences can be applied to defining sensitive climate zones, and then the mining of spatio-temporal teleconnection patterns is useful for learning from the past and preparing for the future. However, scale-dependency in this kind of pattern is still not well handled by existing work. Therefore, in this study, the multi-scale regionalization is embedded into the spatio-temporal teleconnection pattern mining between anomalous sea and land climatic events. A modified scale-space clustering algorithm is first developed to group climate sequences into multi-scale climate zones. Then, scale variance analysis method is employed to identify climate zones at characteristic scales, indicating the main characteristics of geographical phenomena. Finally, by using the climate zones identified at characteristic scales, a time association rule mining algorithm based on sliding time windows is employed to discover spatio-temporal teleconnection patterns. Experiments on sea surface temperature, sea level pressure, land precipitation and land temperature datasets show that many patterns obtained by the multi-scale approach are coincident with prior knowledge, indicating that this method is effective and reasonable. In addition, some unknown teleconnection patterns discovered from the multi-scale approach can be further used to guide the prediction of land climate.
文摘As landmass of the world is covered by vegetation, taking into account phenology when performing land cover classification may yield more accurate maps. The availability of no-cost Moderate Resolution Imaging Spectrometer (MODIS) NDVI dataset that provides high-quality continuous time series data is representing a potentially significant source of land cover information especially for detection natural forest distribution. This study intends to assess the advantage of MODIS 250 m Normalized Difference Vegetation Index (NDVI) multi-temporal imagery for detection of densely vegetation cover distribution in Java and then for identification of remaining natural forest in Java from densely vegetation cover distribution. Result of this study successfully demonstrated the contribution of MODIS NDVI 250 m for detection the natural forest distribution in Java Island. Therefore, the approach described herein provided classification accuracy comparable to those of maps derived from higher resolution data and will be a viable alternative for regional or national classifications.
文摘Creation of a spectral signature reflectance data, which aids in the identification of the crops is important in determining size and location crop fields. Therefore, we developed a spectral signature reflectance for the vegetative stage of the green gram (Vigna. radiata L.) over 5 years (2020, 2018, 2017, 2015, and 2013) for agroecological zone IV and V in Kenya. The years chosen were those whose satellite resolution data was available for the vegetative stage of crop growth in the short rain season (October, November, December (OND)). We used Landsat 8 OLI satellite imagery in this study. Cropping pattern data for the study area were evaluated by calculating the Top of Atmosphere reflectance. Farms geo-referencing, along with field data collection, was undertaken to extract Top of Atmosphere reflectance for bands 2, 3, 4 and 7. We also carried a spectral similarity assessment on the various cropping patterns. The spectral reflectance ranged from 0.07696 - 0.09632, 0.07466 - 0.09467, 0.0704047 - 0.12188,0.19822 - 0.24387, 0.19269 - 0.26900, and 0.11354 - 0.20815 for bands 2, 3, 4, 5, 6, and 7 for green gram, respectively. The results showed a dissimilarity among the various cropping patterns. The lowest dissimilarity index was 0.027 for the maize (Zea mays L.) bean (Phaseolus vulgaris) versus the maize-pigeon pea (Cajanus cajan) crop, while the highest dissimilarity index was 0.443 for the maize bean versus the maize bean and cowpea cropping patterns. High crop dissimilarities experienced across the cropping pattern through these spectral reflectance values confirm that the green gram was potentially identifiable. The results can be used in crop type identification in agroecological lower midland zone IV and V for mung bean management. This study therefore suggests that use of reflectance data in remote sensing of agricultural ecosystems would aid in planning, management, and crop allocation to different ecozones.
基金Under the auspices the Fundamental Research Funds for the Central Universities,China(No.2017TD-26)the Plan for Changbai Mountain Scholars of Jilin Province,China(No.JJLZ[2015]54)
文摘The Multi-angle imaging spectroradiometer(MISR) land-surface(LS) bidirectional reflectance factor(BRF) product(MILS_BRF) has unique semi-simultaneous multi-angle sampling and global coverage. However, unlike on-satellite observations, the spatio-temporal characteristics of MILS_BRF data have rarely been explicitly and comprehensively analysed. Results from 5-yr(2011–2015) of MILS_BRF dataset from a typical region in central Northeast Asia as the study area showed that the monthly area coverage as well as MILS_BRF data quantity varies significantly, from the highest in October(99.05%) through median in June/July(78.09%/75.21%) to lowest in January(18.97%), and a large data-vacant area exists in the study area during four consecutive winter months(December through March). The data-vacant area is mainly composed of crop lands and cropland/natural vegetation mosaic. The amount of data within the principal plane(PP)±30°(nPP) or cross PP ±30°(nCP), varies intra-annually with significant differences from different view zeniths or forward/backward scattering directions. For example, multiple off-nadir cameras have nPP but no nCP data for up to six months(September through February), with the opposite occurring in June and July. This study provides explicit and comprehensive information about the spatio-temporal characteristics of product coverage and observation geometry of MILS_BRF in the study area. Results provide required user reference information for MILS_BRF to evaluate performance of BRDF models or to compare with other satellite-derived BRF or albedo products. Comparing this final product to on-satellite observations, what was found here reveals a new perspective on product spatial coverage and observation geometry for multi-angle remote sensing.
基金supported by the National Natural Science Foundation of China(11332006,11272233,and 11411130150)the National Basic Research Programm of China(2012CB720101)
文摘The spatial-temporal evolution of coherent structures (CS) is significant for turbulence control and drag re- duction. Among the CS, low and high speed streak structures show typical burst phenomena. The analysis was based on a time series of three-dimensional and three-component (3D-3C) velocity fields of the flat plate turbulent boundary layer (TBL) measured by a Tomographic and Time-resolved PIV (Tomo TRPIV) system. Using multi-resolution wavelet transform and conditional sampling method, we extracted the intrinsic topologies and found that the streak structures appear in bar-like patterns. Furthermore, we seized locations and velocity information of transient CS, and then calculated the propagation velocity of CS based on spatial-temporal cross-correlation scanning. This laid a foundation for further studies on relevant dynamics properties.
文摘Precision Agriculture (PA) recognizes and manages intra-field spatial variability to increase profitability and reduced environmental impact. Site Specific Crop Management (SSCM), a form of PA, subdivides a cropping field into uniformly manageable zones, based on quantitative measurement of yield limiting factors. In Mediterranean environments, the spatial and temporal yield variability of rain-fed cropping system is strongly influenced by the spatial variability of Plant Available Water-holding Capacity (PAWC) and its strong interaction with temporally variable seasonal rainfall. The successful adoption of SSCM depends on the understanding of both spatial and temporal variabilities in cropping fields. Remote sensing phenological metrics provide information about the biophysical growth conditions of crops across fields. In this paper, we examine the potential of phenological metrics to assess the spatial and temporal crop yield variability across a wheat cropping field at Minnipa, South Australia. The Minnipa field was classified into three management zones using prolonged observations including soil assessment and multiple year yield data. The main analytical steps followed in this study were: calculation of the phenological metrics using time series NDVI data from Moderate Resolution Imaging Spectroscope (MODIS) for 15 years (2001-2015);producing spatial trend and temporal variability maps of phenological metrics;and finally, assessment of association between the spatial patterns and temporal variability of the metrics with management zones of the cropping field. The spatial trend of the seasonal peak NDVI metric showed significant association with the management zone pattern. In terms of temporal variability, Time-integrated NDVI (TINDVI) showed higher variability in the “good” zone compared with the “poor” zone. This indicates that the magnitude of the seasonal peak is more sensitive to soil related factors across the field, whereas TINDVI is more sensitive to seasonal variability. The interpretation of the association between phenological metrics and the management zone site conditions was discussed in relation to soil-climate interaction. The results demonstrate the potential of the phenological metrics to assess the spatial and temporal variability across cropping fields and to understand the soil-climate interaction. The approach presented in this paper provides a pathway to utilize phenological metrics for precision agricultural management application.
文摘为了提升运动想象脑电(MI-EEG)信号的分类精度,提出多尺度滑窗注意力时序卷积网络(MSWATCN),充分挖掘MI-EEG信号的时空信息.结合多尺度双流分组卷积、滑动窗口多头注意力机制和窗口化时间卷积模块,实现对MI-EEG信号复杂时空特性的精准解码.利用多尺度卷积模块提取信号的底层时空特征,通过滑动窗口注意力机制聚焦局部关键特征,突出对分类任务重要的信息.窗口化时间卷积模块通过建模时间序列中的长期依赖关系,增强模型处理时序信息的能力.实验结果表明,MSWATCN在BCI Competition IV 2a和2b数据集上的分类准确率和一致性优于对比网络和基准模型.