Precise coseismic displacements in earthquake/tsunamic early warning are necessary to characterize earthquakes in real time in order to enable decision-makers to issue alerts for public safety.Real-time global navigat...Precise coseismic displacements in earthquake/tsunamic early warning are necessary to characterize earthquakes in real time in order to enable decision-makers to issue alerts for public safety.Real-time global navigation satellite systems(GNSSs)have been a valuable tool in monitoring seismic motions,allowing permanent displacement computation to be unambiguously achieved.As a valuable tool presented to the seismic commu nity,the GSeisRT software developed by Wuhan University(China)can realize multi-GNSS precise point positioning with ambiguity resolution(PPP-AR)and achieve centimeterlevel to sub-centimeter-level precision in real time.While the stable maintenance of a global precise point positioning(PPP)service is challenging,this software is capable of estimating satellite clocks and phase biases in real time using a regional GNSS network.This capability makes GSeisRT especially suitable for proprietary GNSS networks and,more importantly,the highest possible positio ning precision and reliability can be obtained.According to real-time results from the Network of the Americas,the mean root mean square(RMS)errors of kinematic PPP-AR over a 24 h span are as low as 1.2,1.3,and 3.0 cm in the east,north,and up components,respectively.Within the few minutes that span a typical seismic event,a horizontal displacement precision of 4 mm can be achieved.The positioning precision of the GSeisRT regional PPP/PPP-AR is 30%-40%higher than that of the global PPP/PPP-AR.Since 2019,GSeisRT has successfully recorded the static,dynamic,and peak ground displacements for the 2020Oaxaca,Mexico moment magnitude(Mw)7.4 event;the 2020 Lone Pine,California Mw 5.8 event;and the 2021 Qinghai,China Mw 7.3 event in real time.The resulting immediate magnitude estimates have an error of around 0.1 only.The GSeisRT software is open to the scientific community and has been applied by the China Earthquake Ne tworks Center,the EarthScope Consortium of the United States,the National Seismological Center of Chile,Institute of Geological and Nuclear Sciences Limited(GNS Science Te PūAo)of New Zealand,and the Geospatial Information Agency of Indonesia.展开更多
[Objective] The aim was to extract red tide information in Haizhou Bay on the basis of multi-source remote sensing data.[Method] Red tide in Haizhou Bay was studied based on multi-source remote sensing data,such as IR...[Objective] The aim was to extract red tide information in Haizhou Bay on the basis of multi-source remote sensing data.[Method] Red tide in Haizhou Bay was studied based on multi-source remote sensing data,such as IRS-P6 data on October 8,2005,Landsat 5-TM data on May 20,2006,MODIS 1B data on October 6,2006 and HY-1B second-grade data on April 22,2009,which were firstly preprocessed through geometric correction,atmospheric correction,image resizing and so on.At the same time,the synchronous environment monitoring data of red tide water were acquired.Then,band ratio method,chlorophyll-a concentration method and secondary filtering method were adopted to extract red tide information.[Result] On October 8,2005,the area of red tide was about 20.0 km2 in Haizhou Bay.There was no red tide in Haizhou bay on May 20,2006.On October 6,2006,large areas of red tide occurred in Haizhou bay,with area of 436.5 km2.On April 22,2009,red tide scattered in Haizhou bay,and its area was about 10.8 km2.[Conclusion] The research would provide technical ideas for the environmental monitoring department of Lianyungang to implement red tide forecast and warning effectively.展开更多
高放废物地质处置特别是地下实验室研发过程中的多源数据融合挖掘研究具有重要意义(Wang Ju et al.,2018)。然而,目前阶段尚未实现对研发过程中多源数据的融合挖掘与二次应用。针对上述问题,从地下实验室多源监测数据特点出发,在确定地...高放废物地质处置特别是地下实验室研发过程中的多源数据融合挖掘研究具有重要意义(Wang Ju et al.,2018)。然而,目前阶段尚未实现对研发过程中多源数据的融合挖掘与二次应用。针对上述问题,从地下实验室多源监测数据特点出发,在确定地下实验室多源监测数据模型构建的基础上,结合深度学习技术,初步构建了地下实验室多源监测数据融合技术方法,并初步开展了数据融合设计,为处置库场址评价和安全评价等综合评价工作提供了新的研究思路。展开更多
基金funded by National Science Foundation of China(42025401)National Key Research and Development Program of China(2022YFB3903800)。
文摘Precise coseismic displacements in earthquake/tsunamic early warning are necessary to characterize earthquakes in real time in order to enable decision-makers to issue alerts for public safety.Real-time global navigation satellite systems(GNSSs)have been a valuable tool in monitoring seismic motions,allowing permanent displacement computation to be unambiguously achieved.As a valuable tool presented to the seismic commu nity,the GSeisRT software developed by Wuhan University(China)can realize multi-GNSS precise point positioning with ambiguity resolution(PPP-AR)and achieve centimeterlevel to sub-centimeter-level precision in real time.While the stable maintenance of a global precise point positioning(PPP)service is challenging,this software is capable of estimating satellite clocks and phase biases in real time using a regional GNSS network.This capability makes GSeisRT especially suitable for proprietary GNSS networks and,more importantly,the highest possible positio ning precision and reliability can be obtained.According to real-time results from the Network of the Americas,the mean root mean square(RMS)errors of kinematic PPP-AR over a 24 h span are as low as 1.2,1.3,and 3.0 cm in the east,north,and up components,respectively.Within the few minutes that span a typical seismic event,a horizontal displacement precision of 4 mm can be achieved.The positioning precision of the GSeisRT regional PPP/PPP-AR is 30%-40%higher than that of the global PPP/PPP-AR.Since 2019,GSeisRT has successfully recorded the static,dynamic,and peak ground displacements for the 2020Oaxaca,Mexico moment magnitude(Mw)7.4 event;the 2020 Lone Pine,California Mw 5.8 event;and the 2021 Qinghai,China Mw 7.3 event in real time.The resulting immediate magnitude estimates have an error of around 0.1 only.The GSeisRT software is open to the scientific community and has been applied by the China Earthquake Ne tworks Center,the EarthScope Consortium of the United States,the National Seismological Center of Chile,Institute of Geological and Nuclear Sciences Limited(GNS Science Te PūAo)of New Zealand,and the Geospatial Information Agency of Indonesia.
基金Supported by Science and Technology Project of Lianyungang City(SH0917)
文摘[Objective] The aim was to extract red tide information in Haizhou Bay on the basis of multi-source remote sensing data.[Method] Red tide in Haizhou Bay was studied based on multi-source remote sensing data,such as IRS-P6 data on October 8,2005,Landsat 5-TM data on May 20,2006,MODIS 1B data on October 6,2006 and HY-1B second-grade data on April 22,2009,which were firstly preprocessed through geometric correction,atmospheric correction,image resizing and so on.At the same time,the synchronous environment monitoring data of red tide water were acquired.Then,band ratio method,chlorophyll-a concentration method and secondary filtering method were adopted to extract red tide information.[Result] On October 8,2005,the area of red tide was about 20.0 km2 in Haizhou Bay.There was no red tide in Haizhou bay on May 20,2006.On October 6,2006,large areas of red tide occurred in Haizhou bay,with area of 436.5 km2.On April 22,2009,red tide scattered in Haizhou bay,and its area was about 10.8 km2.[Conclusion] The research would provide technical ideas for the environmental monitoring department of Lianyungang to implement red tide forecast and warning effectively.
文摘高放废物地质处置特别是地下实验室研发过程中的多源数据融合挖掘研究具有重要意义(Wang Ju et al.,2018)。然而,目前阶段尚未实现对研发过程中多源数据的融合挖掘与二次应用。针对上述问题,从地下实验室多源监测数据特点出发,在确定地下实验室多源监测数据模型构建的基础上,结合深度学习技术,初步构建了地下实验室多源监测数据融合技术方法,并初步开展了数据融合设计,为处置库场址评价和安全评价等综合评价工作提供了新的研究思路。