In the present study the MOFLP models have been developed for the optimal cropping pattern planning which maximizes the four objectives such as Net Benefits (NB), Crop Production (CP), Employment Generation (EG) and M...In the present study the MOFLP models have been developed for the optimal cropping pattern planning which maximizes the four objectives such as Net Benefits (NB), Crop Production (CP), Employment Generation (EG) and Manure Utilization (MU) under conflicting situation and also, for maximization of Releases for Irrigation (RI) and Releases for Power (RP) simultaneously under uncertainty by considering the fuzziness in the objective functions. The developed models have been applied using the LINGO 13 (Language for Interactive General Optimization) optimization software to the case study of the Jayakwadi Project Stage-II across Sindhphana River, in the State of Maharashtra India. The various constraints have been taken into consideration like sowing area, affinity to crop, labour availability, manure availability, water availability for optimal cropping pattern planning. Similarly constraints to find the optimal reservoir operating policy are releases for power and turbine capacity, irrigation demand, reservoir storage capacity, reservoir storage continuity. The level of satisfaction for a compromised solution of optimal cropping pattern planning for four conflicting objectives under fuzzy environment is worked out to be λ = 0.68. The MOFLP compromised solution provides NB = 1088.46 (Million Rupees), CP = 241003 (Tons), EG = 23.13 (Million Man days) and MU = 111454.70 (Tons) respectively. The compromised solution for optimal operation of multi objective reservoir yields the level of satisfaction (λ) = 0.533 for maximizing the releases for irrigation and power simultaneously by satisfying the constraint of the system under consideration. The compromised solution provides the optimal releases, i.e. RI = 348.670 Mm3 and RP = 234.285 Mm3 respectively.展开更多
In this paper, a multi objective, multireservoir operation model is proposed using Genetic algorithm (GA) under fuzzy environment. A monthly Multi Objective Genetic Algorithm Fuzzy Optimization (MOGAFU-OPT) model for ...In this paper, a multi objective, multireservoir operation model is proposed using Genetic algorithm (GA) under fuzzy environment. A monthly Multi Objective Genetic Algorithm Fuzzy Optimization (MOGAFU-OPT) model for the present study is developed in ‘C’ Language. The GA parameters i.e. population size, number of generations, crossover probability, and mutation probability are decided based on optimized val-ues of fitness function. The GA operators adopted are stochastic remainder selection, one point crossover and binary mutation. Initially the model is run for maximization of irrigation releases. Then the model is run for maximization of hydropower production. These objectives are fuzzified by assuming a linear membership function. These fuzzified objectives are simultaneously maximized by defining level of satisfaction (?) and then maximizing it. This approach is applied to a multireservoir system in Godavari river sub basin in Ma-harashtra State, India. Problem is formulated with 4 reservoirs and a barrage. The optimal operation policy for maximization of irrigation releases, maximization of hydropower production and maximization of level of satisfaction is presented for existing demand in command area. This optimal operation policy so deter-mined is compared with the actual average operation policy for Jayakwadi Stage-I reservoir.展开更多
The objective of the present study is to develop the irrigation planning model and to apply the same in the form of Two-Phase Multi Objective Fuzzy Linear Programming (TPMOFLP) approach for crop planning in command ar...The objective of the present study is to develop the irrigation planning model and to apply the same in the form of Two-Phase Multi Objective Fuzzy Linear Programming (TPMOFLP) approach for crop planning in command area of Jayakwadi Project Stage I, Maharashtra State, India. The development of TPMOFLP model is on the basis of various Linear Programming (LP) models and Multi Objective Fuzzy Linear Programming (MOFLP) models, these models have been applied for maximization of the Net Benefits (NB), Crop production (CP), Employment Generation (EG) and Manure Utilization (MU) respectively. The significant increase in the value of level of satisfaction (λ) has been found from 0.58 to 0.65 by using the TPMOFLP approach as compare to that of MOFLP model based on maxmin approach. The two-phase approach solution provides NB = 1503.56 Million Rupees, CP = 335729.30 Tons, EG = 29.74 Million Man days and MU = 160233.70 Tons respectively. The proposed model will be helpful for the Decision Maker (DM) to take a decision under conflicting situation while planning for different conflicting objectives simultaneously and has potential to find out an integrated irrigation planning with prime consideration for economic, social and environmental issue.展开更多
Renewable sources of energy are being integrated into the power grids due to their economic and environmental merits as compared with the traditional fossil-fuel-fired power generation. However, their significant pene...Renewable sources of energy are being integrated into the power grids due to their economic and environmental merits as compared with the traditional fossil-fuel-fired power generation. However, their significant penetration demands a thorough research in terms of system reliability, that is, security and stability. In this paper, Security Constrained Multi Objective Dynamic Economic Dispatch (SCMODED) problem considering cubic thermal cubic cost function, wind, solar penetration, cubic transmission power losses and cubic emissions cost function as objectives is first formulated. Both HVDC and HVAC lines are included in their formulation. Various approaches like probabilistic load flow (PLF), scenario based method, participation factors and Harmony Search algorithm etc. are employed in the solution process. Security and stability effects of renewable energy (RE) penetration are investigated and analyzed. The simulated results reveal that RE penetration leads to reduced cost and emissions and increased security concerns. Further, there is increased power system instability and hence increased load shedding so as to help the power system attain steady state stability. Inclusion of HVDC lines facilitates rapid and fast control to increase the transient stability limit by the action of the converter ignition angle (CIA) and converter extinction angle (CEA).展开更多
In this paper we discuss about infeasibility diagnosis and infeasibility resolution, when the constraint method is used for solving multi objective linear programming problems. We propose an algorithm for resolution o...In this paper we discuss about infeasibility diagnosis and infeasibility resolution, when the constraint method is used for solving multi objective linear programming problems. We propose an algorithm for resolution of infeasibility, which is a combination of interactive, weighting and constraint methods.Numerical examples are provided to illustrate the techniques developed.展开更多
The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus...The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.展开更多
The ease of accessing a virtually unlimited pool of resources makes Infrastructure as a Service (IaaS) clouds an ideal platform for running data-intensive workflow applications comprising hundreds of computational tas...The ease of accessing a virtually unlimited pool of resources makes Infrastructure as a Service (IaaS) clouds an ideal platform for running data-intensive workflow applications comprising hundreds of computational tasks. However, executing scientific workflows in IaaS cloud environments poses significant challenges due to conflicting objectives, such as minimizing execution time (makespan) and reducing resource utilization costs. This study responds to the increasing need for efficient and adaptable optimization solutions in dynamic and complex environments, which are critical for meeting the evolving demands of modern users and applications. This study presents an innovative multi-objective approach for scheduling scientific workflows in IaaS cloud environments. The proposed algorithm, MOS-MWMC, aims to minimize total execution time (makespan) and resource utilization costs by leveraging key features of virtual machine instances, such as a high number of cores and fast local SSD storage. By integrating realistic simulations based on the WRENCH framework, the method effectively dimensions the cloud infrastructure and optimizes resource usage. Experimental results highlight the superiority of MOS-MWMC compared to benchmark algorithms HEFT and Max-Min. The Pareto fronts obtained for the CyberShake, Epigenomics, and Montage workflows demonstrate closer proximity to the optimal front, confirming the algorithm’s ability to balance conflicting objectives. This study contributes to optimizing scientific workflows in complex environments by providing solutions tailored to specific user needs while minimizing costs and execution times.展开更多
For dealing with the multi-objective optimization problems of parametric design for aircraft, a novel hybrid parallel multi-objective tabu search (HPMOTS) algorithm is used. First, a new multi-objective tabu search ...For dealing with the multi-objective optimization problems of parametric design for aircraft, a novel hybrid parallel multi-objective tabu search (HPMOTS) algorithm is used. First, a new multi-objective tabu search (MOTS) algorithm is proposed. Comparing with the traditional MOTS algorithm, this proposed algorithm adds some new methods such as the combination of MOTS algorithm and "Pareto solution", the strategy of "searching from many directions" and the reservation of good solutions. Second, this article also proposes the improved parallel multi-objective tabu search (PMOTS) algorithm. Finally, a new hybrid algorithm--HPMOTS algorithm which combines the PMOTS algorithm with the non-dominated sorting-based multi-objective genetic algorithm (NSGA) is presented. The computing results of these algorithms are compared with each other and it is shown that the optimal result can be obtained by the HPMOTS algorithm and the computing result of the PMOTS algorithm is better than that of MOTS algorithm.展开更多
Cropping structure has a close relationship with the optimal allocation of agricultural water resources. Based on the analysis of the relationship between agricultural water resources and sustainable development, this...Cropping structure has a close relationship with the optimal allocation of agricultural water resources. Based on the analysis of the relationship between agricultural water resources and sustainable development, this paper presents a multi objective fuzzy optimization model for cropping structure and water allocation, which overcomes the shortcoming of current models that only considered the economic objective,and ignored the social and environmental objectives. During the process, a new method named fuzzy deciding weight is developed to decide the objective weight. A case study shows that the model is reliable, the method is simple and objective, and the results are reasonable. This model is useful for agricultural management and sustainable development.展开更多
Energy consumption in agricultural products and its environmental damages has increased in recent centuries.Life cycle assessment(LCA)has been introduced as a suitable tool for evaluation environmental impacts related...Energy consumption in agricultural products and its environmental damages has increased in recent centuries.Life cycle assessment(LCA)has been introduced as a suitable tool for evaluation environmental impacts related to a product over its life cycle.In this study,optimization of energy consumption and environmental impacts of chickpea production was conducted using data envelopment analysis(DEA)and multi objective genetic algorithm(MOGA)techniques.Data were collected from 110 chickpea production enterprises using a face to face questionnaire in the cropping season of 2014-2015.The results of optimization revealed that,when applying MOGA,optimum energy requirement for chickpea production was significantly lower compared to application of DEA technique;so that,total energy requirement in optimum situation was found to be 31511.72 and 27570.61 MJ ha^-1 by using DEA and MOGA techniques,respectively;showing a reduction by 5.11%and 17%relative to current situation of energy consumption.Optimization of environmental impacts by application of MOGA resulted in reduction of acidification potential(ACP),eutrophication potential(EUP),global warming potential(GWP),human toxicity potential(HTP)and terrestrial ecotoxicity potential(TEP)by 29%,23%,10%,6%and 36%,respectively.MOGAwas capable of reducing the energy consumption from machinery,farmyard manure(FYM)diesel fuel and nitrogen fertilizer(the mostly contributed inputs to the environmental emissions)by 59%,28.5%,24.58%and 11.24%,respectively.Overall,the MOGA technique showed a superior performance relative to DEA approach for optimizing energy inputs and reducing environmental impacts of chickpea production system.展开更多
A transonic airfoil designed by means of classical point-optimization may result in its dramatically inferior performance under off-design conditions. To overcome this shortcoming, robust design is proposed to find ou...A transonic airfoil designed by means of classical point-optimization may result in its dramatically inferior performance under off-design conditions. To overcome this shortcoming, robust design is proposed to find out the optimal profile of an airfoil to maintain its performance in an uncertain environment. The robust airfoil optimization is aimed to minimize mean values and variances of drag coefficients while satisfying the lift and thickness constraints over a range of Mach numbers. A multi-objective estimation of distribution algorithm is applied to the robust airfoil optimization on the base of the RAE2822 benchmark airfoil. The shape of the airfoil is obtained through superposing ten Hick-Henne shape functions upon the benchmark airfoil. A set of design points is selected according to a uniform design table for aerodynamic evaluation. A Kriging model of drag coefficient is constructed with those points to reduce computing costs. Over the Mach range from 0.7 to 0.8, the airfoil generated by the robust optimization has a configuration characterized by supercritical airfoil with low drag coefficients. The small fluctuation in its drag coefficients means that the performance of the robust airfoil is insensitive to variation of Mach number.展开更多
In this paper,we propose a hybrid algorithm for finding a set of non dominated solutions of a multi objective optimization problem.In the proposed algorithm,a local search procedure is applied to each solution gener...In this paper,we propose a hybrid algorithm for finding a set of non dominated solutions of a multi objective optimization problem.In the proposed algorithm,a local search procedure is applied to each solution generated by genetic operations.The aim of the proposed algorithm is not to determine a single final solution but to try to find all the non dominated solutions of a multi objective optimization problem.The choice of the final solution is left to the decision makers preference.High search ability of the proposed algorithm is demonstrated by computer simulation.展开更多
A class of interactive multi objective decision making method by means of evaluation criterion is proposed for problems with linear value function,in which case,the decision maker(DM) usually has only unwhole infor...A class of interactive multi objective decision making method by means of evaluation criterion is proposed for problems with linear value function,in which case,the decision maker(DM) usually has only unwhole information of weights for objectives. The concept of fault measure of the evaluation criterion is proposed to measure the deviation of the evaluation criterion from the DMs preference structure.The approach to obtain an upper boundary of fault measure of an evaluation criterion,and the approach to modify the evaluation criterion to be one with smaller fault measure,and the approach to obtain a pre optimized objective set by evaluation criterion with certain fault measure are also proposed.展开更多
In this paper, for multi objective decision making, the defects on the commonly used interactive methods based on the satisfactoriness criterion is studied. Then a class of two stage interactive method based on the...In this paper, for multi objective decision making, the defects on the commonly used interactive methods based on the satisfactoriness criterion is studied. Then a class of two stage interactive method based on the satisfactoriness criterion is proposed for improvement with the satisfactoriness criterion being determined through the collection of the decision makers preference information. An application example is presented for illustration of applicability of the method.展开更多
Agriculture plays a vital role in the food production process that occupies nearly one-third of the total surface of the earth.Rice is propagated from the seeds of paddy and it is a stable food almost used byfifty per...Agriculture plays a vital role in the food production process that occupies nearly one-third of the total surface of the earth.Rice is propagated from the seeds of paddy and it is a stable food almost used byfifty percent of the total world population.The extensive growth of the human population alarms us to ensure food security and the country should take proper food steps to improve the yield of food grains.This paper concentrates on improving the yield of paddy by predicting the factors that influence the growth of paddy with the help of Evolutionary Computation Techniques.Most of the researchers used to relay on historical records of meteorological parameters to predict the yield of paddy.There is a lack in analyzing the day to day impact of meteorological parameters such as direction of wind,relative humidity,Instant Wind Speed in paddy cultivation.The real time meteorological data collected and analysis the impact of weather parameters from the day of paddy sowing to till the last day of paddy harvesting with regular time series.A Robust Optimized Artificial Neural Network(ROANN)Algorithm with Genetic Algorithm(GA)and Multi Objective Particle Swarm Optimization Algorithm(MOPSO)proposed to predict the factors that to be concentrated by farmers to improve the paddy yield in cultivation.A real time paddy data collected from farmers of Tamilnadu and the meteorological parameters were matched with the cropping pattern of the farmers to construct the database.The input parameters were optimized either by using GA or MOPSO optimization algorithms to reconstruct the database.Reconstructed database optimized by using Artificial Neural Network Back Propagation Algorithm.The reason for improving the growth of paddy was identified using the output of the Neural Network.Performance metrics such as Accuracy,Error Rate etc were used to measure the performance of the proposed algorithm.Comparative analysis made between ANN with GA and ANN with MOPSO to identify the recommendations for improving the paddy yield.展开更多
The aim of this study is to present an alternative approach for solving the multi-objective posynomial geometric programming problems. The proposed approach minimizes the weighted objective function comes from multi-o...The aim of this study is to present an alternative approach for solving the multi-objective posynomial geometric programming problems. The proposed approach minimizes the weighted objective function comes from multi-objective geometric programming problem subject to constraints which constructed by using Kuhn-Tucker Conditions. A new nonlinear problem formed by this approach is solved iteratively. The solution of this approach gives the Pareto optimal solution for the multi-objective posynomial geometric programming problem. To demonstrate the performance of this approach, a problem which was solved with a weighted mean method by Ojha and Biswal (2010) is used. The comparison of solutions between two methods shows that similar results are obtained. In this manner, the proposed approach can be used as an alternative of weighted mean method.展开更多
To solve the emerging complex optimization problems, multi objectiveoptimization algorithms are needed. By introducing the surrogate model forapproximate fitness calculation, the multi objective firefly algorithm with...To solve the emerging complex optimization problems, multi objectiveoptimization algorithms are needed. By introducing the surrogate model forapproximate fitness calculation, the multi objective firefly algorithm with surrogatemodel (MOFA-SM) is proposed in this paper. Firstly, the population wasinitialized according to the chaotic mapping. Secondly, the external archive wasconstructed based on the preference sorting, with the lightweight clustering pruningstrategy. In the process of evolution, the elite solutions selected from archivewere used to guide the movement to search optimal solutions. Simulation resultsshow that the proposed algorithm can achieve better performance in terms ofconvergence iteration and stability.展开更多
A multi-objective optimization and analysis model of the sintering process based on BP neural network is presented. Genetic algorithms are combined to simplify the BP neural network, which can reduce the learning time...A multi-objective optimization and analysis model of the sintering process based on BP neural network is presented. Genetic algorithms are combined to simplify the BP neural network, which can reduce the learning time and increase the forecasting accuracy of the network model. This model has been experimented in the sintering process, and the production cost, the energy consumption, the quality (revolving intensity), and the output are considered at the same time. Moreover, the relation between some factors and the multi-objectives has been analyzed, and the results are consistent with the process. Different objectives are emphasized at different practical periods, and this can provide a theoretical basis for the manager.展开更多
Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the aut...Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the automotive development. Nevertheless, plastic constitutive relation of Polypropylene(PP) under different strain rates, has not been taken into consideration in current reliability-based and collaborative IP MDO design. In this paper, based on tensile test under different strain rates, the constitutive relation of Polypropylene material is studied. Impact simulation tests for head and knee bolster are carried out to meet the regulation of FMVSS 201 and FMVSS 208, respectively. NVH analysis is performed to obtain mainly the natural frequencies and corresponding mode shapes, while the crashworthiness analysis is employed to examine the crash behavior of IP structure. With the consideration of lightweight, NVH, head and knee bolster impact performance, design of experiment(DOE), response surface model(RSM), and collaborative optimization(CO) are applied to realize the determined and reliability-based optimizations, respectively. Furthermore, based on multi-objective genetic algorithm(MOGA), the optimal Pareto sets are completed to solve the multi-objective optimization(MOO) problem. The proposed research ensures the smoothness of Pareto set, enhances the ability of engineers to make a comprehensive decision about multi-objectives and choose the optimal design, and improves the quality and efficiency of MDO.展开更多
Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitati...Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements.展开更多
文摘In the present study the MOFLP models have been developed for the optimal cropping pattern planning which maximizes the four objectives such as Net Benefits (NB), Crop Production (CP), Employment Generation (EG) and Manure Utilization (MU) under conflicting situation and also, for maximization of Releases for Irrigation (RI) and Releases for Power (RP) simultaneously under uncertainty by considering the fuzziness in the objective functions. The developed models have been applied using the LINGO 13 (Language for Interactive General Optimization) optimization software to the case study of the Jayakwadi Project Stage-II across Sindhphana River, in the State of Maharashtra India. The various constraints have been taken into consideration like sowing area, affinity to crop, labour availability, manure availability, water availability for optimal cropping pattern planning. Similarly constraints to find the optimal reservoir operating policy are releases for power and turbine capacity, irrigation demand, reservoir storage capacity, reservoir storage continuity. The level of satisfaction for a compromised solution of optimal cropping pattern planning for four conflicting objectives under fuzzy environment is worked out to be λ = 0.68. The MOFLP compromised solution provides NB = 1088.46 (Million Rupees), CP = 241003 (Tons), EG = 23.13 (Million Man days) and MU = 111454.70 (Tons) respectively. The compromised solution for optimal operation of multi objective reservoir yields the level of satisfaction (λ) = 0.533 for maximizing the releases for irrigation and power simultaneously by satisfying the constraint of the system under consideration. The compromised solution provides the optimal releases, i.e. RI = 348.670 Mm3 and RP = 234.285 Mm3 respectively.
文摘In this paper, a multi objective, multireservoir operation model is proposed using Genetic algorithm (GA) under fuzzy environment. A monthly Multi Objective Genetic Algorithm Fuzzy Optimization (MOGAFU-OPT) model for the present study is developed in ‘C’ Language. The GA parameters i.e. population size, number of generations, crossover probability, and mutation probability are decided based on optimized val-ues of fitness function. The GA operators adopted are stochastic remainder selection, one point crossover and binary mutation. Initially the model is run for maximization of irrigation releases. Then the model is run for maximization of hydropower production. These objectives are fuzzified by assuming a linear membership function. These fuzzified objectives are simultaneously maximized by defining level of satisfaction (?) and then maximizing it. This approach is applied to a multireservoir system in Godavari river sub basin in Ma-harashtra State, India. Problem is formulated with 4 reservoirs and a barrage. The optimal operation policy for maximization of irrigation releases, maximization of hydropower production and maximization of level of satisfaction is presented for existing demand in command area. This optimal operation policy so deter-mined is compared with the actual average operation policy for Jayakwadi Stage-I reservoir.
文摘The objective of the present study is to develop the irrigation planning model and to apply the same in the form of Two-Phase Multi Objective Fuzzy Linear Programming (TPMOFLP) approach for crop planning in command area of Jayakwadi Project Stage I, Maharashtra State, India. The development of TPMOFLP model is on the basis of various Linear Programming (LP) models and Multi Objective Fuzzy Linear Programming (MOFLP) models, these models have been applied for maximization of the Net Benefits (NB), Crop production (CP), Employment Generation (EG) and Manure Utilization (MU) respectively. The significant increase in the value of level of satisfaction (λ) has been found from 0.58 to 0.65 by using the TPMOFLP approach as compare to that of MOFLP model based on maxmin approach. The two-phase approach solution provides NB = 1503.56 Million Rupees, CP = 335729.30 Tons, EG = 29.74 Million Man days and MU = 160233.70 Tons respectively. The proposed model will be helpful for the Decision Maker (DM) to take a decision under conflicting situation while planning for different conflicting objectives simultaneously and has potential to find out an integrated irrigation planning with prime consideration for economic, social and environmental issue.
文摘Renewable sources of energy are being integrated into the power grids due to their economic and environmental merits as compared with the traditional fossil-fuel-fired power generation. However, their significant penetration demands a thorough research in terms of system reliability, that is, security and stability. In this paper, Security Constrained Multi Objective Dynamic Economic Dispatch (SCMODED) problem considering cubic thermal cubic cost function, wind, solar penetration, cubic transmission power losses and cubic emissions cost function as objectives is first formulated. Both HVDC and HVAC lines are included in their formulation. Various approaches like probabilistic load flow (PLF), scenario based method, participation factors and Harmony Search algorithm etc. are employed in the solution process. Security and stability effects of renewable energy (RE) penetration are investigated and analyzed. The simulated results reveal that RE penetration leads to reduced cost and emissions and increased security concerns. Further, there is increased power system instability and hence increased load shedding so as to help the power system attain steady state stability. Inclusion of HVDC lines facilitates rapid and fast control to increase the transient stability limit by the action of the converter ignition angle (CIA) and converter extinction angle (CEA).
文摘In this paper we discuss about infeasibility diagnosis and infeasibility resolution, when the constraint method is used for solving multi objective linear programming problems. We propose an algorithm for resolution of infeasibility, which is a combination of interactive, weighting and constraint methods.Numerical examples are provided to illustrate the techniques developed.
基金Projects(U22B2084,52275483,52075142)supported by the National Natural Science Foundation of ChinaProject(2023ZY01050)supported by the Ministry of Industry and Information Technology High Quality Development,China。
文摘The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.
文摘The ease of accessing a virtually unlimited pool of resources makes Infrastructure as a Service (IaaS) clouds an ideal platform for running data-intensive workflow applications comprising hundreds of computational tasks. However, executing scientific workflows in IaaS cloud environments poses significant challenges due to conflicting objectives, such as minimizing execution time (makespan) and reducing resource utilization costs. This study responds to the increasing need for efficient and adaptable optimization solutions in dynamic and complex environments, which are critical for meeting the evolving demands of modern users and applications. This study presents an innovative multi-objective approach for scheduling scientific workflows in IaaS cloud environments. The proposed algorithm, MOS-MWMC, aims to minimize total execution time (makespan) and resource utilization costs by leveraging key features of virtual machine instances, such as a high number of cores and fast local SSD storage. By integrating realistic simulations based on the WRENCH framework, the method effectively dimensions the cloud infrastructure and optimizes resource usage. Experimental results highlight the superiority of MOS-MWMC compared to benchmark algorithms HEFT and Max-Min. The Pareto fronts obtained for the CyberShake, Epigenomics, and Montage workflows demonstrate closer proximity to the optimal front, confirming the algorithm’s ability to balance conflicting objectives. This study contributes to optimizing scientific workflows in complex environments by providing solutions tailored to specific user needs while minimizing costs and execution times.
基金National Science Fund for Distinguished Young Scholars (10425208)Programme of Introducing Talents of Discipline to Universities (B07009)
文摘For dealing with the multi-objective optimization problems of parametric design for aircraft, a novel hybrid parallel multi-objective tabu search (HPMOTS) algorithm is used. First, a new multi-objective tabu search (MOTS) algorithm is proposed. Comparing with the traditional MOTS algorithm, this proposed algorithm adds some new methods such as the combination of MOTS algorithm and "Pareto solution", the strategy of "searching from many directions" and the reservation of good solutions. Second, this article also proposes the improved parallel multi-objective tabu search (PMOTS) algorithm. Finally, a new hybrid algorithm--HPMOTS algorithm which combines the PMOTS algorithm with the non-dominated sorting-based multi-objective genetic algorithm (NSGA) is presented. The computing results of these algorithms are compared with each other and it is shown that the optimal result can be obtained by the HPMOTS algorithm and the computing result of the PMOTS algorithm is better than that of MOTS algorithm.
文摘Cropping structure has a close relationship with the optimal allocation of agricultural water resources. Based on the analysis of the relationship between agricultural water resources and sustainable development, this paper presents a multi objective fuzzy optimization model for cropping structure and water allocation, which overcomes the shortcoming of current models that only considered the economic objective,and ignored the social and environmental objectives. During the process, a new method named fuzzy deciding weight is developed to decide the objective weight. A case study shows that the model is reliable, the method is simple and objective, and the results are reasonable. This model is useful for agricultural management and sustainable development.
基金The financial support provided by the University of Tehran,Iran,is duly acknowledged.
文摘Energy consumption in agricultural products and its environmental damages has increased in recent centuries.Life cycle assessment(LCA)has been introduced as a suitable tool for evaluation environmental impacts related to a product over its life cycle.In this study,optimization of energy consumption and environmental impacts of chickpea production was conducted using data envelopment analysis(DEA)and multi objective genetic algorithm(MOGA)techniques.Data were collected from 110 chickpea production enterprises using a face to face questionnaire in the cropping season of 2014-2015.The results of optimization revealed that,when applying MOGA,optimum energy requirement for chickpea production was significantly lower compared to application of DEA technique;so that,total energy requirement in optimum situation was found to be 31511.72 and 27570.61 MJ ha^-1 by using DEA and MOGA techniques,respectively;showing a reduction by 5.11%and 17%relative to current situation of energy consumption.Optimization of environmental impacts by application of MOGA resulted in reduction of acidification potential(ACP),eutrophication potential(EUP),global warming potential(GWP),human toxicity potential(HTP)and terrestrial ecotoxicity potential(TEP)by 29%,23%,10%,6%and 36%,respectively.MOGAwas capable of reducing the energy consumption from machinery,farmyard manure(FYM)diesel fuel and nitrogen fertilizer(the mostly contributed inputs to the environmental emissions)by 59%,28.5%,24.58%and 11.24%,respectively.Overall,the MOGA technique showed a superior performance relative to DEA approach for optimizing energy inputs and reducing environmental impacts of chickpea production system.
基金National Natural Science Foundation of China (10377015)
文摘A transonic airfoil designed by means of classical point-optimization may result in its dramatically inferior performance under off-design conditions. To overcome this shortcoming, robust design is proposed to find out the optimal profile of an airfoil to maintain its performance in an uncertain environment. The robust airfoil optimization is aimed to minimize mean values and variances of drag coefficients while satisfying the lift and thickness constraints over a range of Mach numbers. A multi-objective estimation of distribution algorithm is applied to the robust airfoil optimization on the base of the RAE2822 benchmark airfoil. The shape of the airfoil is obtained through superposing ten Hick-Henne shape functions upon the benchmark airfoil. A set of design points is selected according to a uniform design table for aerodynamic evaluation. A Kriging model of drag coefficient is constructed with those points to reduce computing costs. Over the Mach range from 0.7 to 0.8, the airfoil generated by the robust optimization has a configuration characterized by supercritical airfoil with low drag coefficients. The small fluctuation in its drag coefficients means that the performance of the robust airfoil is insensitive to variation of Mach number.
文摘In this paper,we propose a hybrid algorithm for finding a set of non dominated solutions of a multi objective optimization problem.In the proposed algorithm,a local search procedure is applied to each solution generated by genetic operations.The aim of the proposed algorithm is not to determine a single final solution but to try to find all the non dominated solutions of a multi objective optimization problem.The choice of the final solution is left to the decision makers preference.High search ability of the proposed algorithm is demonstrated by computer simulation.
文摘A class of interactive multi objective decision making method by means of evaluation criterion is proposed for problems with linear value function,in which case,the decision maker(DM) usually has only unwhole information of weights for objectives. The concept of fault measure of the evaluation criterion is proposed to measure the deviation of the evaluation criterion from the DMs preference structure.The approach to obtain an upper boundary of fault measure of an evaluation criterion,and the approach to modify the evaluation criterion to be one with smaller fault measure,and the approach to obtain a pre optimized objective set by evaluation criterion with certain fault measure are also proposed.
文摘In this paper, for multi objective decision making, the defects on the commonly used interactive methods based on the satisfactoriness criterion is studied. Then a class of two stage interactive method based on the satisfactoriness criterion is proposed for improvement with the satisfactoriness criterion being determined through the collection of the decision makers preference information. An application example is presented for illustration of applicability of the method.
基金support of RUSA-Phase 2.0 grant sanctioned vide Letter No.F.24-51/2014-U,Policy(TNMulti-Gen),Dep.of Edn.Govt.of India,Dt.09.10.2018.
文摘Agriculture plays a vital role in the food production process that occupies nearly one-third of the total surface of the earth.Rice is propagated from the seeds of paddy and it is a stable food almost used byfifty percent of the total world population.The extensive growth of the human population alarms us to ensure food security and the country should take proper food steps to improve the yield of food grains.This paper concentrates on improving the yield of paddy by predicting the factors that influence the growth of paddy with the help of Evolutionary Computation Techniques.Most of the researchers used to relay on historical records of meteorological parameters to predict the yield of paddy.There is a lack in analyzing the day to day impact of meteorological parameters such as direction of wind,relative humidity,Instant Wind Speed in paddy cultivation.The real time meteorological data collected and analysis the impact of weather parameters from the day of paddy sowing to till the last day of paddy harvesting with regular time series.A Robust Optimized Artificial Neural Network(ROANN)Algorithm with Genetic Algorithm(GA)and Multi Objective Particle Swarm Optimization Algorithm(MOPSO)proposed to predict the factors that to be concentrated by farmers to improve the paddy yield in cultivation.A real time paddy data collected from farmers of Tamilnadu and the meteorological parameters were matched with the cropping pattern of the farmers to construct the database.The input parameters were optimized either by using GA or MOPSO optimization algorithms to reconstruct the database.Reconstructed database optimized by using Artificial Neural Network Back Propagation Algorithm.The reason for improving the growth of paddy was identified using the output of the Neural Network.Performance metrics such as Accuracy,Error Rate etc were used to measure the performance of the proposed algorithm.Comparative analysis made between ANN with GA and ANN with MOPSO to identify the recommendations for improving the paddy yield.
文摘The aim of this study is to present an alternative approach for solving the multi-objective posynomial geometric programming problems. The proposed approach minimizes the weighted objective function comes from multi-objective geometric programming problem subject to constraints which constructed by using Kuhn-Tucker Conditions. A new nonlinear problem formed by this approach is solved iteratively. The solution of this approach gives the Pareto optimal solution for the multi-objective posynomial geometric programming problem. To demonstrate the performance of this approach, a problem which was solved with a weighted mean method by Ojha and Biswal (2010) is used. The comparison of solutions between two methods shows that similar results are obtained. In this manner, the proposed approach can be used as an alternative of weighted mean method.
文摘To solve the emerging complex optimization problems, multi objectiveoptimization algorithms are needed. By introducing the surrogate model forapproximate fitness calculation, the multi objective firefly algorithm with surrogatemodel (MOFA-SM) is proposed in this paper. Firstly, the population wasinitialized according to the chaotic mapping. Secondly, the external archive wasconstructed based on the preference sorting, with the lightweight clustering pruningstrategy. In the process of evolution, the elite solutions selected from archivewere used to guide the movement to search optimal solutions. Simulation resultsshow that the proposed algorithm can achieve better performance in terms ofconvergence iteration and stability.
文摘A multi-objective optimization and analysis model of the sintering process based on BP neural network is presented. Genetic algorithms are combined to simplify the BP neural network, which can reduce the learning time and increase the forecasting accuracy of the network model. This model has been experimented in the sintering process, and the production cost, the energy consumption, the quality (revolving intensity), and the output are considered at the same time. Moreover, the relation between some factors and the multi-objectives has been analyzed, and the results are consistent with the process. Different objectives are emphasized at different practical periods, and this can provide a theoretical basis for the manager.
基金supported by National Hi-tech Research and Development Program of China(863 Program, Grant No. 2007AA04Z132)National Natural Science Foundation of China(Grant No. 51175379)
文摘Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the automotive development. Nevertheless, plastic constitutive relation of Polypropylene(PP) under different strain rates, has not been taken into consideration in current reliability-based and collaborative IP MDO design. In this paper, based on tensile test under different strain rates, the constitutive relation of Polypropylene material is studied. Impact simulation tests for head and knee bolster are carried out to meet the regulation of FMVSS 201 and FMVSS 208, respectively. NVH analysis is performed to obtain mainly the natural frequencies and corresponding mode shapes, while the crashworthiness analysis is employed to examine the crash behavior of IP structure. With the consideration of lightweight, NVH, head and knee bolster impact performance, design of experiment(DOE), response surface model(RSM), and collaborative optimization(CO) are applied to realize the determined and reliability-based optimizations, respectively. Furthermore, based on multi-objective genetic algorithm(MOGA), the optimal Pareto sets are completed to solve the multi-objective optimization(MOO) problem. The proposed research ensures the smoothness of Pareto set, enhances the ability of engineers to make a comprehensive decision about multi-objectives and choose the optimal design, and improves the quality and efficiency of MDO.
基金Supported by National Natural Science Foundation of China(Grant No.51175029)Beijing Municipal Natural Science Foundation of China(Grant No.3132019)
文摘Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements.