For the numerical simulation of flow systems with various complex components, the traditional one-dimensional (1D) network method has its comparative advantage in time consuming and the CFD method has its absolute a...For the numerical simulation of flow systems with various complex components, the traditional one-dimensional (1D) network method has its comparative advantage in time consuming and the CFD method has its absolute advantage in the detailed flow capturing. The proper coupling of the advantages of different dimensional methods can strike balance well between time cost and accuracy and then significantly decrease the whole design cycle for the flow systems in modern machines. A novel multi-fidelity coupled simulation method with numerical zooming is developed for flow systems. This method focuses on the integration of one-, two-and three-dimensional codes for various components. Coupled iterative process for the different dimensional simulation cycles of sub-systems is performed until the concerned flow variables of the whole system achieve convergence. Numerical zooming is employed to update boundary data of components with different dimen-sionalities. Based on this method, a highly automatic, multi-discipline computing environment with integrated zooming is developed. The numerical results of Y-Junction and the air system of a jet engine are presented to verify the solution method. They indicate that this type of multi-fidelity simulationmethod can greatly improve the prediction capability for the flow systems.展开更多
A multi-layer interconnection structure is a basic component of electronic devices, and printing of the multi-layer interconnection structure is the key process in printed electronics. In this work, electrohydrodynami...A multi-layer interconnection structure is a basic component of electronic devices, and printing of the multi-layer interconnection structure is the key process in printed electronics. In this work, electrohydrodynamic direct-writing (EDW) is utilized to print the conductor-insulator--conductor multi-layer ~nterconne^ction structure. Silver ink is chosen to print the conductor pattern, and a polyvinylpyrrolidone (PVP) solution is util^zed to f^bricate the insulator layer between the bottom and top conductor patterns. The influences of EDW process parameters on the line width of the printed conductor and insulator patterns are studied systematically. The obtained ~es^l~s show that the line width of the printed structure increases with the increase of the flow rate, but decreases with the increase of applied voltage and PVP content in the solution. The average resistivity values of the bottom and top silver conductor tracks are determined to be 1.34 × 10-7 Ω.m and 1.39×10-7 Ω.m, respectively. The printed PVP layer between the two conductor tracks is well insulated, which can meet the insulation requirement of the electronic devices. This study offers an alternative, fast, and cost-effective method of fabricating conductor-insulator-conductor multi-layer interconnections in the electronic industry.展开更多
基金National Weapon Equipment Pre-research Foundation of China(0C410101110C4101)Innovation Foundation of BUAA for PhD Graduates(YWF-13-A01-15)for funding this work
文摘For the numerical simulation of flow systems with various complex components, the traditional one-dimensional (1D) network method has its comparative advantage in time consuming and the CFD method has its absolute advantage in the detailed flow capturing. The proper coupling of the advantages of different dimensional methods can strike balance well between time cost and accuracy and then significantly decrease the whole design cycle for the flow systems in modern machines. A novel multi-fidelity coupled simulation method with numerical zooming is developed for flow systems. This method focuses on the integration of one-, two-and three-dimensional codes for various components. Coupled iterative process for the different dimensional simulation cycles of sub-systems is performed until the concerned flow variables of the whole system achieve convergence. Numerical zooming is employed to update boundary data of components with different dimen-sionalities. Based on this method, a highly automatic, multi-discipline computing environment with integrated zooming is developed. The numerical results of Y-Junction and the air system of a jet engine are presented to verify the solution method. They indicate that this type of multi-fidelity simulationmethod can greatly improve the prediction capability for the flow systems.
基金Supported by National Natural Science Foundation of China (90820302) and Scientific Research Fund of Hunan Provincial Ed- ucation Department (12C0202)
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.51035002)the National Natural Science Foundation of China(Grant No.51305373)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120121120035)
文摘A multi-layer interconnection structure is a basic component of electronic devices, and printing of the multi-layer interconnection structure is the key process in printed electronics. In this work, electrohydrodynamic direct-writing (EDW) is utilized to print the conductor-insulator--conductor multi-layer ~nterconne^ction structure. Silver ink is chosen to print the conductor pattern, and a polyvinylpyrrolidone (PVP) solution is util^zed to f^bricate the insulator layer between the bottom and top conductor patterns. The influences of EDW process parameters on the line width of the printed conductor and insulator patterns are studied systematically. The obtained ~es^l~s show that the line width of the printed structure increases with the increase of the flow rate, but decreases with the increase of applied voltage and PVP content in the solution. The average resistivity values of the bottom and top silver conductor tracks are determined to be 1.34 × 10-7 Ω.m and 1.39×10-7 Ω.m, respectively. The printed PVP layer between the two conductor tracks is well insulated, which can meet the insulation requirement of the electronic devices. This study offers an alternative, fast, and cost-effective method of fabricating conductor-insulator-conductor multi-layer interconnections in the electronic industry.