This paper addresses the multi-fault diagnosis problem of thrusters and sensors for autonomous underwater vehicles (AUVs). Traditional support vector domain description (SVDD) has low classification accuracy in the pr...This paper addresses the multi-fault diagnosis problem of thrusters and sensors for autonomous underwater vehicles (AUVs). Traditional support vector domain description (SVDD) has low classification accuracy in the process of AUV multi-fault pattern classification because of the effect of sample sparse density and the uneven distribution of samples, and so on. Thus, a fuzzy weighted support vector domain description (FWSVDD) method based on positive and negative class samples is proposed. In this method, the negative class sample is introduced during classifier training, and the local density and the class weight are introduced for each sample. To improve the multi-fault pattern classifier training speed and fault diagnosis accuracy of FWSVDD, a multi-fault mode classification method based on a hierarchical strategy is proposed. This method adds fault contain detection surface for each thruster and sensor to isolate fault components during fault diagnosis. By considering the problem of pattern classification for a fuzzy sample, which may be located in the overlapping area of hyper-spheres or may not belong to any hyper-sphere in the process of multi-fault classification based on FWSVDD, a relative distance judgment method is given. The effectiveness of the proposed multi-fault diagnosis approach is demonstrated through water tank experiments with an experimental AUV prototype.展开更多
Modelica-based object-orient method is proved to be rapid, accurate and easy to modify, which is suitable for prototype modeling and simulation of rotor system, whose parameters need to be modified frequently. Classic...Modelica-based object-orient method is proved to be rapid, accurate and easy to modify, which is suitable for prototype modeling and simulation of rotor system, whose parameters need to be modified frequently. Classical non-object-orient method appears to be inefficient because the code is difficult to modify and reuse. An adequate library for object-orient modeling of rotor system with multi-faults is established, a comparison with non-object-orient method on Jeffcott rotor system and a case study on turbo expander with multi-faults are implemented. The relative tolerance between object-orient method and non-object-orient is less than 0.03%, which proves that these two methods are as accurate as each other. Object-orient modeling and simulation is implemented on turbo expander with crack, rub-impact, pedestal looseness and multi-faults simultaneously. It can be conclude from the case study that when acting on compress side of turbo expander separately, expand wheel is not influenced greatly by crack fault, the existence of rub-impact fault forces expand wheel into quasi-periodic motion and the orbit of expand wheel is deformed and enhanced almost 1.5 times due to pedestal looseness. When acting simultaneously, multi-faults cannot be totally decomposed but can be diagnosed from the feature of vibration. Object-orient method can enhance the efficiency of modeling and simulation of rotor system with multi-faults, which provides an efficient method on prototype modeling and simulation.展开更多
Following the theory of Multi Agent System (MAS) and using series wound structure and shunt wound structure of Agents, the performance of Agent was improved to satisfy the need of satellite fault diagnosis, and a trid...Following the theory of Multi Agent System (MAS) and using series wound structure and shunt wound structure of Agents, the performance of Agent was improved to satisfy the need of satellite fault diagnosis, and a tridimensional MAS model of satellite fault diagnosis was thus established for the MAS based planar diagnosis system, which decentralizes the whole diagnosing task into subtasks to be performed by different functional Agents to make the complicated fault diagnosis very simple and the diagnosis system more intelligent. This method improved the reliability and accuracy of diagnosis and made the maintenance and upgrading of the satellite fault diagnosis system very easy as well.展开更多
Hierarchical Support Vector Machine (H-SVM) is faster in training and classification than other usual multi-class SVMs such as "1-V-R"and "1-V-1". In this paper, a new multi-class fault diagnosis algorithm based...Hierarchical Support Vector Machine (H-SVM) is faster in training and classification than other usual multi-class SVMs such as "1-V-R"and "1-V-1". In this paper, a new multi-class fault diagnosis algorithm based on H-SVM is proposed and applied to aero-engine. Before SVM training, the training data are first clustered according to their class-center Euclid distances in some feature spaces. The samples which have close distances are divided into the same sub-classes for training, and this makes the H-SVM have reasonable hierarchical construction and good generalization performance. Instead of the common C-SVM, the v-SVM is selected as the binary classifier, in which the parameter v varies only from 0 to 1 and can be determined more easily. The simulation results show that the designed H-SVMs can fast diagnose the multi-class single faults and combination faults for the gas path components of an aero-engine. The fault classifiers have good diagnosis accuracy and can keep robust even when the measurement inputs are disturbed by noises.展开更多
Fault diagnosis technology plays an important role in the industries due to the emergency fault of a machine could bring the heavy lost for the people and the company. A fault diagnosis model based on multi-manifold l...Fault diagnosis technology plays an important role in the industries due to the emergency fault of a machine could bring the heavy lost for the people and the company. A fault diagnosis model based on multi-manifold learning and particle swarm optimization support vector machine(PSO-SVM) is studied. This fault diagnosis model is used for a rolling bearing experimental of three kinds faults. The results are verified that this model based on multi-manifold learning and PSO-SVM is good at the fault sensitive features acquisition with effective accuracy.展开更多
Based on Multi-Masking Empirical Mode Decomposition (MMEMD) and fuzzy c-means (FCM) clustering, a new method of wind turbine bearing fault diagnosis FCM-MMEMD is proposed, which can determine the fault accurately and ...Based on Multi-Masking Empirical Mode Decomposition (MMEMD) and fuzzy c-means (FCM) clustering, a new method of wind turbine bearing fault diagnosis FCM-MMEMD is proposed, which can determine the fault accurately and timely. First, FCM clustering is employed to classify the data into different clusters, which helps to estimate whether there is a fault and how many fault types there are. If fault signals exist, the fault vibration signals are then demodulated and decomposed into different frequency bands by MMEMD in order to be analyzed further. In order to overcome the mode mixing defect of empirical mode decomposition (EMD), a novel method called MMEMD is proposed. It is an improvement to masking empirical mode decomposition (MEMD). By adding multi-masking signals to the signals to be decomposed in different levels, it can restrain low-frequency components from mixing in highfrequency components effectively in the sifting process and then suppress the mode mixing. It has the advantages of easy implementation and strong ability of suppressing modal mixing. The fault type is determined by Hilbert envelope finally. The results of simulation signal decomposition showed the high performance of MMEMD. Experiments of bearing fault diagnosis in wind turbine bearing fault diagnosis proved the validity and high accuracy of the new method.展开更多
Bearings are crucial components in rotating machines,which have direct effects on industrial productivity and safety.To fast and accurately identify the operating condition of bearings,a novel method based on multi⁃sc...Bearings are crucial components in rotating machines,which have direct effects on industrial productivity and safety.To fast and accurately identify the operating condition of bearings,a novel method based on multi⁃scale permutation entropy(MPE)and morphology similarity distance(MSD)is proposed in this paper.Firstly,the MPE values of the original signals were calculated to characterize the complexity in different scales and they constructed feature vectors after normalization.Then,the MSD was employed to measure the distance among test samples from different fault types and the reference samples,and achieved classification with the minimum MSD.Finally,the proposed method was verified with two experiments concerning artificially seeded damage bearings and run⁃to⁃failure bearings,respectively.Different categories were considered for the two experiments and high classification accuracies were obtained.The experimental results indicate that the proposed method is effective and feasible in bearing fault diagnosis.展开更多
Abstract Multisensor systems are very powerful in the complex environments. The cointegration theory and the vector error correction model, the statistic methods which widely applied in economic analysis, are utilized...Abstract Multisensor systems are very powerful in the complex environments. The cointegration theory and the vector error correction model, the statistic methods which widely applied in economic analysis, are utilized to create a fitting model for homogeneous sensors measurements. An algorithm is applied to implement the model for error correction, in which the signal of any sensor can be esti mated from those of others. The model divides a signal series into two parts, the training part and the estimated part. By comparing the estimated part with the actual one, the proposed method can iden tify a sensor with possible faults and repair its signal. With a small amount of training data, the right parameters for the model in real time could be found by the algorithm. When applied in data analysis for aero engine testing, the model works well. Therefore, it is not only an effective method to detect any sensor failure or abnormality, but also a useful approach to correct possible errors.展开更多
In this paper, through a multi-scale separation of the aeromagnetic anomaly by wavelet transform technique, we reprocessed the aeromagnetic data collected 20 years ago in Beijing area and analyzed the aeromagnetic ano...In this paper, through a multi-scale separation of the aeromagnetic anomaly by wavelet transform technique, we reprocessed the aeromagnetic data collected 20 years ago in Beijing area and analyzed the aeromagnetic anomaly qualitatively, integrating geological structure features in the area. In particular, we studied the spatial distributions of the two main faults called Shunyi-Liangxiang fault and Banqiao-Babaoshan-Tongxian fault, which have cut and gone through the central Beijing area striking in NE and EW directions, respectively. The influences of these two faults on the earthquakes have also been discussed briefly.展开更多
Aiming at the limitations of rapid fault diagnosis of blast furnace, a novel strategy based on cost-conscious least squares support vector machine (LS-SVM) is proposed to solve this problem. Firstly, modified discre...Aiming at the limitations of rapid fault diagnosis of blast furnace, a novel strategy based on cost-conscious least squares support vector machine (LS-SVM) is proposed to solve this problem. Firstly, modified discrete particle swarm optimization is applied to optimize the feature selection and the LS-SVM parameters. Secondly, cost-con- scious formula is presented for fitness function and it contains in detail training time, recognition accuracy and the feature selection. The CLS-SVM algorithm is presented to increase the performance of the LS-SVM classifier. The new method can select the best fault features in much shorter time and have fewer support vectbrs and better general- ization performance in the application of fault diagnosis of the blast furnace. Thirdly, a gradual change binary tree is established for blast furnace faults diagnosis. It is a multi-class classification method based on center-of-gravity formula distance of cluster. A gradual change classification percentage ia used to select sample randomly. The proposed new metbod raises the sped of diagnosis, optimizes the classifieation scraraey and has good generalization ability for fault diagnosis of the application of blast furnace.展开更多
Urban faults in Shenzhen are potential threats to city security and sustainable development. In consideration of the importance of the Shenzhen fault zone, the author provide a detailed interpretation on gravity data ...Urban faults in Shenzhen are potential threats to city security and sustainable development. In consideration of the importance of the Shenzhen fault zone, the author provide a detailed interpretation on gravity data model. Bouguer gravity covering the whole Shenzhen City was calculated with a 1-km resolution. Wavelet multi-scale analysis(MSA) was applied to the Bouguer gravity data to obtain the multilayer residual anomalies corresponding to different depths. In addition, 2D gravity models were constructed along three profiles. The Bouguer gravity anomaly shows an NE-striking high-low-high pattern from northwest to southeast, strongly related to the main faults. According to the results of MSA, the correlation between gravity anomaly and faults is particularly significant from 4 to 12 km depth. The residual gravity with small amplitude in each layer indicates weak tectonic activity in the crust. In the upper layers, positive anomalies along most of faults reveal the upwelling of high-density materials during the past tectonic movements. The multilayer residual anomalies also yield important information about the faults, such as the vertical extension and the dip direction. The maximum depth of the faults is about 20 km. In general, NE-striking faults extend deeper than NW-striking faults and have a larger dip angle.展开更多
Fault detection caused by single event effect( SEE) in system was studied,and an improved fault detection algorithm by fusing multi-information entropy for detecting soft error was proposed based on multi-objective de...Fault detection caused by single event effect( SEE) in system was studied,and an improved fault detection algorithm by fusing multi-information entropy for detecting soft error was proposed based on multi-objective detection approach and classification management method. In the improved fault detection algorithm, the analysis model of posteriori information with corresponding multi-fault alternative detection points was formulated through correlation information matrix, and the maximum incremental information entropy was chosen as the classification principle for the optimal detection points. A system design example was given to prove the rationality and feasibility of this algorithm.This fault detection algorithm can achieve the purpose of fault detection and resource configuration with high efficiency.展开更多
Diagnosis and prediction of satellite fault are more difficult than that of other equipment due to the complex structure of satellites and the presence of multi excite sources of satellite faults. Generally, one kind ...Diagnosis and prediction of satellite fault are more difficult than that of other equipment due to the complex structure of satellites and the presence of multi excite sources of satellite faults. Generally, one kind of reasoning model can only diagnose and predict one kind of satellite faults. In this paper the author introduces an application of a new method using multi modal reasoning to diagnose and predict satellite faults. The method has been used in the development of knowledge based satellite fault diagnosis and recovery system (KSFDRS) successfully. It is shown that the method is effective.展开更多
A variation-aware task mapping approach is proposed for a multi-core network-on-chips with redundant cores, which includes both the design-time mapping and run-time scheduling algorithms. Firstly, a design-time geneti...A variation-aware task mapping approach is proposed for a multi-core network-on-chips with redundant cores, which includes both the design-time mapping and run-time scheduling algorithms. Firstly, a design-time genetic task mapping algorithm is proposed during the design stage to generate multiple task mapping solutions which cover a maximum range of chips. Then, during the run, one optimal task mapping solution is selected. Additionally, logical cores are mapped to physically available cores. Both core asymmetry and topological changes are considered in the proposed approach. Experimental results show that the performance yield of the proposed approach is 96% on average, and the communication cost, power consumption and peak temperature are all optimized without loss of performance yield.展开更多
When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To o...When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To overcome this drawback, the zero phase filter is introduced to the mentioned filter, and a fault diagnosis method for speed-changing gearbox is proposed. Firstly, the gear meshing frequency of each gearbox is estimated by chirplet path pursuit. Then, according to the estimated gear meshing frequencies, an adaptive zero phase time-varying filter(AZPTF) is designed to filter the original signal. Finally, the basis for fault diagnosis is acquired by the envelope order analysis to the filtered signal. The signal consisting of two time-varying amplitude modulation and frequency modulation(AM-FM) signals is respectively analyzed by ATF and AZPTF based on MCSSD. The simulation results show the variances between the original signals and the filtered signals yielded by AZPTF based on MCSSD are 13.67 and 41.14, which are far less than variances (323.45 and 482.86) between the original signals and the filtered signals obtained by ATF based on MCSSD. The experiment results on the vibration signals of gearboxes indicate that the vibration signals of the two speed-changing gearboxes installed on one foundation bed can be separated by AZPTF effectively. Based on the demodulation information of the vibration signal of each gearbox, the fault diagnosis can be implemented. Both simulation and experiment examples prove that the proposed filter can extract a mono-component time-varying AM-FM signal from the multi-component time-varying AM-FM signal without distortion.展开更多
Fracture-fissure systems found at mid-ocean ridges are dominating conduits for the circulation of metallogenic fluid.Ascertaining the distribution area of active faults on both sides of mid-ocean ridges will provide a...Fracture-fissure systems found at mid-ocean ridges are dominating conduits for the circulation of metallogenic fluid.Ascertaining the distribution area of active faults on both sides of mid-ocean ridges will provide a useful tool in the search for potential hydrothermal vents,thus guiding the exploration of modern seafloor sulfides.Considering the MidAtlantic Ridge 20°N–24°N(NMAR)and North Chile Rise(NCR)as examples,fault elements such as Fault Spacing(?S)and Fault Heave(?X)can be identified and quantitatively measured.The methods used include Fourier filtering of the multi-beam bathymetry data,in combination with measurements of the topographic slope,curvature,and slope aspect patterns.According to the Sequential Faulting Model of mid-ocean ridges,the maximal migration distance of an active fault on either side of mid-ocean ridges—that is,the distribution range of active faults—can be measured.Results show that the maximal migration distance of active faults at the NMAR is 0.76–1.01 km(the distance is larger at the center than at the ends of this segment),and at the NCR,the distribution range of active faults is 0.38–1.6 km.The migration distance of active faults on the two study areas is positively related to the axial variation of magma supply.In the NCR study area,where there is an abundant magma input,the number of faults within a certain distance is mainly affected by the variation of lithospheric thickness.Here a large range of faulting clearly corresponds to a high proportion of magmatism to seafloor spreading near mid-ocean ridges(M)value,and in the study area of the NMAR,there is insufficient magmatism,and the number of faults may be controlled by both lithospheric thickness and magma supply,leading to a less obvious positive correlation between the distribution range of active faults and M.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51279040)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20112304110024)
文摘This paper addresses the multi-fault diagnosis problem of thrusters and sensors for autonomous underwater vehicles (AUVs). Traditional support vector domain description (SVDD) has low classification accuracy in the process of AUV multi-fault pattern classification because of the effect of sample sparse density and the uneven distribution of samples, and so on. Thus, a fuzzy weighted support vector domain description (FWSVDD) method based on positive and negative class samples is proposed. In this method, the negative class sample is introduced during classifier training, and the local density and the class weight are introduced for each sample. To improve the multi-fault pattern classifier training speed and fault diagnosis accuracy of FWSVDD, a multi-fault mode classification method based on a hierarchical strategy is proposed. This method adds fault contain detection surface for each thruster and sensor to isolate fault components during fault diagnosis. By considering the problem of pattern classification for a fuzzy sample, which may be located in the overlapping area of hyper-spheres or may not belong to any hyper-sphere in the process of multi-fault classification based on FWSVDD, a relative distance judgment method is given. The effectiveness of the proposed multi-fault diagnosis approach is demonstrated through water tank experiments with an experimental AUV prototype.
基金supported by National Basic Research Program of China(973 Program,Grant No.2011CB706502)
文摘Modelica-based object-orient method is proved to be rapid, accurate and easy to modify, which is suitable for prototype modeling and simulation of rotor system, whose parameters need to be modified frequently. Classical non-object-orient method appears to be inefficient because the code is difficult to modify and reuse. An adequate library for object-orient modeling of rotor system with multi-faults is established, a comparison with non-object-orient method on Jeffcott rotor system and a case study on turbo expander with multi-faults are implemented. The relative tolerance between object-orient method and non-object-orient is less than 0.03%, which proves that these two methods are as accurate as each other. Object-orient modeling and simulation is implemented on turbo expander with crack, rub-impact, pedestal looseness and multi-faults simultaneously. It can be conclude from the case study that when acting on compress side of turbo expander separately, expand wheel is not influenced greatly by crack fault, the existence of rub-impact fault forces expand wheel into quasi-periodic motion and the orbit of expand wheel is deformed and enhanced almost 1.5 times due to pedestal looseness. When acting simultaneously, multi-faults cannot be totally decomposed but can be diagnosed from the feature of vibration. Object-orient method can enhance the efficiency of modeling and simulation of rotor system with multi-faults, which provides an efficient method on prototype modeling and simulation.
文摘Following the theory of Multi Agent System (MAS) and using series wound structure and shunt wound structure of Agents, the performance of Agent was improved to satisfy the need of satellite fault diagnosis, and a tridimensional MAS model of satellite fault diagnosis was thus established for the MAS based planar diagnosis system, which decentralizes the whole diagnosing task into subtasks to be performed by different functional Agents to make the complicated fault diagnosis very simple and the diagnosis system more intelligent. This method improved the reliability and accuracy of diagnosis and made the maintenance and upgrading of the satellite fault diagnosis system very easy as well.
基金University Science Foundation of Jiangsu Province (04KJD510018)
文摘Hierarchical Support Vector Machine (H-SVM) is faster in training and classification than other usual multi-class SVMs such as "1-V-R"and "1-V-1". In this paper, a new multi-class fault diagnosis algorithm based on H-SVM is proposed and applied to aero-engine. Before SVM training, the training data are first clustered according to their class-center Euclid distances in some feature spaces. The samples which have close distances are divided into the same sub-classes for training, and this makes the H-SVM have reasonable hierarchical construction and good generalization performance. Instead of the common C-SVM, the v-SVM is selected as the binary classifier, in which the parameter v varies only from 0 to 1 and can be determined more easily. The simulation results show that the designed H-SVMs can fast diagnose the multi-class single faults and combination faults for the gas path components of an aero-engine. The fault classifiers have good diagnosis accuracy and can keep robust even when the measurement inputs are disturbed by noises.
基金Beijing Natural Science Foundation(KZ201211232039)National Natural Science Foundation of China(51275052)+1 种基金Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipalipality(PHR201106132)PXM2014_014224_000080
文摘Fault diagnosis technology plays an important role in the industries due to the emergency fault of a machine could bring the heavy lost for the people and the company. A fault diagnosis model based on multi-manifold learning and particle swarm optimization support vector machine(PSO-SVM) is studied. This fault diagnosis model is used for a rolling bearing experimental of three kinds faults. The results are verified that this model based on multi-manifold learning and PSO-SVM is good at the fault sensitive features acquisition with effective accuracy.
基金Supported by National Key R&D Projects(Grant No.2018YFB0905500)National Natural Science Foundation of China(Grant No.51875498)+1 种基金Hebei Provincial Natural Science Foundation of China(Grant Nos.E2018203439,E2018203339,F2016203496)Key Scientific Research Projects Plan of Henan Higher Education Institutions(Grant No.19B460001)
文摘Based on Multi-Masking Empirical Mode Decomposition (MMEMD) and fuzzy c-means (FCM) clustering, a new method of wind turbine bearing fault diagnosis FCM-MMEMD is proposed, which can determine the fault accurately and timely. First, FCM clustering is employed to classify the data into different clusters, which helps to estimate whether there is a fault and how many fault types there are. If fault signals exist, the fault vibration signals are then demodulated and decomposed into different frequency bands by MMEMD in order to be analyzed further. In order to overcome the mode mixing defect of empirical mode decomposition (EMD), a novel method called MMEMD is proposed. It is an improvement to masking empirical mode decomposition (MEMD). By adding multi-masking signals to the signals to be decomposed in different levels, it can restrain low-frequency components from mixing in highfrequency components effectively in the sifting process and then suppress the mode mixing. It has the advantages of easy implementation and strong ability of suppressing modal mixing. The fault type is determined by Hilbert envelope finally. The results of simulation signal decomposition showed the high performance of MMEMD. Experiments of bearing fault diagnosis in wind turbine bearing fault diagnosis proved the validity and high accuracy of the new method.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51505100)
文摘Bearings are crucial components in rotating machines,which have direct effects on industrial productivity and safety.To fast and accurately identify the operating condition of bearings,a novel method based on multi⁃scale permutation entropy(MPE)and morphology similarity distance(MSD)is proposed in this paper.Firstly,the MPE values of the original signals were calculated to characterize the complexity in different scales and they constructed feature vectors after normalization.Then,the MSD was employed to measure the distance among test samples from different fault types and the reference samples,and achieved classification with the minimum MSD.Finally,the proposed method was verified with two experiments concerning artificially seeded damage bearings and run⁃to⁃failure bearings,respectively.Different categories were considered for the two experiments and high classification accuracies were obtained.The experimental results indicate that the proposed method is effective and feasible in bearing fault diagnosis.
基金supported by the Aeronautical Science Foundation of China(No.20101024006)
文摘Abstract Multisensor systems are very powerful in the complex environments. The cointegration theory and the vector error correction model, the statistic methods which widely applied in economic analysis, are utilized to create a fitting model for homogeneous sensors measurements. An algorithm is applied to implement the model for error correction, in which the signal of any sensor can be esti mated from those of others. The model divides a signal series into two parts, the training part and the estimated part. By comparing the estimated part with the actual one, the proposed method can iden tify a sensor with possible faults and repair its signal. With a small amount of training data, the right parameters for the model in real time could be found by the algorithm. When applied in data analysis for aero engine testing, the model works well. Therefore, it is not only an effective method to detect any sensor failure or abnormality, but also a useful approach to correct possible errors.
基金National Development and Reform Commission Project ″Experimental Detection of Urban Active Faults″ (2004-1138).
文摘In this paper, through a multi-scale separation of the aeromagnetic anomaly by wavelet transform technique, we reprocessed the aeromagnetic data collected 20 years ago in Beijing area and analyzed the aeromagnetic anomaly qualitatively, integrating geological structure features in the area. In particular, we studied the spatial distributions of the two main faults called Shunyi-Liangxiang fault and Banqiao-Babaoshan-Tongxian fault, which have cut and gone through the central Beijing area striking in NE and EW directions, respectively. The influences of these two faults on the earthquakes have also been discussed briefly.
基金Item Sponsored by National Natural Science Foundation of China(60843007,61050006)
文摘Aiming at the limitations of rapid fault diagnosis of blast furnace, a novel strategy based on cost-conscious least squares support vector machine (LS-SVM) is proposed to solve this problem. Firstly, modified discrete particle swarm optimization is applied to optimize the feature selection and the LS-SVM parameters. Secondly, cost-con- scious formula is presented for fitness function and it contains in detail training time, recognition accuracy and the feature selection. The CLS-SVM algorithm is presented to increase the performance of the LS-SVM classifier. The new method can select the best fault features in much shorter time and have fewer support vectbrs and better general- ization performance in the application of fault diagnosis of the blast furnace. Thirdly, a gradual change binary tree is established for blast furnace faults diagnosis. It is a multi-class classification method based on center-of-gravity formula distance of cluster. A gradual change classification percentage ia used to select sample randomly. The proposed new metbod raises the sped of diagnosis, optimizes the classifieation scraraey and has good generalization ability for fault diagnosis of the application of blast furnace.
基金supported by the National Natural Science Foundation of China (Nos.41504015,41429401)the National 973 Project of China (No.2013CB733302)+2 种基金 China Postdoctoral Science Foundation (No.2015M572146)the National High Technology Research and Development Program of China (No.2011AA060503)the Surveying and Mapping Basic Research Program of National Administration of Surveying,Mapping and Geoinformation (No.15-01-08)
文摘Urban faults in Shenzhen are potential threats to city security and sustainable development. In consideration of the importance of the Shenzhen fault zone, the author provide a detailed interpretation on gravity data model. Bouguer gravity covering the whole Shenzhen City was calculated with a 1-km resolution. Wavelet multi-scale analysis(MSA) was applied to the Bouguer gravity data to obtain the multilayer residual anomalies corresponding to different depths. In addition, 2D gravity models were constructed along three profiles. The Bouguer gravity anomaly shows an NE-striking high-low-high pattern from northwest to southeast, strongly related to the main faults. According to the results of MSA, the correlation between gravity anomaly and faults is particularly significant from 4 to 12 km depth. The residual gravity with small amplitude in each layer indicates weak tectonic activity in the crust. In the upper layers, positive anomalies along most of faults reveal the upwelling of high-density materials during the past tectonic movements. The multilayer residual anomalies also yield important information about the faults, such as the vertical extension and the dip direction. The maximum depth of the faults is about 20 km. In general, NE-striking faults extend deeper than NW-striking faults and have a larger dip angle.
文摘Fault detection caused by single event effect( SEE) in system was studied,and an improved fault detection algorithm by fusing multi-information entropy for detecting soft error was proposed based on multi-objective detection approach and classification management method. In the improved fault detection algorithm, the analysis model of posteriori information with corresponding multi-fault alternative detection points was formulated through correlation information matrix, and the maximum incremental information entropy was chosen as the classification principle for the optimal detection points. A system design example was given to prove the rationality and feasibility of this algorithm.This fault detection algorithm can achieve the purpose of fault detection and resource configuration with high efficiency.
文摘Diagnosis and prediction of satellite fault are more difficult than that of other equipment due to the complex structure of satellites and the presence of multi excite sources of satellite faults. Generally, one kind of reasoning model can only diagnose and predict one kind of satellite faults. In this paper the author introduces an application of a new method using multi modal reasoning to diagnose and predict satellite faults. The method has been used in the development of knowledge based satellite fault diagnosis and recovery system (KSFDRS) successfully. It is shown that the method is effective.
文摘A variation-aware task mapping approach is proposed for a multi-core network-on-chips with redundant cores, which includes both the design-time mapping and run-time scheduling algorithms. Firstly, a design-time genetic task mapping algorithm is proposed during the design stage to generate multiple task mapping solutions which cover a maximum range of chips. Then, during the run, one optimal task mapping solution is selected. Additionally, logical cores are mapped to physically available cores. Both core asymmetry and topological changes are considered in the proposed approach. Experimental results show that the performance yield of the proposed approach is 96% on average, and the communication cost, power consumption and peak temperature are all optimized without loss of performance yield.
基金supported by National Natural Science Foundation of China (Grant No. 71271078)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2009AA04Z414)Integration of Industry, Education and Research of Guangdong Province, and Ministry of Education of China (Grant No. 2009B090300312)
文摘When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To overcome this drawback, the zero phase filter is introduced to the mentioned filter, and a fault diagnosis method for speed-changing gearbox is proposed. Firstly, the gear meshing frequency of each gearbox is estimated by chirplet path pursuit. Then, according to the estimated gear meshing frequencies, an adaptive zero phase time-varying filter(AZPTF) is designed to filter the original signal. Finally, the basis for fault diagnosis is acquired by the envelope order analysis to the filtered signal. The signal consisting of two time-varying amplitude modulation and frequency modulation(AM-FM) signals is respectively analyzed by ATF and AZPTF based on MCSSD. The simulation results show the variances between the original signals and the filtered signals yielded by AZPTF based on MCSSD are 13.67 and 41.14, which are far less than variances (323.45 and 482.86) between the original signals and the filtered signals obtained by ATF based on MCSSD. The experiment results on the vibration signals of gearboxes indicate that the vibration signals of the two speed-changing gearboxes installed on one foundation bed can be separated by AZPTF effectively. Based on the demodulation information of the vibration signal of each gearbox, the fault diagnosis can be implemented. Both simulation and experiment examples prove that the proposed filter can extract a mono-component time-varying AM-FM signal from the multi-component time-varying AM-FM signal without distortion.
基金supported by the grant of China Ocean Mineral Resources R&D Association(DY135-S2-1-01)
文摘Fracture-fissure systems found at mid-ocean ridges are dominating conduits for the circulation of metallogenic fluid.Ascertaining the distribution area of active faults on both sides of mid-ocean ridges will provide a useful tool in the search for potential hydrothermal vents,thus guiding the exploration of modern seafloor sulfides.Considering the MidAtlantic Ridge 20°N–24°N(NMAR)and North Chile Rise(NCR)as examples,fault elements such as Fault Spacing(?S)and Fault Heave(?X)can be identified and quantitatively measured.The methods used include Fourier filtering of the multi-beam bathymetry data,in combination with measurements of the topographic slope,curvature,and slope aspect patterns.According to the Sequential Faulting Model of mid-ocean ridges,the maximal migration distance of an active fault on either side of mid-ocean ridges—that is,the distribution range of active faults—can be measured.Results show that the maximal migration distance of active faults at the NMAR is 0.76–1.01 km(the distance is larger at the center than at the ends of this segment),and at the NCR,the distribution range of active faults is 0.38–1.6 km.The migration distance of active faults on the two study areas is positively related to the axial variation of magma supply.In the NCR study area,where there is an abundant magma input,the number of faults within a certain distance is mainly affected by the variation of lithospheric thickness.Here a large range of faulting clearly corresponds to a high proportion of magmatism to seafloor spreading near mid-ocean ridges(M)value,and in the study area of the NMAR,there is insufficient magmatism,and the number of faults may be controlled by both lithospheric thickness and magma supply,leading to a less obvious positive correlation between the distribution range of active faults and M.