1.Introduction Multi-principal element alloys(MPEAs),with compositions in the central region of the multicomponent phase diagram,have been dubbed"high-entropy alloys"(HEAs)in recent years[1-11].A more genera...1.Introduction Multi-principal element alloys(MPEAs),with compositions in the central region of the multicomponent phase diagram,have been dubbed"high-entropy alloys"(HEAs)in recent years[1-11].A more general term currently accepted by the community for these MPEAs is complex concentrated alloys or compositionally complex alloys(CCAs)[12].These alloys are usually based on single-phase multi-principal element solid solutions,with no need or possibility to distinguish which species constitutes the solvent and which ones are solutes.This Viewpoint and Perspective article focuses on a salient feature in the internal structure of MPEAs,different from traditional metals and solvent-(dilute)solute solutions.Specifically,the unusual trait to be highlighted for these heavily concentrated solutions is their inherent chemical inhomogeneity on the nanoscale,in terms of the high propensity for compositional fluctuation and local chemical order.展开更多
The approximately equimolar ratio A1CrNiSiTi multi-principal element alloy (MPEA) coatings were fab- ricated by laser cladding on Ti-6Al-4V (Ti64) alloy. Scanning electron microscopy (SEM), equipped with an ener...The approximately equimolar ratio A1CrNiSiTi multi-principal element alloy (MPEA) coatings were fab- ricated by laser cladding on Ti-6Al-4V (Ti64) alloy. Scanning electron microscopy (SEM), equipped with an energy-dispersive spectroscopy (EDS), and X-ray diffrac- tion (XRD) were used to characterize the microstructure and composition. Investigations show that the coatings consist of (Ti, Cr)5Si3 and NiA1 phases, formed by in situ reaction. The phase composition is initially explicated according to obtainable binary and ternary phase diagrams, and the formation Gibbs energy of TisSi3, VsSi3 and CrsSi3. Dry sliding reciprocating friction and wear tests of the A1CrNiSiTi coating and Ti64 alloy substrate without coating were evaluated. A surface mapping profiler was used to evaluate the wear volume. The worn surface was characterized by SEM-EDS. The hardness and wear resistance of the A1CrNiSiTi coating are well compared with that of the basal material (Ti64). The main wear mechanism of the AICrNiSiTi coating is slightly adhesive transfer from GCrl5 counterpart, and a mixed layer com- posed of transferred materials and oxide is formed.展开更多
AlCrFeNiCu high-entropy alloy (THA) was synthesized by the arc melting and casting method. The alloy exhibits simple FCC and BCC solid solution phases rather than intermetallic compounds. The reason is that the Gibb...AlCrFeNiCu high-entropy alloy (THA) was synthesized by the arc melting and casting method. The alloy exhibits simple FCC and BCC solid solution phases rather than intermetallic compounds. The reason is that the Gibbs free energy of mixing of the equimolar A1CrFeNiCu alloy is smaller than that of inter-metallic compounds by calculation according to the Miedema model .展开更多
In this study, C,N,S-doped ZrO2 and a series of Eu doped C,N,S-ZrO2 photocatalysts were synthesized by a coprecipitation method using thiourea as the source of C, N and S and Eu(NO3)·6H2O as source of Eu. The m...In this study, C,N,S-doped ZrO2 and a series of Eu doped C,N,S-ZrO2 photocatalysts were synthesized by a coprecipitation method using thiourea as the source of C, N and S and Eu(NO3)·6H2O as source of Eu. The materials were characterized by X-ray dif-fraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), UV-visible diffuse reflectance spectroscopy, scanning electron microscopy (SEM)/energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). Indigo carmine (IC) was chosen as a model for organic pollutants and used to evaluate the photocatalytic performance of the photo-catalysts under simulated solar light. Commercial ZrO2 was used as a reference material. XRD and Raman results indicated the for-mation of both tetragonal and monoclinic phase ZrO2 with particle size ranging from 8–30 nm. Multi-element doping had a great in-fluence on the optical responses manifested as red shift in the absorption edge. The highest photocatalytic activity towards IC was observed for the Eu,C,N,S-doped ZrO2 (0.6 mol.%Eu) sample (k=1.09×10–2 min–1). The commercial ZrO2 showed the lowest photo-degradation activity (k=5.83×10–4 min–1). The results showed that the control of Eu doping in the C,N,S-ZrO2 was very important in reducing electron-hole recombination. The synergistic effect of Eu, C, N, and S in the ZrO2 matrix led to enhanced utilization of simulated solar energy for the degradation of IC through narrowing of bandgaps.展开更多
The paper is to integrate aerodynamic and aero-acoustic optimizatiom design of high lift devices,especially for two-element airfoils with slat.Aerodynamic analysis on flow field utilizes a high-order,high-resolution s...The paper is to integrate aerodynamic and aero-acoustic optimizatiom design of high lift devices,especially for two-element airfoils with slat.Aerodynamic analysis on flow field utilizes a high-order,high-resolution spatial differential method for large eddy simulation(LES),which can guarantee accuracy and efficiency.The aeroacoustic analysis for noise level is calculated with Ffowcs Williams-Hawkings(FW-H)integration formula.Fidelity of calculation is verified by standard models.Method of streamline-based Euler simulation(MSES)is used to obtain the aerodynamic characters.Based on the confirmation of numerical methods,detailed research has been conducted for the leading edge slat on multi-element airfoils.Various slot parameter influences on noise are analyzed.The results of the slot optimization parameters can be used in multi-element airfoil design.展开更多
In X-ray absorption fine structure(XAFS) experiments,Soller slits are widely used as filter devices in order to improve the signal to noise ratio.Performing high accuracy manual focusing operations is a time-consuming...In X-ray absorption fine structure(XAFS) experiments,Soller slits are widely used as filter devices in order to improve the signal to noise ratio.Performing high accuracy manual focusing operations is a time-consuming process;therefore,this work introduces an automatic focusing method for Soller slits in multi-element fluorescence detectors.This method establishes a relation model between the fluorescence intensity distribution and the coordinates of the fluorescence excitation point.According to this relation model,the actual coordinates of the fluorescence excitation point can be deduced from the detected fluorescence intensity distribution and used in focusing operations.This method has proven to be feasible in an XAFS experiment at the BL14W1 beamline of the Shanghai Synchrotron Radiation Facility.展开更多
A multivariate statistical analysis was performed on multi-element soil geochemical data from the Koda Hill-Bulenga gold prospects in the Wa-Lawra gold belt, northwest Ghana. The objectives of the study were to define...A multivariate statistical analysis was performed on multi-element soil geochemical data from the Koda Hill-Bulenga gold prospects in the Wa-Lawra gold belt, northwest Ghana. The objectives of the study were to define gold relationships with other trace elements to determine possible pathfinder elements for gold from the soil geochemical data. The study focused on seven elements, namely, Au, Fe, Pb, Mn, Ag, As and Cu. Factor analysis and hierarchical cluster analysis were performed on the analyzed samples. Factor analysis explained 79.093% of the total variance of the data through three factors. This had the gold factor being factor 3, having associations of copper, iron, lead and manganese and accounting for 20.903% of the total variance. From hierarchical clustering, gold was also observed to be clustering with lead, copper, arsenic and silver. There was further indication that, gold concentrations were lower than that of its associations. It can be inferred from the results that, the occurrence of gold and its associated elements can be linked to both primary dispersion from underlying rocks and secondary processes such as lateritization. This data shows that Fe and Mn strongly associated with gold, and alongside Pb, Ag, As and Cu, these elements can be used as pathfinders for gold in the area, with ferruginous zones as targets.展开更多
In recent years, the modern methods of multi-element analysis of precious metals have attracted wide attention in scientific research and industry. The application and development in the decomposition of samples, sepa...In recent years, the modern methods of multi-element analysis of precious metals have attracted wide attention in scientific research and industry. The application and development in the decomposition of samples, separation and enrichment, and modern instrumental analysis of the platinum-group elements (PGEs) and gold in geological and environmental samples have been reviewed. Finally, the tendency of analysis of precious metals is also prospected.展开更多
The powder compaction simulations were performed to demonstrate deformation behavior of particles and estimate the effect of different punch speeds and particle diameters on the relative density of powder by a multi-p...The powder compaction simulations were performed to demonstrate deformation behavior of particles and estimate the effect of different punch speeds and particle diameters on the relative density of powder by a multi-particle finite element model(MPFEM). Individual particle discretized with a finite element mesh allows for a full description of the contact mechanics. In order to verify the reliability of compaction simulation by MPFEM, the compaction tests of porous aluminum with average particle size of 20 μm and 3 μm were performed at different ram speeds of 5, 15, 30 and 60 mm/min by MTS servo-hydraulic tester. The results show that the slow ram speed is of great advantage for powder densification in low compaction force due to sufficient particle rearrangement and compaction force increases with decrease in average particle size of aluminum.展开更多
The existing research on continuous structure is usually analyzed with finite element method (FEM) and granular medium with discrete element method (DEM), but there are few researches on the coupling interaction betwe...The existing research on continuous structure is usually analyzed with finite element method (FEM) and granular medium with discrete element method (DEM), but there are few researches on the coupling interaction between continuous structure and discrete medium. To the issue of this coupling interaction, a multi-scale simulation method with coupled finite/discrete element model is put forward, in their respective domains of discrete and finite elements, the nodes follow force law and motion law of their own method, and on the their interaction interface, the touch type between discrete and finite elements is distinguished as two types: full touch and partial touch, the interaction force between them is calculated with linear elastic model. For full touch, the contact force is proportional to the overlap distance between discrete element and finite element patch. For partial touch, first the finite element patch is extended on all sides indefinitely to be a complete plane, the full contact force can be obtained with the touch type between discrete element and plane being viewed as full touch, then the full overlap area between them and the actual overlap area between discrete element and finite element patch are computed, the actual contact force is obtained by scaling the full contact force with a factor which is determined by the ratio of the actual overlap area to the full overlap area. The contact force is equivalent to the finite element nodes and the force and displacement on the nodes can be computed, so the ideal simulation results can be got. This method has been used to simulate the cutter disk of the earth pressure balance shield machine (EPBSM) made in North Heavy Industry (NHI) with its excavation diameter of 6.28 m cutting and digging the sandy clay layer. The simulation results show that as the gradual increase of excavating depth of the cutter head, the maximum stress occurs at the roots of cutters on the cutter head, while for the soil, the largest stress is distributed at the region which directly contacted with the cutters. The proposed research can provide good solutions for correct design and installation of cutters, and it is necessary to design mounting bracket to fix cutters on cutter head.展开更多
Traditional multi-band frequency selective surface (FSS) approaches are hard to achieve a perfect resonance response in a wide band due to the limit of the onset grating lobe frequency determined by the array. To so...Traditional multi-band frequency selective surface (FSS) approaches are hard to achieve a perfect resonance response in a wide band due to the limit of the onset grating lobe frequency determined by the array. To solve this problem, an approach of combining elements in different period to build a hybrid array is presented. The results of series of numerical simulation show that multi-periodicity combined element FSS, which are designed using this approach, usually have much weaker grating lobes than the traditional FSS. Furthermore, their frequency response can be well predicted through the properties of their member element FSS. A prediction method for estimating the degree of expected grating lobe energy loss in designing multi-band FSS using this approach is provided.展开更多
Gas multi-elements Penetration is a new surface hardening technology to improve the performance of the surface. In this paper, we focus on the study on the influence of multi-elements penetration on hardness of GCrlS ...Gas multi-elements Penetration is a new surface hardening technology to improve the performance of the surface. In this paper, we focus on the study on the influence of multi-elements penetration on hardness of GCrlS bearing steel surface by C-N-O multi-elements penetrating treatment, and analyze the three elements, C, N and O in the surface with an EDX. Analysis of SEM images shows that there forms a penetrated layer 75 m or so in thickness over the surface, in which, 0-30 U m is the passivation layer, 30-60 m, the bright layer, and 60-75, the transition layer.展开更多
A hybrid Cartesian grid/gridless method is developed for calculating viscous flows over multi-element airfoils.The method adopts an unstructured Cartesian grid to cover most areas of the computational domain and leave...A hybrid Cartesian grid/gridless method is developed for calculating viscous flows over multi-element airfoils.The method adopts an unstructured Cartesian grid to cover most areas of the computational domain and leaves only small region adjacent to the aerodynamic bodies to be filled with the cloud of points used in the gridless methods,which results in a better combination of the computational efficiency of the Cartesian grid and the flexibility of the gridless method in handling complex geometries.The clouds of points in the local gridless region are implemented in an anisotropic way according to the features of the thin boundary layer of the viscous flows over the airfoils,and the clouds of points at the vicinity of the interface between the grid and the gridless regions are also controlled by using an adaptive refinement technique during the generation of the unstructured Cartesian grid.An implementation of the resulting hybrid method is presented for solving two-dimensional compressible Navier-Stokes(NS)equations.The simulations of the viscous flows over a RAE2822airfoil or a two-element airfoil are successfully carried out,and the obtained results agree well with the available experimental data.展开更多
Ti(C,N)/TiN multi-element-layer films was deposited on aluminium alloy substrates by using multi-arc ion plating. The microhardness of the films was 2000HV0.i which was nearly 21 times of that of the substrates. XRD a...Ti(C,N)/TiN multi-element-layer films was deposited on aluminium alloy substrates by using multi-arc ion plating. The microhardness of the films was 2000HV0.i which was nearly 21 times of that of the substrates. XRD analysis show that the main composition of the composite films system were Ti(C,N), TiN, Al3Ti, Al and a little Ti2N. The presence of MjTi new phase in the interface of the films/substrates indicated some metallurgical bonding between them, which implies higher adhesive strength of the films/substrates system. Pin-on-disc tests showed that the wear resistance of the substrates was improved substantially. However, the coefficient of friction of the films/substrate system was high (u=0.66), which resulted in the wear of the counterparts. To reduce the coefficient of friction, nanometer lubrication dry films was applied on top of the multi-element-layer films to form composite films system and subsequent wear tests showed that the resulting composite films led to reduction of the coefficient of friction from 0.66 to 0.16. Meanwhile, wear mass loss of the counterpart was reduced from 1.29 mg to 0.02 mg, so that increased wear resistance and reduced friction effects were achieved.展开更多
We propose a multi-field implicit finite element method for analyzing the electromechanical behavior of dielectric elastomers. This method is based on a four-field variational principle, which includes displacement an...We propose a multi-field implicit finite element method for analyzing the electromechanical behavior of dielectric elastomers. This method is based on a four-field variational principle, which includes displacement and electric potential for the electromechanical coupling analysis, and additional independent fields to address the incompressible constraint of the hyperelastic material. Linearization of the variational form and finite element discretization are adopted for the numerical implementation. A general FEM program framework is devel- oped using C++ based on the open-source finite element library deal.II to implement this proposed algorithm. Numerical examples demonstrate the accuracy, convergence properties, mesh-independence properties, and scalability of this method. We also use the method for eigenvalue analysis of a dielectric elastomer actuator subject to electromechanical loadings. Our finite element implementation is available as an online supplementary material.展开更多
The multi-piece post-crown technique is more effective in restoring residual root than other restoration techniques.Various types of adhesives have different material properties that affect restoration.Therefore,the c...The multi-piece post-crown technique is more effective in restoring residual root than other restoration techniques.Various types of adhesives have different material properties that affect restoration.Therefore,the choice of adhesive is particularly important for patients.However,the effect of different kinds of adhesives was not too precise by experimental methods when concerning about individual differences of teeth.One tooth root can only be restored with one type of adhesive in experiment.After the mechanical test,this tooth root cannot be restored with other adhesives.With the help of medical imaging technology,reverse engineering and finite element analysis,a molar model can be reconstructed precisely and restored using different types of adhesives.The same occlusal and chewing loads were exerted on the same restored residual root models with different types of adhesives separately.Results of von Mises stress analysis showed that the adhesives with low Young’s modulus can protect the root canal effectively.However,a root canal concentration is apparently produced around the root canal orifice when chewing.Adhesives with large Young’s modulus can buffer the stress concentration of the root canal orifice.However,the root canal tissue may be destroyed because the adhesive is too hard to buffer the load.展开更多
A multi-resolution rectangular shell element with membrane-bending based on the Kirchhoff-Love theory is proposed. The multi-resolution analysis (MRA) framework is formulated out of a mutually nesting displacement s...A multi-resolution rectangular shell element with membrane-bending based on the Kirchhoff-Love theory is proposed. The multi-resolution analysis (MRA) framework is formulated out of a mutually nesting displacement subspace sequence, whose basis functions are constructed of scaling and shifting on the element domain of basic node shape functions. The basic node shape functions are constructed from shifting to other three quadrants around a specific node of a basic element in one quadrant and joining the corresponding node shape functions of four elements at the specific node. The MRA endows the proposed element with the resolution level (RL) to adjust the element node number, thus modulating structural analysis accuracy accordingly. The node shape functions of Kronecker delta property make the treatment of element boundary condition quite convenient and enable the stiffness matrix and the loading column vectors of the proposed element to be automatically acquired through quadraturing around nodes in RL adjusting. As a result, the traditional 4-node rectangular shell element is a mono-resolution one and also a special case of the proposed element. The accuracy of a structural analysis is actually determined by the RL, not by the mesh. The simplicity and clarity of node shape function formulation with the Kronecker delta property, and the rational MRA enable the proposed element method to be implemented more rationally, easily and efficiently than the conventional mono-resolution rectangular shell element method or other corresponding MRA methods.展开更多
Rare earth elements are strategic commodities in many countries, and an important resource for the growing modern technology industry. As such, there is an increasing interest for development of rare earth element pro...Rare earth elements are strategic commodities in many countries, and an important resource for the growing modern technology industry. As such, there is an increasing interest for development of rare earth element processing, and this work is a part of further development of chromatography as a rare earth element separation process method. Process optimization is pivotal for process development, and it is common that several competing objectives must be regarded. Chromatographic separation processes often consider competing objectives, such as productivity, yield, pool concentration and modifier consumption, which leads to Pareto optimal solutions. Adding robustness to a process is of great importance to account for process disturbances and uncertainties but generally comes with reduced performance of the other process objectives as a trade off. In this study, a model-based robust multi-objective optimization was carried out for batch-wise chromatographic separation of the rare earth elements samarium, europium and gadolinium, which was considered highly un-robust due to the neighbouring peaks proximity to the product pooling horizon. The results from the robust optimization were used to chart the required operation point changes for keeping the amount of failed batches at an acceptable level when a certain level of process disturbance was introduced. The loss of process performance due to the gained robustness was found to be in the range of 10% - 20% reduced productivity when comparing the robust and un-robust Pareto solutions at Pareto points with identical yield. The methodology presented shows how to increase robustness to a highly un-robust system while still keeping multiple objectives at their optima.展开更多
A set of serf-developed apparatus for foundation physical model were utilized to conduct model tests of the multi-element composite foundation with a steel pipe pile and several gravel piles. Some load-bearing charact...A set of serf-developed apparatus for foundation physical model were utilized to conduct model tests of the multi-element composite foundation with a steel pipe pile and several gravel piles. Some load-bearing characteristics of the multi-element Composite foundation, including the curves of foundation settlement, stresses of piles, pile-soil stress ratio, and load-sharing ratio of piles and soil, were obtained to study its working performances in silty sand soil. The experimental results revealed that the multi-element composite foundation with steel pipe pile and gravel pile contributed more than the gravel pile composite foundation in improving the bearing capacity of the silty fine sand.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52231001)Evan Ma and Jun Ding also acknowledge XJTU for hosting their research at the Center for Alloy Innovation and Design(CAID).
文摘1.Introduction Multi-principal element alloys(MPEAs),with compositions in the central region of the multicomponent phase diagram,have been dubbed"high-entropy alloys"(HEAs)in recent years[1-11].A more general term currently accepted by the community for these MPEAs is complex concentrated alloys or compositionally complex alloys(CCAs)[12].These alloys are usually based on single-phase multi-principal element solid solutions,with no need or possibility to distinguish which species constitutes the solvent and which ones are solutes.This Viewpoint and Perspective article focuses on a salient feature in the internal structure of MPEAs,different from traditional metals and solvent-(dilute)solute solutions.Specifically,the unusual trait to be highlighted for these heavily concentrated solutions is their inherent chemical inhomogeneity on the nanoscale,in terms of the high propensity for compositional fluctuation and local chemical order.
基金supported by the Chongqing Research Program of Basic Research and Frontier Technology(No.CSTC2013jcyjA50016)the National Natural Science Foundation of China(Nos.51401039,51571037 and 51204110)the Scientific and Technological Research Program of Chongqing Municipal Education Commission(No.KJ1709204).
文摘The approximately equimolar ratio A1CrNiSiTi multi-principal element alloy (MPEA) coatings were fab- ricated by laser cladding on Ti-6Al-4V (Ti64) alloy. Scanning electron microscopy (SEM), equipped with an energy-dispersive spectroscopy (EDS), and X-ray diffrac- tion (XRD) were used to characterize the microstructure and composition. Investigations show that the coatings consist of (Ti, Cr)5Si3 and NiA1 phases, formed by in situ reaction. The phase composition is initially explicated according to obtainable binary and ternary phase diagrams, and the formation Gibbs energy of TisSi3, VsSi3 and CrsSi3. Dry sliding reciprocating friction and wear tests of the A1CrNiSiTi coating and Ti64 alloy substrate without coating were evaluated. A surface mapping profiler was used to evaluate the wear volume. The worn surface was characterized by SEM-EDS. The hardness and wear resistance of the A1CrNiSiTi coating are well compared with that of the basal material (Ti64). The main wear mechanism of the AICrNiSiTi coating is slightly adhesive transfer from GCrl5 counterpart, and a mixed layer com- posed of transferred materials and oxide is formed.
基金financial support for this research by Natural Science Foundation of Guangxi Province (0575-18)Guangxi Technology Research Project (0639003)Guangxi University Scientific Research Foundation (x071066)
文摘AlCrFeNiCu high-entropy alloy (THA) was synthesized by the arc melting and casting method. The alloy exhibits simple FCC and BCC solid solution phases rather than intermetallic compounds. The reason is that the Gibbs free energy of mixing of the equimolar A1CrFeNiCu alloy is smaller than that of inter-metallic compounds by calculation according to the Miedema model .
基金Project supported by the National Research Fund of South Africa
文摘In this study, C,N,S-doped ZrO2 and a series of Eu doped C,N,S-ZrO2 photocatalysts were synthesized by a coprecipitation method using thiourea as the source of C, N and S and Eu(NO3)·6H2O as source of Eu. The materials were characterized by X-ray dif-fraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), UV-visible diffuse reflectance spectroscopy, scanning electron microscopy (SEM)/energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). Indigo carmine (IC) was chosen as a model for organic pollutants and used to evaluate the photocatalytic performance of the photo-catalysts under simulated solar light. Commercial ZrO2 was used as a reference material. XRD and Raman results indicated the for-mation of both tetragonal and monoclinic phase ZrO2 with particle size ranging from 8–30 nm. Multi-element doping had a great in-fluence on the optical responses manifested as red shift in the absorption edge. The highest photocatalytic activity towards IC was observed for the Eu,C,N,S-doped ZrO2 (0.6 mol.%Eu) sample (k=1.09×10–2 min–1). The commercial ZrO2 showed the lowest photo-degradation activity (k=5.83×10–4 min–1). The results showed that the control of Eu doping in the C,N,S-ZrO2 was very important in reducing electron-hole recombination. The synergistic effect of Eu, C, N, and S in the ZrO2 matrix led to enhanced utilization of simulated solar energy for the degradation of IC through narrowing of bandgaps.
文摘The paper is to integrate aerodynamic and aero-acoustic optimizatiom design of high lift devices,especially for two-element airfoils with slat.Aerodynamic analysis on flow field utilizes a high-order,high-resolution spatial differential method for large eddy simulation(LES),which can guarantee accuracy and efficiency.The aeroacoustic analysis for noise level is calculated with Ffowcs Williams-Hawkings(FW-H)integration formula.Fidelity of calculation is verified by standard models.Method of streamline-based Euler simulation(MSES)is used to obtain the aerodynamic characters.Based on the confirmation of numerical methods,detailed research has been conducted for the leading edge slat on multi-element airfoils.Various slot parameter influences on noise are analyzed.The results of the slot optimization parameters can be used in multi-element airfoil design.
基金supported by National Nature Science Foundation of China(No.11175244)
文摘In X-ray absorption fine structure(XAFS) experiments,Soller slits are widely used as filter devices in order to improve the signal to noise ratio.Performing high accuracy manual focusing operations is a time-consuming process;therefore,this work introduces an automatic focusing method for Soller slits in multi-element fluorescence detectors.This method establishes a relation model between the fluorescence intensity distribution and the coordinates of the fluorescence excitation point.According to this relation model,the actual coordinates of the fluorescence excitation point can be deduced from the detected fluorescence intensity distribution and used in focusing operations.This method has proven to be feasible in an XAFS experiment at the BL14W1 beamline of the Shanghai Synchrotron Radiation Facility.
文摘A multivariate statistical analysis was performed on multi-element soil geochemical data from the Koda Hill-Bulenga gold prospects in the Wa-Lawra gold belt, northwest Ghana. The objectives of the study were to define gold relationships with other trace elements to determine possible pathfinder elements for gold from the soil geochemical data. The study focused on seven elements, namely, Au, Fe, Pb, Mn, Ag, As and Cu. Factor analysis and hierarchical cluster analysis were performed on the analyzed samples. Factor analysis explained 79.093% of the total variance of the data through three factors. This had the gold factor being factor 3, having associations of copper, iron, lead and manganese and accounting for 20.903% of the total variance. From hierarchical clustering, gold was also observed to be clustering with lead, copper, arsenic and silver. There was further indication that, gold concentrations were lower than that of its associations. It can be inferred from the results that, the occurrence of gold and its associated elements can be linked to both primary dispersion from underlying rocks and secondary processes such as lateritization. This data shows that Fe and Mn strongly associated with gold, and alongside Pb, Ag, As and Cu, these elements can be used as pathfinders for gold in the area, with ferruginous zones as targets.
文摘In recent years, the modern methods of multi-element analysis of precious metals have attracted wide attention in scientific research and industry. The application and development in the decomposition of samples, separation and enrichment, and modern instrumental analysis of the platinum-group elements (PGEs) and gold in geological and environmental samples have been reviewed. Finally, the tendency of analysis of precious metals is also prospected.
基金supported by a grant-in-aid for the National Core Research Center Program from the Ministry of Education Science & Technology,Koreathe Korea Science & Engineering Foundation (No.R15-2006-022-03003-0)
文摘The powder compaction simulations were performed to demonstrate deformation behavior of particles and estimate the effect of different punch speeds and particle diameters on the relative density of powder by a multi-particle finite element model(MPFEM). Individual particle discretized with a finite element mesh allows for a full description of the contact mechanics. In order to verify the reliability of compaction simulation by MPFEM, the compaction tests of porous aluminum with average particle size of 20 μm and 3 μm were performed at different ram speeds of 5, 15, 30 and 60 mm/min by MTS servo-hydraulic tester. The results show that the slow ram speed is of great advantage for powder densification in low compaction force due to sufficient particle rearrangement and compaction force increases with decrease in average particle size of aluminum.
基金supported by National Basic Research Program of China (973 Program, Grant No. 2013CB035400)Science Fund for Creative Research Groups of NSFC of China (Grant No. 51221004)National Natural Science Foundation of China (Grant No. 51075357)
文摘The existing research on continuous structure is usually analyzed with finite element method (FEM) and granular medium with discrete element method (DEM), but there are few researches on the coupling interaction between continuous structure and discrete medium. To the issue of this coupling interaction, a multi-scale simulation method with coupled finite/discrete element model is put forward, in their respective domains of discrete and finite elements, the nodes follow force law and motion law of their own method, and on the their interaction interface, the touch type between discrete and finite elements is distinguished as two types: full touch and partial touch, the interaction force between them is calculated with linear elastic model. For full touch, the contact force is proportional to the overlap distance between discrete element and finite element patch. For partial touch, first the finite element patch is extended on all sides indefinitely to be a complete plane, the full contact force can be obtained with the touch type between discrete element and plane being viewed as full touch, then the full overlap area between them and the actual overlap area between discrete element and finite element patch are computed, the actual contact force is obtained by scaling the full contact force with a factor which is determined by the ratio of the actual overlap area to the full overlap area. The contact force is equivalent to the finite element nodes and the force and displacement on the nodes can be computed, so the ideal simulation results can be got. This method has been used to simulate the cutter disk of the earth pressure balance shield machine (EPBSM) made in North Heavy Industry (NHI) with its excavation diameter of 6.28 m cutting and digging the sandy clay layer. The simulation results show that as the gradual increase of excavating depth of the cutter head, the maximum stress occurs at the roots of cutters on the cutter head, while for the soil, the largest stress is distributed at the region which directly contacted with the cutters. The proposed research can provide good solutions for correct design and installation of cutters, and it is necessary to design mounting bracket to fix cutters on cutter head.
基金supported by the National Natural Science Foundation of China(90305026).
文摘Traditional multi-band frequency selective surface (FSS) approaches are hard to achieve a perfect resonance response in a wide band due to the limit of the onset grating lobe frequency determined by the array. To solve this problem, an approach of combining elements in different period to build a hybrid array is presented. The results of series of numerical simulation show that multi-periodicity combined element FSS, which are designed using this approach, usually have much weaker grating lobes than the traditional FSS. Furthermore, their frequency response can be well predicted through the properties of their member element FSS. A prediction method for estimating the degree of expected grating lobe energy loss in designing multi-band FSS using this approach is provided.
文摘Gas multi-elements Penetration is a new surface hardening technology to improve the performance of the surface. In this paper, we focus on the study on the influence of multi-elements penetration on hardness of GCrlS bearing steel surface by C-N-O multi-elements penetrating treatment, and analyze the three elements, C, N and O in the surface with an EDX. Analysis of SEM images shows that there forms a penetrated layer 75 m or so in thickness over the surface, in which, 0-30 U m is the passivation layer, 30-60 m, the bright layer, and 60-75, the transition layer.
基金Supported by the National Natural Science Foundation of China(11172134)the Funding of Jiangsu Innovation Program for Graduate Education(CXZZ110192)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A hybrid Cartesian grid/gridless method is developed for calculating viscous flows over multi-element airfoils.The method adopts an unstructured Cartesian grid to cover most areas of the computational domain and leaves only small region adjacent to the aerodynamic bodies to be filled with the cloud of points used in the gridless methods,which results in a better combination of the computational efficiency of the Cartesian grid and the flexibility of the gridless method in handling complex geometries.The clouds of points in the local gridless region are implemented in an anisotropic way according to the features of the thin boundary layer of the viscous flows over the airfoils,and the clouds of points at the vicinity of the interface between the grid and the gridless regions are also controlled by using an adaptive refinement technique during the generation of the unstructured Cartesian grid.An implementation of the resulting hybrid method is presented for solving two-dimensional compressible Navier-Stokes(NS)equations.The simulations of the viscous flows over a RAE2822airfoil or a two-element airfoil are successfully carried out,and the obtained results agree well with the available experimental data.
文摘Ti(C,N)/TiN multi-element-layer films was deposited on aluminium alloy substrates by using multi-arc ion plating. The microhardness of the films was 2000HV0.i which was nearly 21 times of that of the substrates. XRD analysis show that the main composition of the composite films system were Ti(C,N), TiN, Al3Ti, Al and a little Ti2N. The presence of MjTi new phase in the interface of the films/substrates indicated some metallurgical bonding between them, which implies higher adhesive strength of the films/substrates system. Pin-on-disc tests showed that the wear resistance of the substrates was improved substantially. However, the coefficient of friction of the films/substrate system was high (u=0.66), which resulted in the wear of the counterparts. To reduce the coefficient of friction, nanometer lubrication dry films was applied on top of the multi-element-layer films to form composite films system and subsequent wear tests showed that the resulting composite films led to reduction of the coefficient of friction from 0.66 to 0.16. Meanwhile, wear mass loss of the counterpart was reduced from 1.29 mg to 0.02 mg, so that increased wear resistance and reduced friction effects were achieved.
基金the support under A*STAR SERC grant (132-183-0025)
文摘We propose a multi-field implicit finite element method for analyzing the electromechanical behavior of dielectric elastomers. This method is based on a four-field variational principle, which includes displacement and electric potential for the electromechanical coupling analysis, and additional independent fields to address the incompressible constraint of the hyperelastic material. Linearization of the variational form and finite element discretization are adopted for the numerical implementation. A general FEM program framework is devel- oped using C++ based on the open-source finite element library deal.II to implement this proposed algorithm. Numerical examples demonstrate the accuracy, convergence properties, mesh-independence properties, and scalability of this method. We also use the method for eigenvalue analysis of a dielectric elastomer actuator subject to electromechanical loadings. Our finite element implementation is available as an online supplementary material.
文摘The multi-piece post-crown technique is more effective in restoring residual root than other restoration techniques.Various types of adhesives have different material properties that affect restoration.Therefore,the choice of adhesive is particularly important for patients.However,the effect of different kinds of adhesives was not too precise by experimental methods when concerning about individual differences of teeth.One tooth root can only be restored with one type of adhesive in experiment.After the mechanical test,this tooth root cannot be restored with other adhesives.With the help of medical imaging technology,reverse engineering and finite element analysis,a molar model can be reconstructed precisely and restored using different types of adhesives.The same occlusal and chewing loads were exerted on the same restored residual root models with different types of adhesives separately.Results of von Mises stress analysis showed that the adhesives with low Young’s modulus can protect the root canal effectively.However,a root canal concentration is apparently produced around the root canal orifice when chewing.Adhesives with large Young’s modulus can buffer the stress concentration of the root canal orifice.However,the root canal tissue may be destroyed because the adhesive is too hard to buffer the load.
基金financial support by the Open Foundation of Chongqing Key Laboratory of Geomechanics and Geoenvironment Protection(Logistical Engineering University)(No.GKLGGP 2013-02)
文摘A multi-resolution rectangular shell element with membrane-bending based on the Kirchhoff-Love theory is proposed. The multi-resolution analysis (MRA) framework is formulated out of a mutually nesting displacement subspace sequence, whose basis functions are constructed of scaling and shifting on the element domain of basic node shape functions. The basic node shape functions are constructed from shifting to other three quadrants around a specific node of a basic element in one quadrant and joining the corresponding node shape functions of four elements at the specific node. The MRA endows the proposed element with the resolution level (RL) to adjust the element node number, thus modulating structural analysis accuracy accordingly. The node shape functions of Kronecker delta property make the treatment of element boundary condition quite convenient and enable the stiffness matrix and the loading column vectors of the proposed element to be automatically acquired through quadraturing around nodes in RL adjusting. As a result, the traditional 4-node rectangular shell element is a mono-resolution one and also a special case of the proposed element. The accuracy of a structural analysis is actually determined by the RL, not by the mesh. The simplicity and clarity of node shape function formulation with the Kronecker delta property, and the rational MRA enable the proposed element method to be implemented more rationally, easily and efficiently than the conventional mono-resolution rectangular shell element method or other corresponding MRA methods.
文摘Rare earth elements are strategic commodities in many countries, and an important resource for the growing modern technology industry. As such, there is an increasing interest for development of rare earth element processing, and this work is a part of further development of chromatography as a rare earth element separation process method. Process optimization is pivotal for process development, and it is common that several competing objectives must be regarded. Chromatographic separation processes often consider competing objectives, such as productivity, yield, pool concentration and modifier consumption, which leads to Pareto optimal solutions. Adding robustness to a process is of great importance to account for process disturbances and uncertainties but generally comes with reduced performance of the other process objectives as a trade off. In this study, a model-based robust multi-objective optimization was carried out for batch-wise chromatographic separation of the rare earth elements samarium, europium and gadolinium, which was considered highly un-robust due to the neighbouring peaks proximity to the product pooling horizon. The results from the robust optimization were used to chart the required operation point changes for keeping the amount of failed batches at an acceptable level when a certain level of process disturbance was introduced. The loss of process performance due to the gained robustness was found to be in the range of 10% - 20% reduced productivity when comparing the robust and un-robust Pareto solutions at Pareto points with identical yield. The methodology presented shows how to increase robustness to a highly un-robust system while still keeping multiple objectives at their optima.
基金The National Natural Science Foundation of China (No.50478090)
文摘A set of serf-developed apparatus for foundation physical model were utilized to conduct model tests of the multi-element composite foundation with a steel pipe pile and several gravel piles. Some load-bearing characteristics of the multi-element Composite foundation, including the curves of foundation settlement, stresses of piles, pile-soil stress ratio, and load-sharing ratio of piles and soil, were obtained to study its working performances in silty sand soil. The experimental results revealed that the multi-element composite foundation with steel pipe pile and gravel pile contributed more than the gravel pile composite foundation in improving the bearing capacity of the silty fine sand.