期刊文献+
共找到2,781篇文章
< 1 2 140 >
每页显示 20 50 100
A multi-source data fusion modeling method for debris flow prevention engineering 被引量:1
1
作者 XU Qing-yang YE Jian LYU Yi-jie 《Journal of Mountain Science》 SCIE CSCD 2021年第4期1049-1061,共13页
The Digital Elevation Model(DEM)data of debris flow prevention engineering are the boundary of a debris flow prevention simulation,which provides accurate and reliable DEM data and is a key consideration in debris flo... The Digital Elevation Model(DEM)data of debris flow prevention engineering are the boundary of a debris flow prevention simulation,which provides accurate and reliable DEM data and is a key consideration in debris flow prevention simulations.Thus,this paper proposes a multi-source data fusion method.First,we constructed 3D models of debris flow prevention using virtual reality technology according to the relevant specifications.The 3D spatial data generated by 3D modeling were converted into DEM data for debris flow prevention engineering.Then,the accuracy and applicability of the DEM data were verified by the error analysis testing and fusion testing of the debris flow prevention simulation.Finally,we propose the Levels of Detail algorithm based on the quadtree structure to realize the visualization of a large-scale disaster prevention scene.The test results reveal that the data fusion method controlled the error rate of the DEM data of the debris flow prevention engineering within an allowable range and generated 3D volume data(obj format)to compensate for the deficiency of the DEM data whereby the 3D internal entity space is not expressed.Additionally,the levels of detailed method can dispatch the data of a large-scale debris flow hazard scene in real time to ensure a realistic 3D visualization.In summary,the proposed methods can be applied to the planning of debris flow prevention engineering and to the simulation of the debris flow prevention process. 展开更多
关键词 Debris flow prevention Level of detail Debris flow simulation multi platform fusion multi source data fusion
原文传递
Weighted Multi-sensor Data Level Fusion Method of Vibration Signal Based on Correlation Function 被引量:7
2
作者 BIN Guangfu JIANG Zhinong +1 位作者 LI Xuejun DHILLON B S 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期899-904,共6页
As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery... As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery fault diagnosis.The traditional signal processing methods,such as classical inference and weighted averaging algorithm usually lack dynamic adaptability that is easy for trends to cause the faults to be misjudged or left out.To enhance the measuring veracity and precision of vibration signal in rotary machine multi-sensor vibration signal fault diagnosis,a novel data level fusion approach is presented on the basis of correlation function analysis to fast determine the weighted value of multi-sensor vibration signals.The approach doesn't require knowing the prior information about sensors,and the weighted value of sensors can be confirmed depending on the correlation measure of real-time data tested in the data level fusion process.It gives greater weighted value to the greater correlation measure of sensor signals,and vice versa.The approach can effectively suppress large errors and even can still fuse data in the case of sensor failures because it takes full advantage of sensor's own-information to determine the weighted value.Moreover,it has good performance of anti-jamming due to the correlation measures between noise and effective signals are usually small.Through the simulation of typical signal collected from multi-sensors,the comparative analysis of dynamic adaptability and fault tolerance between the proposed approach and traditional weighted averaging approach is taken.Finally,the rotor dynamics and integrated fault simulator is taken as an example to verify the feasibility and advantages of the proposed approach,it is shown that the multi-sensor data level fusion based on correlation function weighted approach is better than the traditional weighted average approach with respect to fusion precision and dynamic adaptability.Meantime,the approach is adaptable and easy to use,can be applied to other areas of vibration measurement. 展开更多
关键词 vibration signal multi-SENSOR data level fusion correlation function weighted value
在线阅读 下载PDF
STUDY ON THE COAL-ROCK INTERFACE RECOGNITION METHOD BASED ON MULTI-SENSOR DATA FUSION TECHNIQUE 被引量:7
3
作者 Ren FangYang ZhaojianXiong ShiboResearch Institute of Mechano-Electronic Engineering,Taiyuan University of Technology,Taiyuan 030024, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第3期321-324,共4页
The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data... The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data fusion technique is analyzed, and hereby the testplatform of recognition system is manufactured. The advantage of data fusion with the fuzzy neuralnetwork (FNN) technique has been probed. The two-level FNN is constructed and data fusion is carriedout. The experiments show that in various conditions the method can always acquire a much higherrecognition rate than normal ones. 展开更多
关键词 Coal-rock interface recognition (CIR) data fusion (DF) multi-SENSOR
在线阅读 下载PDF
A Study of Multi-sensor Data Fusion System Based on MAS for Nutrient Solution Measurement
4
作者 Feng Chen Dafu Yang +1 位作者 Bing Wang Xianhu Tan 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期264-267,共4页
For complementarity and redundancy of multi-sensor data fusion (MSDF) system,it is an effective approach for multiple components measurement.In order to measure nutrient solution on-line,a dynamic and complex system ... For complementarity and redundancy of multi-sensor data fusion (MSDF) system,it is an effective approach for multiple components measurement.In order to measure nutrient solution on-line,a dynamic and complex system under greenhouse environment,sensors should have intelligent properties including self-calibration and self-compensation. Meanwhile,it is necessary for multiple sensors to cooperate and interact for enhancing reliability of multi-sensor system. Because of the properties of multi-agent system (MAS),it is an appropriate tool to study MSDF system.This paper proposed an architecture of MSDF system based on MAS for the multiple components measurement of nutrient solution.The sensor agent's structure and function modules are analyzed and described in detail,the formal definitions are given,too.The relations of the sensors are modeled to implement reliability diagnosis of the multi-sensor system,so that the reliability of nutrient control system is enhanced.This study offers an effective approach for the study of MSDF. 展开更多
关键词 multi-sensor data fusion multi-agent system nutrient solution reliability diagnosis.
在线阅读 下载PDF
Application of data fusion on multi-function earth drill
5
作者 胡长胜 赵伟民 +3 位作者 李瑰贤 杨春蕾 牛红 胡长军 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2003年第1期89-92,共4页
taking the bucket of multi function earth drill as an example, combining with the conception of multi sensor integration and data fusion, adopting the terrene column chart and digging torque formula as control depende... taking the bucket of multi function earth drill as an example, combining with the conception of multi sensor integration and data fusion, adopting the terrene column chart and digging torque formula as control dependence, the detecting method of the earth drill’s working state is introduced. Multi sensor data fusion is done with the aid of BP neural network in Matlab. The data to be interfused are pre processed and the program of simulation and “point checking” is given. 展开更多
关键词 multi function earth drill multi sensor integration and data fusion normalization preprocessing simulation experiment
在线阅读 下载PDF
Image Processing on Geological Data in Vector Format and Multi-Source Spatial Data Fusion
6
作者 Liu Xing Hu Guangdao Qiu Yubao Faculty of Earth Resources, China University of Geosciences, Wuhan 430074 《Journal of China University of Geosciences》 SCIE CSCD 2003年第3期278-282,共5页
The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper... The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly. 展开更多
关键词 geological data GIS-based vector data conversion image processing multi-source data fusion
在线阅读 下载PDF
Method of Multi-Mode Sensor Data Fusion with an Adaptive Deep Coupling Convolutional Auto-Encoder
7
作者 Xiaoxiong Feng Jianhua Liu 《Journal of Sensor Technology》 2023年第4期69-85,共17页
To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features e... To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features extracted synchronously by the CCAE were stacked and fed to the multi-channel convolution layers for fusion. Then, the fused data was passed to all connection layers for compression and fed to the Softmax module for classification. Finally, the coupling loss function coefficients and the network parameters were optimized through an adaptive approach using the gray wolf optimization (GWO) algorithm. Experimental comparisons showed that the proposed ADCCAE fusion model was superior to existing models for multi-mode data fusion. 展开更多
关键词 multi-Mode data fusion Coupling Convolutional Auto-Encoder Adaptive Optimization Deep Learning
在线阅读 下载PDF
Weight Data Fusion Based on Mutual Support Applied in Large Diameter Measurement 被引量:1
8
作者 WANG Biao YU Xiaofen XU Congyu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第4期562-566,共5页
The on-line diameter measurement of larger axis workpieces is hard to achieve high precision detection, because of the bad environment of locale, the problem to amend the measuring error by non-uniform temperature fie... The on-line diameter measurement of larger axis workpieces is hard to achieve high precision detection, because of the bad environment of locale, the problem to amend the measuring error by non-uniform temperature field, and the difficulty to collimate and locate by usual method. By improving the measurement accuracy of larger axis accessories, it is useful to raise axis and hole's industry produce level. Because of the influence of complex environment in locale and some influential factors which are hard excluded from the large diameter measurement with multi-rolling-wheels method, the measurement results may not support or even contradict each other. To the situation, this paper puts forward a mutual support deviation distinguish data fusion method, including mutual support deviation detection and weight data fusion. The mutual support deviation detection part can effectively remove or weaken the unexpected impact on the measurement results and the weight data fusion part can get more accurate estimate result to the detected data. So the method can further improve the reliability of measurement results and increase the accuracy of the measurement system. By using the weight data fusion based on the mutual support (DFMS) to the simulation and experiment data, both simulation results and experiment results show that the method can effectively distinguish the data influenced by unexpected impact and improve the stability and reliability of measurement results. The new provided mutual support deviation distinguish method can be used to single sensor measurement and multi-sensor measurement, and can be used as a reference in the data distinguish of other area. The DFMS is helpful to realize the diameter measurement expanded uncertainty in 5 ×10^-6D or even higher when the measured axis workpiece's diameter is 1-5 m ( 1 m ≤ D ≤5 m ). 展开更多
关键词 multi-SENSOR mutual support weight factor data fusion rolling-wheel
在线阅读 下载PDF
Location Data Fusion Based on Group Consensus
9
作者 李国栋 陈维南 《Journal of Southeast University(English Edition)》 EI CAS 1997年第1期98-102,共5页
A new method of multi sensor location data fusion is proposed.The method is based on group consensus approach, which constructs group utility function (or its density) based on uncertainty of each sensor, and the loc... A new method of multi sensor location data fusion is proposed.The method is based on group consensus approach, which constructs group utility function (or its density) based on uncertainty of each sensor, and the location estimation is obtained based on the group utility function (or its density). The simulation results show that the method is better than those of mean and median estimation, and outlier and sensor failure can not affect the location estimation. 展开更多
关键词 multi sensor data fusion UTILITY function GROUP CONSENSUS LOCATION data fusion
在线阅读 下载PDF
Algorithm for Multi-laser-target Tracking Based on Clustering Fusion
10
作者 张立群 李言俊 张科 《Defence Technology(防务技术)》 SCIE EI CAS 2007年第1期28-32,共5页
Multi-laser-target tracking is an important subject in the field of signal processing of laser warners. A clustering method is applied to the measurement of laser warner, and the space-time fusion for measurements in ... Multi-laser-target tracking is an important subject in the field of signal processing of laser warners. A clustering method is applied to the measurement of laser warner, and the space-time fusion for measurements in the same cluster is accomplished. Real-time tracking of multi-laser-target and real-time picking of multi-laser-signal are introduced using data fusion of the measurements. A prototype device of the algorithm is built up. The results of experiments show that the algorithm is very effective. 展开更多
关键词 激光报警器 多目标跟踪 算法 聚类融合 信息处理
在线阅读 下载PDF
BEV感知学习在自动驾驶中的应用综述 被引量:3
11
作者 黄德启 黄海峰 +1 位作者 黄德意 刘振航 《计算机工程与应用》 北大核心 2025年第6期1-21,共21页
自动驾驶感知模块中作为采集输入的传感器种类不断发展,要使多模态数据统一地表征出来变得愈加困难。BEV感知学习在自动驾驶感知任务模块中可以使多模态数据统一融合到一个特征空间,相比于其他感知学习模型拥有更好的发展潜力。从研究... 自动驾驶感知模块中作为采集输入的传感器种类不断发展,要使多模态数据统一地表征出来变得愈加困难。BEV感知学习在自动驾驶感知任务模块中可以使多模态数据统一融合到一个特征空间,相比于其他感知学习模型拥有更好的发展潜力。从研究意义、空间部署、准备工作、算法发展及评价指标五个方面总结了BEV感知模型具有良好发展潜力的原因。BEV感知模型从框架角度概括为四个系列:Lift-Splat-Lss系列、IPM逆透视转换、MLP视图转换及Transformer视图转换;从输入数据概括为两类:第一类是纯图像特征的输入包括单目摄像头输入和多摄像头输入,第二类在融合数据输入中不仅是简单的点云数据和图像特征的数据融合,还包括了以点云数据为引导或监督的知识蒸馏融合和以引导切片方式去划分高度段的融合。概述了多目标追踪、地图分割、车道线检测及3D目标检测四种自动驾驶任务在BEV感知模型当中的应用,并总结了目前BEV感知学习四个系列框架的缺点。 展开更多
关键词 BEV感知学习 视图转换 多模态数据融合 多目标追踪 地图分割 车道线检测及3D目标检测
在线阅读 下载PDF
基于多数据融合的水电机组劣化趋势概率区间预测 被引量:1
12
作者 王淑青 翟宇胜 +2 位作者 胡文庆 盛世龙 刘东 《水电能源科学》 北大核心 2025年第2期201-205,共5页
传统的基于单一测点的预测模型无法全面反映水电机组的健康状态,这导致难以实现机组劣化状态的准确评估。对此,提出了一种基于多测点数据融合与概率区间预测的水电机组劣化趋势预测模型。首先,选取机组不同测点在各工况下健康运行的数... 传统的基于单一测点的预测模型无法全面反映水电机组的健康状态,这导致难以实现机组劣化状态的准确评估。对此,提出了一种基于多测点数据融合与概率区间预测的水电机组劣化趋势预测模型。首先,选取机组不同测点在各工况下健康运行的数据构成数据集,采用期望最大化—高斯混合模型(EM-GMM)拟合机组健康运行状态下的各监测量的概率密度分布;然后,计算待估样本在给定机组健康状态分布下的负对数似然概率,以作为劣化度指标;其次,采用熵权法计算各测点劣化度指标的权重,通过加权得到综合劣化度指标;最后,为确保预测结果的可靠性,利用多目标遗传算法(MOGA)优化高斯过程回归(GPR)模型代替传统的点预测模型,并使用不同的预测模型进行对比和评估,证明本文提出的模型具有更高的预测精度。 展开更多
关键词 水电机组 多数据融合 EM-GMM健康模型 劣化度指标 熵权法 概率区间预测模型
原文传递
多源数据融合的施工现场作业风险监测方法设计 被引量:1
13
作者 叶剑标 余晓云 刘炀 《齐齐哈尔大学学报(自然科学版)》 2025年第2期89-94,共6页
为了降低施工现场作业风险的发生概率,设计基于多源数据融合的施工现场作业风险监测方法。首先,设计施工现场作业风险监测总体思路,并根据施工现场环境的复杂性,划分作业风险类别。然后,基于可穿戴设备和环境传感器,多源化采集施工现场... 为了降低施工现场作业风险的发生概率,设计基于多源数据融合的施工现场作业风险监测方法。首先,设计施工现场作业风险监测总体思路,并根据施工现场环境的复杂性,划分作业风险类别。然后,基于可穿戴设备和环境传感器,多源化采集施工现场作业风险数据。经数据融合与预处理后,计算不同类别风险数据对应的隶属度,再利用离差加权法计算每种作业风险因素的权重。最后,根据风险因素权重值的大小,将施工现场的作业风险划分为不同的风险等级,完成对施工现场作业风险的监测。实验结果表明,该方法监测效果较好,能够有效提高施工现场作业风险监测精度和准确性。 展开更多
关键词 多源数据融合 可穿戴设备 施工现场 施工作业风险监测
在线阅读 下载PDF
基于多传感器数据融合的互异网络轴承故障诊断方法 被引量:2
14
作者 赵小强 李森 《计算机工程与应用》 北大核心 2025年第5期323-333,共11页
为了解决单传感器单一分支网络的输入容易受到外界干扰以及在不同域信号转换过程中丢失特征信息,导致故障诊断效果不佳的问题,提出了基于多传感器数据融合的互异网络轴承故障诊断方法。设计了数据预处理模块,以数据级的融合方式实现来... 为了解决单传感器单一分支网络的输入容易受到外界干扰以及在不同域信号转换过程中丢失特征信息,导致故障诊断效果不佳的问题,提出了基于多传感器数据融合的互异网络轴承故障诊断方法。设计了数据预处理模块,以数据级的融合方式实现来自多传感器的多角度故障特征互补,充分考虑了轴承设备多传感器之间的相关性。同时,将经过快速傅里叶变换(FFT)和频率切片小波变换(FSWT)处理后的信号融合为多域信号作为模型的输入,以多域信号独立作为模型输入的形式确保不同域信号在转换过程中关键的特征信息不会丢失。该方法针对不同的域信号设计了相对应的互异网络结构对多传感器数据高维非线性空间中的低维特征关键提取,这也为设备维修人员提供了更加可靠方便的维修手段。当其中一个分支网络的输入受到外界干扰时,另外两个分支网络会起到纠错的作用,不仅增强了网络的容错能力,同时也会增加网络的特征互补能力。利用记忆单元将特征视为不同的时间步,以此建立不同故障特征之间的依赖关系。为了防止模型陷入局部最优,使用适配于所提模型的学习率余弦退火算法优化模型训练。在两个轴承数据集上进行实验,结果表明,该方法拥有好的故障诊断效果和泛化能力,可以满足基于多传感器数据融合的轴承故障诊断任务。 展开更多
关键词 滚动轴承 故障诊断 多传感器 互异网络 数据融合 特征互补
在线阅读 下载PDF
面向动态混合数据的多粒度增量特征选择算法 被引量:3
15
作者 王锋 姚珍 梁吉业 《软件学报》 北大核心 2025年第3期1186-1201,共16页
在大数据时代,样本规模以及维数的动态更新和变化极大地增加了计算负担,在这些动态数据中,大多的数据样本并不以单一的数据取值形式存在,而是同时包含符号型数据和数值型数据的混合型数据.为此,学者们提出了许多关于混合数据的特征选择... 在大数据时代,样本规模以及维数的动态更新和变化极大地增加了计算负担,在这些动态数据中,大多的数据样本并不以单一的数据取值形式存在,而是同时包含符号型数据和数值型数据的混合型数据.为此,学者们提出了许多关于混合数据的特征选择算法,但现有的算法大多只适用静态数据或者小规模的增量数据,无法处理大规模动态变化的数据,尤其是数据分布不断变化的大规模增量数据集.针对这一局限性,通过分析动态数据中粒空间以及粒结构的变化和更新,基于信息融合机制,提出了一种面向动态混合数据的多粒度增量特征选择算法.该算法重点讨论了动态混合数据中的粒空间构建机制、多数据粒结构的动态更新机制以及面向数据分布变化信息融合机制.最后,通过与其他算法在UCI数据集上的实验结果进行对比,进一步验证了所提算法的可行性和高效性. 展开更多
关键词 动态混合数据 数据分布变化 多粒度计算 信息融合
在线阅读 下载PDF
基于地质背景的框架-属性耦合建模技术:以锦州市规划区为例
16
作者 李旭光 马天宇 +5 位作者 吴季寰 江山 赵岩 于慧明 邹君 富建华 《地质与勘探》 北大核心 2025年第3期545-555,共11页
三维地质模型是城市空间开发利用过程中不可或缺的可视化数据资源,开发兼具地质背景条件与空间准确性的高精度三维地质模型是当前数字地质领域的重点突破方向。本文研究以锦州市规划区为例,构建了以资料整理、框架刻画、网格剖分和属性... 三维地质模型是城市空间开发利用过程中不可或缺的可视化数据资源,开发兼具地质背景条件与空间准确性的高精度三维地质模型是当前数字地质领域的重点突破方向。本文研究以锦州市规划区为例,构建了以资料整理、框架刻画、网格剖分和属性赋值为基础模块的框架-属性耦合建模技术。将钻孔数据、地质平面图和地表高程作为模型的信息源,采用断层自动拆分聚合算法精细刻画断层面形态,并基于变形场的断裂恢复法生成地层界面,构建地质界面框架模型。在框架内部按地层的地质背景条件选择网格节点排列模式以生成截断矩形网格,并将属性数据粗化到采样点所处的网格节点中。应用变差函数分析已有属性的分布特征,以此匹配插值算法完成模型空间内网格节点的属性赋值。本技术整合并完善了多类型地质信息的层级关系,实现了对地层性质的准确重现,所建立的模型在地质体空间交切关系展示与地质背景表达方面均具备准确性。 展开更多
关键词 三维地质模型 地质背景 多源数据融合 网格剖分 属性插值 锦州
在线阅读 下载PDF
面向复杂光照场景的异质SLAM融合方法
17
作者 孙荣川 高水镕 +2 位作者 张鑫 郁树梅 孙立宁 《机器人》 北大核心 2025年第4期508-516,共9页
针对低光照、弱纹理等复杂光照环境中同步定位与地图构建(SLAM)面临的闭环检测失败和机器人轨迹精度低的问题,将传统视觉SLAM方法的高精度地图构建和精确定位能力与仿生SLAM方法在复杂光照环境下的强场景识别能力相结合,提出了一种基于... 针对低光照、弱纹理等复杂光照环境中同步定位与地图构建(SLAM)面临的闭环检测失败和机器人轨迹精度低的问题,将传统视觉SLAM方法的高精度地图构建和精确定位能力与仿生SLAM方法在复杂光照环境下的强场景识别能力相结合,提出了一种基于模糊神经网络的异质SLAM融合方法,包括基于标准型模糊神经网络的闭环决策方法以提升复杂光照场景下闭环检测的成功率,以及基于T-S(Takagi-Sugeno)模糊神经网络的轨迹优化方法以提升机器人轨迹估计的精准性,从而实现在复杂光照环境中更准确的定位和更可靠的环境建模。实验结果表明,相较于ORB-SLAM2和RatSLAM方法,提出的异质SLAM融合方法在自采集数据集和公开数据集上能获得更高的闭环检测召回率和更低的绝对轨迹误差(ATE),在复杂场景下展现出较强的鲁棒性,对提升复杂光照场景下机器人自主作业的精准性及稳定导航定位能力具有积极意义。 展开更多
关键词 视觉SLAM(同步定位与地图构建) 仿生SLAM 模糊神经网络 多模态数据融合
原文传递
基于多传感器感知的船舶柴油机热力参数监测研究
18
作者 邱亚兰 王建林 《舰船科学技术》 北大核心 2025年第6期106-109,共4页
柴油机是船舶动力的核心装置,对其热力参数进行监测可以有效提高船舶航行安全性。提出一种基于多传感器感知的船舶柴油机热力参数监测系统,设计系统基本结构,对热力参数相关的传感器进行硬件选型,设计燃油温度和压力传感器基本结构,提... 柴油机是船舶动力的核心装置,对其热力参数进行监测可以有效提高船舶航行安全性。提出一种基于多传感器感知的船舶柴油机热力参数监测系统,设计系统基本结构,对热力参数相关的传感器进行硬件选型,设计燃油温度和压力传感器基本结构,提出一种基于贝叶斯网络的多传感器数据融合方法,并采用加权平均法进行决策融合,在此基础上使用构建的监测系统对等多个压力和温度传感器数据进行实时监测,计算得到的决策融合结果能够有效排除异常传感器对热力参数监测结果的干扰。 展开更多
关键词 多传感器 数据融合 船舶柴油机 热力参数
在线阅读 下载PDF
基于OPCUA和ETL的伺服阀综合应用系统设计 被引量:1
19
作者 何军红 黎长鑫 董方辰 《工业仪表与自动化装置》 2025年第1期29-35,87,共8页
针对伺服阀生产过程中存在的设备种类繁多、不同供应商设备之间无法交换数据、数据集成工作复杂困难的问题,提出基于OPC UA (Object Linking and Embedding for Process Control Unified Architecture)和ETL (Extract-Transform-Load)... 针对伺服阀生产过程中存在的设备种类繁多、不同供应商设备之间无法交换数据、数据集成工作复杂困难的问题,提出基于OPC UA (Object Linking and Embedding for Process Control Unified Architecture)和ETL (Extract-Transform-Load)的综合解决方案。该方案使用OPC UA作为通信协议完成设备之间的高效通信,利用ETL技术设计并实现了伺服阀综合应用系统。样机试验验证了方案的有效性。该方案实现了产线信息化过程中的设备互操作能力,是确保伺服阀质量可靠性和性能一致性的关键基础技术。 展开更多
关键词 OPC UA ETL技术 伺服阀 多源数据融合
在线阅读 下载PDF
脆性破坏地质灾害智能监测预警研究与展望
20
作者 杜岩 吕梦镓 +3 位作者 刘敬楠 谢谟文 蒋宇静 陈红宾 《应用基础与工程科学学报》 北大核心 2025年第3期755-769,共15页
随着脆性破坏地质灾害发生频率的增加,其预警难度逐渐凸显.不同于塑性破坏,脆性破坏灾害在破坏前缺乏明显的塑性应变,难以精准识别.研究表明,脆性破坏是内、外动力耦合作用的结果,其破坏机理分析需依赖更全面的数据支撑;其中,岩桥损伤... 随着脆性破坏地质灾害发生频率的增加,其预警难度逐渐凸显.不同于塑性破坏,脆性破坏灾害在破坏前缺乏明显的塑性应变,难以精准识别.研究表明,脆性破坏是内、外动力耦合作用的结果,其破坏机理分析需依赖更全面的数据支撑;其中,岩桥损伤是脆性破坏发生的核心因素.因此,预警的关键在于识别结构面的损伤敏感性指标,并结合多领域敏感性因子,构建基于分离破坏前兆识别的智能预警模型.当前,脆性破坏地质灾害的预警技术仍受限于算力不足、多模型协同难度大及数据缺乏等问题.随着云边协同计算、人工智能及多源数据融合技术的发展,有望提升数据处理效率,并构建多参数同步采集与智能化多模型集成监测系统,优化脆性地灾数据库,推动监测预警模型的数据同化与自适应更新,形成系统化的灾害监测与预警体系.探讨当前研究进展及潜在技术瓶颈,并提出应对策略,以期为脆性破坏地质灾害的防控提供理论与技术支持. 展开更多
关键词 脆性破坏地质灾害 岩桥损伤 云边协同 智能预警 多源数据融合
原文传递
上一页 1 2 140 下一页 到第
使用帮助 返回顶部