In order to achieve a high precision in three-dimensional(3D) multi-camera measurement system, an efficient multi-cameracalibration method is proposed. A stitching method of large scalecalibration targets is deduced...In order to achieve a high precision in three-dimensional(3D) multi-camera measurement system, an efficient multi-cameracalibration method is proposed. A stitching method of large scalecalibration targets is deduced, and a fundamental of multi-cameracalibration based on the large scale calibration target is provided.To avoid the shortcomings of the method, the vector differencesof reprojection error with the presence of the constraint conditionof the constant rigid body transformation is modelled, and mini-mized by the Levenberg-Marquardt (LM) method. Results of thesimulation and observation data calibration experiment show thatthe accuracy of the system calibrated by the proposed methodreaches 2 mm when measuring distance section of 20 000 mmand scale section of 7 000 mm × 7 000 mm. Consequently, theproposed method of multi-camera calibration performs better thanthe fundamental in stability. This technique offers a more uniformerror distribution for measuring large scale space.展开更多
Multi-sensor vision system plays an important role in the 3D measurement of large objects.However,due to the widely distribution of sensors,the problem of lacking common fields of view(FOV) arises frequently,which m...Multi-sensor vision system plays an important role in the 3D measurement of large objects.However,due to the widely distribution of sensors,the problem of lacking common fields of view(FOV) arises frequently,which makes the global calibration of the vision system quite difficult.The primary existing solution relies on large-scale surveying equipments,which is ponderous and inconvenient for field calibrations.In this paper,a global calibration method of multi-sensor vision system is proposed and investigated.The proposed method utilizes pairs of skew laser lines,which are generated by a group of laser pointers,as the calibration objects.Each pair of skew laser lines provides a unique coordinate system in space which can be reconstructed in certain vision sensor's coordinates by using a planar pattern.Then the geometries of sensors are computed under rigid transformation constrains by taking coordinates of each skew lines pair as the intermediary.The method is applied on both visual cameras with synthetic data and a real two-camera vision system;results show the validity and good performance.The prime contribution of this paper is taking skew laser lines as the global calibration objects,which makes the method simple and flexible.The method need no expensive equipments and can be used in large-scale calibration.展开更多
为提高无人车障碍物检测跟踪的精度和稳定性,首先针对YOLO v5(You only look once version 5,YOLO v5)网络存在的语义信息和候选框信息丢失的问题,引入深度可分离空洞空间金字塔结构与目标框加权融合算法完成对网络的优化;其次针对单阶...为提高无人车障碍物检测跟踪的精度和稳定性,首先针对YOLO v5(You only look once version 5,YOLO v5)网络存在的语义信息和候选框信息丢失的问题,引入深度可分离空洞空间金字塔结构与目标框加权融合算法完成对网络的优化;其次针对单阶段障碍物点云聚类精度低的问题,设计一种考虑点云距离与外轮廓连续性的两阶段障碍物点云聚类方法并完成三维包围盒的建立;最后将注意力机制引入MobileNet使网络更加聚焦于目标对象特有的视觉特征,并综合利用视觉特征和三维点云信息共同构建关联性度量指标,提高匹配精度。利用KITTI数据集对构建的障碍物目标检测、跟踪与测速算法进行仿真测试,并搭建实车平台进行真实环境试验,验证所提算法的有效性和真实环境可迁移性。展开更多
基金supported by the National Natural Science Foundation of China(61473100)
文摘In order to achieve a high precision in three-dimensional(3D) multi-camera measurement system, an efficient multi-cameracalibration method is proposed. A stitching method of large scalecalibration targets is deduced, and a fundamental of multi-cameracalibration based on the large scale calibration target is provided.To avoid the shortcomings of the method, the vector differencesof reprojection error with the presence of the constraint conditionof the constant rigid body transformation is modelled, and mini-mized by the Levenberg-Marquardt (LM) method. Results of thesimulation and observation data calibration experiment show thatthe accuracy of the system calibrated by the proposed methodreaches 2 mm when measuring distance section of 20 000 mmand scale section of 7 000 mm × 7 000 mm. Consequently, theproposed method of multi-camera calibration performs better thanthe fundamental in stability. This technique offers a more uniformerror distribution for measuring large scale space.
基金supported by National Natural Science Foundation of China (Grant No. 60804060)Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200800061003)
文摘Multi-sensor vision system plays an important role in the 3D measurement of large objects.However,due to the widely distribution of sensors,the problem of lacking common fields of view(FOV) arises frequently,which makes the global calibration of the vision system quite difficult.The primary existing solution relies on large-scale surveying equipments,which is ponderous and inconvenient for field calibrations.In this paper,a global calibration method of multi-sensor vision system is proposed and investigated.The proposed method utilizes pairs of skew laser lines,which are generated by a group of laser pointers,as the calibration objects.Each pair of skew laser lines provides a unique coordinate system in space which can be reconstructed in certain vision sensor's coordinates by using a planar pattern.Then the geometries of sensors are computed under rigid transformation constrains by taking coordinates of each skew lines pair as the intermediary.The method is applied on both visual cameras with synthetic data and a real two-camera vision system;results show the validity and good performance.The prime contribution of this paper is taking skew laser lines as the global calibration objects,which makes the method simple and flexible.The method need no expensive equipments and can be used in large-scale calibration.
文摘为提高无人车障碍物检测跟踪的精度和稳定性,首先针对YOLO v5(You only look once version 5,YOLO v5)网络存在的语义信息和候选框信息丢失的问题,引入深度可分离空洞空间金字塔结构与目标框加权融合算法完成对网络的优化;其次针对单阶段障碍物点云聚类精度低的问题,设计一种考虑点云距离与外轮廓连续性的两阶段障碍物点云聚类方法并完成三维包围盒的建立;最后将注意力机制引入MobileNet使网络更加聚焦于目标对象特有的视觉特征,并综合利用视觉特征和三维点云信息共同构建关联性度量指标,提高匹配精度。利用KITTI数据集对构建的障碍物目标检测、跟踪与测速算法进行仿真测试,并搭建实车平台进行真实环境试验,验证所提算法的有效性和真实环境可迁移性。