Dear Editor,This letter studies the bipartite consensus tracking problem for heterogeneous multi-agent systems with actuator faults and a leader's unknown time-varying control input. To handle such a problem, the ...Dear Editor,This letter studies the bipartite consensus tracking problem for heterogeneous multi-agent systems with actuator faults and a leader's unknown time-varying control input. To handle such a problem, the continuous fault-tolerant control protocol via observer design is developed. In addition, it is strictly proved that the multi-agent system driven by the designed controllers can still achieve bipartite consensus tracking after faults occur.展开更多
Dear Editor,This letter investigates predefined-time optimization problems(OPs) of multi-agent systems(MASs), where the agent of MASs is subject to inequality constraints, and the team objective function accounts for ...Dear Editor,This letter investigates predefined-time optimization problems(OPs) of multi-agent systems(MASs), where the agent of MASs is subject to inequality constraints, and the team objective function accounts for impulse effects. Firstly, to address the inequality constraints,the penalty method is introduced. Then, a novel optimization strategy is developed, which only requires that the team objective function be strongly convex.展开更多
Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present so...Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems.展开更多
AGVs dispatching, one of the hot problems in FMS, has attracted widespread interest in recent years. It is hard to dynamically schedule AGVs with pre designed rule because of the uncertainty and dynamic nature of AGVs...AGVs dispatching, one of the hot problems in FMS, has attracted widespread interest in recent years. It is hard to dynamically schedule AGVs with pre designed rule because of the uncertainty and dynamic nature of AGVs dispatching progress, so the AGVs system in this paper is treated as a cooperative learning multiagent system, in which each agent adopts multilevel decision method, which includes two level decisions: the option level and the action level. On the option level, an agent learns a policy to execute a subtask with the best response to the other AGVs’ current options. On the action level, an agent learns an optimal policy of actions for achieving his planned option. The method is applied to a AGVs’ dispatching simulation, and the performance of the AGVs system based on this method is verified.展开更多
Microgrid systems are built to integrate a generation mix of solar and wind renewable energy resources that are generally intermittent in nature. This paper presents a novel decentralized multi-agent system to securel...Microgrid systems are built to integrate a generation mix of solar and wind renewable energy resources that are generally intermittent in nature. This paper presents a novel decentralized multi-agent system to securely operate microgrids in real-time while maintaining generation</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> load balance. Agents provide a normal operation in a grid-connected mode and a contingency operation in an islanded mode for fault handling. Fault handling is especially critical in microgrid operation to simulate possible contingencies and microgrid outages in a real-world scenario. A robust agent design has been implemented using MATLAB</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">Simulink and Java Agent Development Framework technologies to simulate microgrids with load management and distributed generators control. The microgrid of the German Jordanian University has been used for simulation for Summer and Winter photovoltaic generation and load profiles. The results show agent capabilities to operate microgrid in real-time and its ability to coordinate and adjust generation and load. In a simulated fault incident, agents coordinate and adjust to a normal operation in 0.012 seconds, a negligible time for microgrid restoration. This clearly shows that the multi-agent system is a viable solution to operate MG in real-time.展开更多
Multi‐agent reinforcement learning relies on reward signals to guide the policy networks of individual agents.However,in high‐dimensional continuous spaces,the non‐stationary environment can provide outdated experi...Multi‐agent reinforcement learning relies on reward signals to guide the policy networks of individual agents.However,in high‐dimensional continuous spaces,the non‐stationary environment can provide outdated experiences that hinder convergence,resulting in ineffective training performance for multi‐agent systems.To tackle this issue,a novel reinforcement learning scheme,Mutual Information Oriented Deep Skill Chaining(MioDSC),is proposed that generates an optimised cooperative policy by incorporating intrinsic rewards based on mutual information to improve exploration efficiency.These rewards encourage agents to diversify their learning process by engaging in actions that increase the mutual information between their actions and the environment state.In addition,MioDSC can generate cooperative policies using the options framework,allowing agents to learn and reuse complex action sequences and accelerating the convergence speed of multi‐agent learning.MioDSC was evaluated in the multi‐agent particle environment and the StarCraft multi‐agent challenge at varying difficulty levels.The experimental results demonstrate that MioDSC outperforms state‐of‐the‐art methods and is robust across various multi‐agent system tasks with high stability.展开更多
提出了一种基于M u lti-A gen t的虚拟维修训练系统(VM TS)结构框架,整个系统分别由主控A gen t、仿真A gen t、和接口A gen t3个具有交互作用的A gen t组成,从而将虚拟维修训练系统的开发转化为一个多A gen t系统的设计与开发。基于多A...提出了一种基于M u lti-A gen t的虚拟维修训练系统(VM TS)结构框架,整个系统分别由主控A gen t、仿真A gen t、和接口A gen t3个具有交互作用的A gen t组成,从而将虚拟维修训练系统的开发转化为一个多A gen t系统的设计与开发。基于多A gen t的框架结构可实现受训者的智能模型及虚拟训练场景中虚拟物体的行为模型,从而可以提高VM TS的健壮性和可重用性。基于A gen t的概念模型实现了A gen t之间的交互和协作,并介绍了主控A gen t和仿真A gen t的具体实现方法。展开更多
基金supported by the National Natural Science Foundation of China(62325304,U22B2046,62073079,62376029)the Jiangsu Provincial Scientific Research Center of Applied Mathematics(BK20233002)the China Postdoctoral Science Foundation(2023M730255,2024T171123)
文摘Dear Editor,This letter studies the bipartite consensus tracking problem for heterogeneous multi-agent systems with actuator faults and a leader's unknown time-varying control input. To handle such a problem, the continuous fault-tolerant control protocol via observer design is developed. In addition, it is strictly proved that the multi-agent system driven by the designed controllers can still achieve bipartite consensus tracking after faults occur.
基金supported in part by the National Natural Science Foundation of China(62276119)the Natural Science Foundation of Jiangsu Province(BK20241764)the Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX22_2860)
文摘Dear Editor,This letter investigates predefined-time optimization problems(OPs) of multi-agent systems(MASs), where the agent of MASs is subject to inequality constraints, and the team objective function accounts for impulse effects. Firstly, to address the inequality constraints,the penalty method is introduced. Then, a novel optimization strategy is developed, which only requires that the team objective function be strongly convex.
基金supported in part by the National Natural Science Foundation of China(62273255,62350003,62088101)the Shanghai Science and Technology Cooperation Project(22510712000,21550760900)+1 种基金the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities
文摘Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems.
文摘AGVs dispatching, one of the hot problems in FMS, has attracted widespread interest in recent years. It is hard to dynamically schedule AGVs with pre designed rule because of the uncertainty and dynamic nature of AGVs dispatching progress, so the AGVs system in this paper is treated as a cooperative learning multiagent system, in which each agent adopts multilevel decision method, which includes two level decisions: the option level and the action level. On the option level, an agent learns a policy to execute a subtask with the best response to the other AGVs’ current options. On the action level, an agent learns an optimal policy of actions for achieving his planned option. The method is applied to a AGVs’ dispatching simulation, and the performance of the AGVs system based on this method is verified.
文摘Microgrid systems are built to integrate a generation mix of solar and wind renewable energy resources that are generally intermittent in nature. This paper presents a novel decentralized multi-agent system to securely operate microgrids in real-time while maintaining generation</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> load balance. Agents provide a normal operation in a grid-connected mode and a contingency operation in an islanded mode for fault handling. Fault handling is especially critical in microgrid operation to simulate possible contingencies and microgrid outages in a real-world scenario. A robust agent design has been implemented using MATLAB</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">Simulink and Java Agent Development Framework technologies to simulate microgrids with load management and distributed generators control. The microgrid of the German Jordanian University has been used for simulation for Summer and Winter photovoltaic generation and load profiles. The results show agent capabilities to operate microgrid in real-time and its ability to coordinate and adjust generation and load. In a simulated fault incident, agents coordinate and adjust to a normal operation in 0.012 seconds, a negligible time for microgrid restoration. This clearly shows that the multi-agent system is a viable solution to operate MG in real-time.
基金National Natural Science Foundation of China,Grant/Award Number:61872171The Belt and Road Special Foundation of the State Key Laboratory of Hydrology‐Water Resources and Hydraulic Engineering,Grant/Award Number:2021490811。
文摘Multi‐agent reinforcement learning relies on reward signals to guide the policy networks of individual agents.However,in high‐dimensional continuous spaces,the non‐stationary environment can provide outdated experiences that hinder convergence,resulting in ineffective training performance for multi‐agent systems.To tackle this issue,a novel reinforcement learning scheme,Mutual Information Oriented Deep Skill Chaining(MioDSC),is proposed that generates an optimised cooperative policy by incorporating intrinsic rewards based on mutual information to improve exploration efficiency.These rewards encourage agents to diversify their learning process by engaging in actions that increase the mutual information between their actions and the environment state.In addition,MioDSC can generate cooperative policies using the options framework,allowing agents to learn and reuse complex action sequences and accelerating the convergence speed of multi‐agent learning.MioDSC was evaluated in the multi‐agent particle environment and the StarCraft multi‐agent challenge at varying difficulty levels.The experimental results demonstrate that MioDSC outperforms state‐of‐the‐art methods and is robust across various multi‐agent system tasks with high stability.
文摘提出了一种基于M u lti-A gen t的虚拟维修训练系统(VM TS)结构框架,整个系统分别由主控A gen t、仿真A gen t、和接口A gen t3个具有交互作用的A gen t组成,从而将虚拟维修训练系统的开发转化为一个多A gen t系统的设计与开发。基于多A gen t的框架结构可实现受训者的智能模型及虚拟训练场景中虚拟物体的行为模型,从而可以提高VM TS的健壮性和可重用性。基于A gen t的概念模型实现了A gen t之间的交互和协作,并介绍了主控A gen t和仿真A gen t的具体实现方法。