The coal-bearing source rocks in the Jurassic Shuixigou Group have received widespread attention as the primary source rocks in the Turpan-Hami Basin of China,but the hydrocarbon generation potential and process of th...The coal-bearing source rocks in the Jurassic Shuixigou Group have received widespread attention as the primary source rocks in the Turpan-Hami Basin of China,but the hydrocarbon generation potential and process of the mudstone in the Shuixigou Group,especially the mudstone at the top of the Sangonghe Formation,are unclear.Taking the source rocks of the Xishanyao Formation and the Sangonghe Formation as objectives,this study conducted rock pyrolysis and gold tube simulation experiment to investigate their hydrocarbon generation characteristics and differences.Our results indicate that the source rocks of the Xishanyao Formation include mudstone,carbonaceous mudstone and coal,and the quality of the source rocks is highly heterogeneous;the source rocks of the Sangonghe Formation are mainly composed of mudstone,and it is a good gas source rock.Simulation experiments found that the activation energy required for the generation of gaseous hydrocarbons by the mudstone of the Sangonghe Formation is lower than that by the mudstone of the Xishanyao Formation.The hydrocarbon generation process can be divided into three stages for both formations,but the gas generation potential of the Xishanyao Formation mudstone is higher than that of the Sangonghe Formation mudstone.A large amount of hydrocarbon was generated by the mudstone of the Xishanyao Formation when entering late thermal evolution,of which methane is dominant,mainly from the demethylation reaction of mature kerogen.On the other hand,a large amount of hydrocarbon was generated by the mudstone of the Sangonghe Formation in the early stage of thermal evolution,of which light hydrocarbon and wet gas are dominant,mainly from the early cracking stage of kerogen.This difference may be attributed to the structure of kerogen.The mudstone of the Xishanyao Formation is conducive to the formation of highly mature dry gas reservoirs,while the mudstone of the Sangonghe Formation is conducive to the formation of low maturity condensate gas and volatile oil reservoirs.The research result provides a scientific basis for the comparison of oil and gas sources and the evaluation of oil and gas resources in the Turpan-Hami Basin.展开更多
Rock is exposed to the combined effects of the confining pressure and strain rate during the dynamic excavation process in deeply buried high-stress tunnels.Therefore,a constitutive model that considers both the strai...Rock is exposed to the combined effects of the confining pressure and strain rate during the dynamic excavation process in deeply buried high-stress tunnels.Therefore,a constitutive model that considers both the strain rate and the confining pressure effect plays a crucial role in evaluating the disturbance and stability of deeply buried tunnels.Taking mudstone as an example,a series of tests were performed to reveal the combined effect of the strain rate and confining pressure on the mechanical behavior of soft rock,and a novel statistical damage constitutive model was proposed.The confining pressures of 0 MPa,10 MPa,20 MPa,and 30 MPa and strain rates of 10^(-5)s^(-1),10^(-4)s^(-1),10^(-3)s^(-1),and 10^(-2)s^(-1)were investigated.The results show that the rock strength increases with increasing confining pressure and strain rate,and that the contributions of these two factors can be considered independent of each other.However,an increase in the confining pressure reduces the degree of rock damage and increases the ductility of the sample at failure,whereas the strain rate has the opposite effect.Finally,a full deformation process damage model considering strain rate effect is established based on a modified Hoek‒Brown strength criterion considering the strain rate.The model can capture the nonlinear increase in strength and elastic modulus with increasing confining pressure and strain rate,reproducing the brittle‒ductile transition characteristics and the full deformation process.展开更多
In the corrosive environment of carbonaceous mudstone,the mechanical properties of grouting materials in the anchorage section of anchor bolts continue to deteriorate.In response,a cement-based modified anchoring grou...In the corrosive environment of carbonaceous mudstone,the mechanical properties of grouting materials in the anchorage section of anchor bolts continue to deteriorate.In response,a cement-based modified anchoring grouting material(MAGM)with high corrosion resistance was developed.The results reveal that compared with those of ordinary Portland cement(OPC)grouting material,the compressive strength,tensile strength,and shear stress peak of the MAGM increased by 85.9%,44.4%and 45.4%,respectively,after 28 d of corrosion in a carbonaceous mudstone solution.Waterborne epoxy resin and curing agent create a network membrane structure under the action of nano-Al_(2)O_(3)to protect the cement hydration products.In the corrosive environment of carbonaceous mudstone,corrosion products formed on the surface of the stone body have adsorbed onto the reticular membrane structure,filling the pores of the stone body and slowing the erosion rate of ions.After 365 d of application of MAGM and OPC in the corrosive environment of a carbonaceous mudstone slope,the peak shear stress of MAGM is,on average,55.3%greater than that of OPC.展开更多
Accurately characterizing the pore structure of Tamusu mudstone and simulating fluid flow within it are crucial for assessing underground disposal of high-level radioactive waste(HLW)in this formation.Modeling mudston...Accurately characterizing the pore structure of Tamusu mudstone and simulating fluid flow within it are crucial for assessing underground disposal of high-level radioactive waste(HLW)in this formation.Modeling mudstone presents challenges due to its multiscale pore structure and the necessity that accounts for the effects of high clay content.A method for constructing a dual-scale pore network model(PNM)for the Tamusu mudstone,which considers the hydrological expansion of clays,was proposed.This model integrates N2 adsorption data with focused ion beam/scanning electron microscopy(FIB/SEM)images and labels pores based on clay content.Simulations of single-phase flow were conducted to validate the proposed model.Additionally,the influences of cell number,connectivity,slip effects,and clay minerals on permeability were examined.The findings indicate that a configuration of 45×45×45 cells adequately represents the model.The permeability of the Tamusu mudstone,about 1020 m^(2),aligns with the experimental values.During the simulation,Knudsen diffusion is considered.Factors such as increased roughness,tortuosity,clay content,and water film thickness decrease the permeability,whereas increased connectivity enhances permeability.In the model,numerical coordination numbers 2 and 3 are deemed suitable for the Tamusu mudstone.The proposed model is effective as a tool for constructing and simulating fluid flow in the Tamusu mudstone.展开更多
The creep-slip behavior of creeping landslides is closely related to the creep characteristics of slope rock.This study analyzed the creep behavior of ultra-soft mudstone from the Gaomiao landslide in Haidong City,Qin...The creep-slip behavior of creeping landslides is closely related to the creep characteristics of slope rock.This study analyzed the creep behavior of ultra-soft mudstone from the Gaomiao landslide in Haidong City,Qinghai Province,China.Uniaxial creep tests were carried out on ultra-soft mudstone with various moisture contents.The test results indicated that the creep duration of the rock sample with a natural moisture content of 9%is 2400 times longer than that of the sample with a natural moisture content of 13%,while its accumulated strain is 70%of the latter.For the rock sample with a natural moisture content of 9.80%,the creep duration under 0.5 MPa load is 80%of that under 0.25 MPa load,yet the accumulated strain is 1.4 times greater.Additionally,porosity significantly influences the creep behavior of mudstone.Analysis of the cause of the Gaomiao landslide and field monitoring data indicates that the instability of the Gaomiao landslide is related to the moisture content of the landslip mass and external forces.The creep-slip curves of landslides and the creep deformation curves of rocks share a common trend.Precisely identifying the moment when the shift occurs from steady state creep to accelerated creep is critical for comprehending slope instability and rock failure.Moreover,this study delves deeper into the issue of the consistency between landslide creep and rock deformation.展开更多
With carbonaceous mudstone increasingly employed as fill material for road embankments in areas of China such as Guangxi and Hunan,its longterm stability has become a significant engineering concern.This study adopted...With carbonaceous mudstone increasingly employed as fill material for road embankments in areas of China such as Guangxi and Hunan,its longterm stability has become a significant engineering concern.This study adopted a test method combining direct shear and resistivity measurements.The dynamic coupling mechanism of the mechanical properties and resistivity response of carbonaceous mudstone soil-rock mixed fillers during the shear process was systematically investigated by controlling the influencing factors of rock content and normal stress.The study indicates that the filler's shear failure mode gradually shifts from strain softening to plastic flow as the rock content increases,with shear strength and strength parameters exhibiting an initial increase followed by a subsequent decrease.When the rock content exceeds 60%,particle breakage is markedly intensified,and an increase in normal stress further facilitates the breakdown of coarse particles.The resistivity of the specimen demonstrates a strong positive correlation with shear displacement.The initial resistivity exhibits a rising trend with increasing rock content,and variations in rock content notably impact the resistivity's extreme differenceΔρ(Ω·m).60%rock content is the key critical point of the shear strength,Br,andΔρof the packing.At this point,the shear strength reaches the maximum value,the Br value undergoes a transition,andΔρis the lowest.In this study,the variation of resistivity is utilized to characterize the evolution law of internal structural damage during the shear process,with the aim of providing a theoretical basis for the long-term stability analysis of carbonaceous mudstone soil-rock mixed fill embankments.展开更多
Cracking affected by wetting-drying cycles is a major cause of shallow failure of soft rock slopes.Knowledge of rock tensile properties and cracking behaviors helps better assess the stability of soft rock slopes.This...Cracking affected by wetting-drying cycles is a major cause of shallow failure of soft rock slopes.Knowledge of rock tensile properties and cracking behaviors helps better assess the stability of soft rock slopes.This study aims to examine the cracking behaviors and tensile strength of silty mudstone under wetting-drying cycles.The wetting-drying cycle and Brazilian splitting tests were performed on silty mudstone considering various cycle number and amplitude.The cracking behaviors of wetting-drying cycles were analyzed by digital image correlation,three-dimensional(3D)scanning technology,and scanning electron microscopy.The results reveal a spiral-like pattern of crack ratio escalation in silty mudstone,with a higher crack ratio observed during drying than wetting.Tensile strength and fracture energy correlate negatively with cycle number or amplitude,with cycle number exerting a more pronounced effect.The variance of the maximum principal strain reflects stages of initial deformation,linear deformation,strain localization,and stable deformation.The formation of strain localization zones reveals the physical process of crack propagation.Crack tip opening displacement progresses through stages of slow growth,exponential growth,and linear growth,delineating the process from crack initiation to stable extension.Failure modes of silty mudstone primarily involve tensile and tensile-shear failure,influenced by the geometric parameters of cracks induced by wetting-drying cycles.Fracture surface roughness and fractal dimension increase with cycle number due to mineral dissolution,physical erosion,and nondirectional crack propagation.Hydration-swelling and dehydration-shrinkage of clay minerals,along with absorption-drying cracking,initiate and merge cracks,leading to degradation of the rock mechanical properties.The findings could provide insights for mitigating shallow cracking of soft rock slopes under wetting-drying cycles.展开更多
Carbonaceous mudstone is a potential embankment filler in mountainous regions with limited high-quality materials;however,its engineering performance in highway embankments under complex environmental conditions remai...Carbonaceous mudstone is a potential embankment filler in mountainous regions with limited high-quality materials;however,its engineering performance in highway embankments under complex environmental conditions remains poorly understood.This study aimed to investigate the mechanical properties and failure mechanisms of carbonaceous mudstone filler under different temperature-moisture coupled conditions.Triaxial shear tests were conducted under four temperaturemoisture coupled conditions:dry-heat to dry-cold(DHDC),wet-cold to wet-heat(WCWH),dry-cold to wet-heat(DCWH),and dry-heat to wet-cold(DHWC).The effects of these conditions on the strength characteristics,relative breakage ratio,failure mode,and microscopic morphology were examined.A segmented prediction model based on the DuncanChang model was applied to validate the experimental results under the DHWC condition.The failure mechanisms under different conditions were also analyzed.The results indicate that the degradation of carbonaceous mudstone increases in the following order:DHDC,WCWH,DCWH,and DHWC.Under the DHDC condition,the stress-strain curves exhibit strain-softening behavior,while other conditions show strain-hardening behavior,with peak deviatoric stress occurring at 2%and 4%axial strains,respectively.The shear strength decreases by up to 40%under the DHWC condition but remains nearly unchanged under the DHDC condition,showing a positive correlation with particle breakage.As the number of cycles increases,the failure surfaces gradually move downward.Higher confining pressure shifts failure mode from shear failure to shear slip or localized compression,and eventually to overall compression or expansion failure.The modified Duncan-Chang model accurately predicts the experimental results.These findings provide important guidance for the application of carbonaceous mudstone filler in highway embankment construction in humid mountainous regions.展开更多
This paper presents a multi-scale experimental investigation of the weathering degradation of red mudstone.Natural rocks were extracted from the surface ground to 120 m,inwhich three sets of samples were selected to c...This paper presents a multi-scale experimental investigation of the weathering degradation of red mudstone.Natural rocks were extracted from the surface ground to 120 m,inwhich three sets of samples were selected to consider the different initial rock fabrics.The long-term relative humidity(RH)cycles under two amplitudes were imposed on red mudstone to simulate the weathering process.After RH cycles,a series of uniaxial compression tests,Brazilian splitting tests and bender-extender element tests were carried out to examine the reduction in strength and stiffness.The objective of this study is to develop an extended stress-volume framework characterizing the degradation of natural red mudstone both at microscale and macroscale.Accompanied by the irreversible swelling of the rock specimen is the progressive degradation of strength,stiffness and Poisson's ratio.A unified exponential degradation model in terms of the irreversible volumetric strain was thus proposed to capture such a degradation pattern.The effect of the initial rock fabric was evident.The highest degradation rate and potential were identified in slightly weathered specimens.Significant slaking of aggregates and crack propagation were confirmed by scanning electron microscope(SEM)micrographs,which were considered as the main consequence of structure damage leading to degradation of mechanical properties.The structure damage during RH cycles denoted the hysteresis nature in the response to the cycling hydraulic reaction,in turn causing the increase in volumetric strain.Thus,the stress-volume relation rather than the suction relation was found in more reasonable agreement with the experimental results.展开更多
As a typical sedimentary soft rock,mudstone has the characteristics of being easily softened and disintegrated under the effect of wetting and drying(WD).The first cycle of WD plays an important role in the entire WD ...As a typical sedimentary soft rock,mudstone has the characteristics of being easily softened and disintegrated under the effect of wetting and drying(WD).The first cycle of WD plays an important role in the entire WD cycles.X-ray micro-computed tomography(micro-CT)was used as a non-destructive tool to quantitatively analyze microstructural changes of the mudstone due to the first cycle of WD.The test results show that WD leads to an increase of pore volume and pore connectivity in the mudstone.The porosity and fractal dimension of each slice of mudstone not only increase in value,but also in fluctuation amplitude.The pattern of variation in the frequency distribution of the equivalent radii of connected,isolated pores and pore throats in mudstone under WD effect satisfies the Gaussian distribution.Under the effect of WD,pores and pore throats with relatively small sizes increase the most.The sphericity of the pores in mudstones is positively correlated with the pore radius.The WD effect transforms the originally angular and flat pores into round and regular pores.This paper can provide a reference for the study of the deterioration and catastrophic mechanisms of mudstone under wetting and drying cycles.展开更多
Landslides frequently occurred in Jurassic red strata in the Three Gorges Reservoir(TGR)region in China.The Jurassic strata consist of low mechanical strength and poor permeability of weak silty mudstone layer,which m...Landslides frequently occurred in Jurassic red strata in the Three Gorges Reservoir(TGR)region in China.The Jurassic strata consist of low mechanical strength and poor permeability of weak silty mudstone layer,which may cause slope instability during rainfall.In order to understand the strength behavior of Jurassic silty mudstone shear zone,the so-called Shizibao landslide located in Guojiaba Town,Zigui County,Three Gorges Reservoir(TGR)in China is selected as a case study.The shear strength of the silty mudstone shear zone is strongly influenced by both the water content and the normal stress.Therefore,a series of drained ring shear tests were carried out by varying the water contents(7%,12%,17%,and 20%,respectively)and normal stresses(200,300,400,and 500 kPa,respectively).The result revealed that the residual friction coefficient and residual friction angle were power function relationships with water content and normal stress.The peak cohesion of the silty mudstone slip zone increased with water content to a certain limit,above which the cohesion decreased.In contrast,the residual cohesion showed the opposite trend,indicating the cohesion recovery above a certain limit of water content.However,both the peak and residual friction angle of the silty mudstone slip zone were observed to decrease steadily with increased water content.Furthermore,the macroscopic morphological features of the shear surface showed that the sliding failure was developed under high normal stress at low water content,while discontinuous sliding surface and soil extrusion were occurred when the water content increased to a saturated degree.The localized liquefaction developed by excess pore water pressure reduced the frictional force within the shear zone.Finally,the combined effects of the slope excavation and precipitation ultimately lead to the failure of the silty mudstone slope;however,continuous rainfall is the main factor triggering sliding.展开更多
Gas derived from the primary cracking of kerogen and the secondary cracking of oil has historically been the focus of petroleum geologists,given its importance as a gas source.The Wenchang A Depression within the Zhu ...Gas derived from the primary cracking of kerogen and the secondary cracking of oil has historically been the focus of petroleum geologists,given its importance as a gas source.The Wenchang A Depression within the Zhu Ⅲ Sub-basin is the largest gaseous hydrocarbon-rich depression in the Pearl River Mouth Basin(PRMB),and the sources of gaseous hydrocarbons in this depression are a research focus.Mudstones from the Eocene Wenchang Formation contain type Ⅰ and type Ⅱ organic matter and are oilprone,with TOC,S1+S2,and HI values mostly ranging from 1.42%to 3.12%,9.71 mg/g to 20.61 mg/g,and 410.71 mg/g TOC to 736.17 mg/g TOC,respectively.Data of gaseous hydrocarbon yields and carbon isotopic compositions show that the gaseous hydrocarbons generated from oil-prone mudstones are mainly derived from the secondary cracking of oil,and the plot of δ^(13)C_(2)-δ^(13)C_(3) versus ln(C_(2)/C_(3))effectively identified the gas source.To further assess the gas generation processes and the ratio of oil-cracking gas under geological conditions,we reconstructed the history of gaseous hydrocarbon generation in mudstones from the Wenchang Formation in the Wenchang A Depression.Results showed that gaseous hydrocarbon generation began at approximately 33 Ma,a maximum of 69%of total gaseous hydrocarbons(C_(1)-C_(5))was generated by oil cracking,and total heavy hydrocarbon gases(C_(2)-C_(5))were mainly generated from oil cracking(65%-81%).This study provides a deeper understanding of the characteristics of gas generated from oil-prone mudstones and is important for gas exploration in the Wenchang Depression.展开更多
Petroleum geologists have debated whether the hydrocarbons from Jurassic coal measures are derived from the coals, carbonaceous mudstones or coal-measure mudstones in the Turpan Basin. Based on the geochemistry analys...Petroleum geologists have debated whether the hydrocarbons from Jurassic coal measures are derived from the coals, carbonaceous mudstones or coal-measure mudstones in the Turpan Basin. Based on the geochemistry analysis of the 20 crude oils and 40 source rocks from the Turpan Basin, some data have been obtained as follows: carbon preference index and methylphenanthrene index of the Jurassic oils are 1.16-1.45 and 0.28-0.80, and the ααα C29 sterane 20S/(20S+20R) and C29 sterane ββ/(ββ+αα) are 0.44-0.51 and 0.4-0.54 respectively, which show the normal maturity of oils; the vitrinite reflectance of the source rocks from the Xishanyao to Badaowan Formations range from 0.47% to 0.97%, which indicate immature to mature thermal evolutionary stage and sufficient conditions for generating mass mature oil. The effect of hydrocarbon expulsion should be considered when studying the source of coal-derived oil by using Biomarkers. Biomarkers in the Jurassic oils from the basin are similar to those in the coals and carbonaceous mudstones, with a strong predominant content of pristane, relatively high ratio of C15 /C16 sesquiterpenoids (1), a relatively high content of low carbon number tricyclic terpanes and C 24 tetracyclic terpane, little gammacerane and C 29 Ts detected, an absolute predominant content of C29 sterane and a relatively high content of diasterane. However, the opposite characteristics are shown in mudstones, with an approximately equal content of pristane and phytane, relatively low ratio of C15 /C16 sesquiterpenoids (1), a relatively high content of high carbon number tricyclic terpanes and a low content of C 24 tetracyclic terpane, peaks of gammacerane and C29 Ts detected obviously and an increasing C27 sterane content. All of these characteristics identify the coals and carbonaceous mudstones as the possible major oil source rocks in this area, and they were formed in the stronger oxidizing environment with shallower water than mudstones.展开更多
The loess landslide along the contact between loess and Neogene red mudstone (NRM) is one of those that have occurred extensively and frequently in loess areas of China. To better understand the mechanism of this type...The loess landslide along the contact between loess and Neogene red mudstone (NRM) is one of those that have occurred extensively and frequently in loess areas of China. To better understand the mechanism of this type of landslides, a distressed loess slope being subjected to deformation along the loess-NRM contact was comprehensively investigated through approaches of field monitoring and laboratory physical modeling. Field observation and physical modeling shows that the slope deformation will experience two distinct processes: 1) laterally retrogressive and vertically progressive propagation, which was initiated by falling of the slope head; and 2) retrogressively separate mass sliding along the weak basal zone of the loess-NRM contact with minor sliding along the paleosols within the loess. Shear failure of the loess-NRM contact may initiate in the middle section, followed by a progressive propagation towards the slope toe and inner slope. Analysis reveals that the deformation characteristics of the distressed slope are largely constrained by slope topography, the unique structure, physical and mechanical properties of loess and paleosols, and occurrence and nature of the loess-NRM contact. Rainfall has significantly influence on the deformation characteristics of the slope through its interaction with the loess and soil of the loess-NRM contact. Additionally, improper style and intensity of cutting on the slope greatly enhance and accelerate the deformation course of the slope.展开更多
This paper studies the swelling of highly consolidated mudstones by theoretical considerations and laboratory experiments. A key assumption was made that saturated and uncemented clays behave as heavily dense colloid ...This paper studies the swelling of highly consolidated mudstones by theoretical considerations and laboratory experiments. A key assumption was made that saturated and uncemented clays behave as heavily dense colloid without direct contacts among solid particles. It leads to an important conclusion that the swelling pressure acting on adsorbed interparticle water-films is equivalent to the effective stress, This so-called clay-colloid concept is validated by various swelling experiments on two kinds of mudstones, the Callovo-Oxfordian argillite in France and the Opalinus clay in Switzerland. In the tests, water adsorption-desorption, swelling pressure and strain were measured on the samples at various suctions and load-controlled conditions. Results suggest that: (1) the mudstones can take up great amounts of water from the humid environment, much more than the water content in the natural and saturated states; (2) the swelling pressure increases with water uptake to high levels of the overburden stresses at the sampling depths of 230 to 500 m, indicating that the adsorbed water-films are capable of carrying the lithostatic stress; and (3) the large amount of water uptake causes a significant expansion of mudstones even under the lithostatic stresses.展开更多
To investigate the influence of confining pressures and temperatures on the seepage characteristics of fractured rocks, seepage tests were conducted on a fractured silty mudstone using a self-developed experimental sy...To investigate the influence of confining pressures and temperatures on the seepage characteristics of fractured rocks, seepage tests were conducted on a fractured silty mudstone using a self-developed experimental system, and the effects of different factors on coefficient of permeability were discussed. The results showed that the increasing confining pressure will gradually decrease the coefficient of permeability, and this process is divided into two stages: 1) the fast decrease stage, which corresponds to a confining pressure less than 30 kPa, and 2) the slow decrease stage, which corresponds to a confining pressure larger than 30 kPa. Unlike confining pressure, an increase in temperature will increase the coefficient of permeability. It is noted that fracture surface roughness will also affect the variation of coefficient of permeability to a certain extent. Among the three examined factors, the effect of confining pressure increases is dominant on fracture permeability coefficient. The relationship between the confining pressure and coefficient of permeability can be quantified by an exponential function.展开更多
The petrophysical property of mudstone often transforms from ductile to brittle in the process of burial-uplift. The deformation mechanism of fault in brittle and ductile mudstone caprock is different, which leads to ...The petrophysical property of mudstone often transforms from ductile to brittle in the process of burial-uplift. The deformation mechanism of fault in brittle and ductile mudstone caprock is different, which leads to the formation of different types of fault zone structure. Different methods are required to evaluate the sealing mechanism of those fault zones. Based on the caprock deformation mechanism, fault sealing mechanism, quantitative evaluation method of vertical fault sealing capacity is put forward in this study. Clay smear is formed in the process of plastic deformation and its continuity controls the sealing capacity of fault. The outcrop and oil field data have confirmed that when sealing parameter SSF is less than 4–7, the clay smear becomes discontinuous and then oil and gas go through the caprock and migrate vertically. Quantities of fractures are formed in mudstone in the process of brittle deformation. The fracture density increases with the increase of the fault displacement. When the fractures are connected, oil and gas go through the caprock and migrate vertically. The connectivity of fault depends on the displacement and the thickness of caprock. On the basis of the above, a method is put forward to quantify the connectivity of fault with the juxtaposition thickness of caprock after faulting. The research on the juxtaposition thickness of caprock after faulting of the member II of Dongying Formation in Nanpu depression and the distribution of oil and gas indicates when the juxtaposition thickness of caprock is less than 96.2 m, the fault becomes leaking vertically. In the lifting stage, with the releasing and unloading of the stress, the caprock becomes brittle generally and then forms through going fault which will lead to a large quantity of oil and gas migrate vertically.展开更多
This study aims to improve the mechanical behavior of disintegrated carbonaceous mudstone, which is used as road embankment filler in southwestern China. Triaxial tests were performed on disintegrated carbonaceous mud...This study aims to improve the mechanical behavior of disintegrated carbonaceous mudstone, which is used as road embankment filler in southwestern China. Triaxial tests were performed on disintegrated carbonaceous mudstone modified by fly ash, cement, and red clay. Then the stress-strain relationships and shear strength parameters were analyzed. The microstructure and mineral composition of the materials were identified via scanning electron microscopy and X-ray diffraction. The results show that the stress-strain relationships changed from strain-hardening to strain-softening when disintegrated carbonaceous mudstone was modified with cement. By contrast, the addition of fly ash and red clay did not change the type of stress-strain relationships. The order of these three additives is cement, red clay and fly ash according to their influences on the cohesion. Disintegrated carbonaceous mudstone without cement all showed bulging failures, and that modified with cement exhibited shear failures or bulging-shear failures. The soil particles of the improved soil were well bonded by cementitious substances, so the microstructure was denser and more stable, which highly enhanced the mechanical behavior of disintegrated carbonaceous mudstone. The findings could offer references for the use of carbonaceous mudstone in embankment engineering.展开更多
The Upper Ordovician–Lower Silurian mudstones(including the Wufeng, Guanyinqiao and Longmaxi Formations) in the Sichuan Basin are some of the most important shale gas plays in China. In order to enhance our understan...The Upper Ordovician–Lower Silurian mudstones(including the Wufeng, Guanyinqiao and Longmaxi Formations) in the Sichuan Basin are some of the most important shale gas plays in China. In order to enhance our understanding of the process of formation of organic carbon up to 10%, optical, microscopy and geochemical methods have been used to investigate the petrographic and geochemical characteristics of the formation. Firstly, three mudstone lithofacies were identified based on a wide variety of mudstone laminations. These are:(a) indistinctly laminated mudstone;(b) parallellaminated mudstone; and(c) nonparallel-laminated mudstone. Then, combining with the evidence from depocenter migration, Th/U ratios and total organic carbon, the abundant organo-minerallic fabrics suggest that organic carbon was preferentially deposited and preserved in anoxic, low energy and stagnant water conditions during deposition of the Wufeng and Longmaxi Formations. On the contrary, the Guanyinqiao Formation with poor organic carbon was deposited in oxic and high-energy water conditions.展开更多
The uniaxial compression tests for mudstone specimens are carried out with four different loading rates from room temperature to 400℃ by using the Rock Mechanics Servo-controlled Testing System MTS810 and high temper...The uniaxial compression tests for mudstone specimens are carried out with four different loading rates from room temperature to 400℃ by using the Rock Mechanics Servo-controlled Testing System MTS810 and high temperature furnace MTS652.02.The mechanical properties of mudstone with various loading rates are studied under different temperature conditions.The results show that when temperature increases from room temperature to 400℃ and loading rate is less than 0.03 mm/s,the peak strength of mudstone specimen decreases as loading rate increases,while the various peak strengths show significant differences when loading rate exceeds 0.03 mm/s.At room temperature,the elastic modulus decreases at the first time and then increases with loading rate rising.When the temperature is between200 and 400℃,the elastic modulus presents a decreasing trend with increasing loading rate.With increasing the loading rate,the number of fragments in mudstone becomes larger and even the powder is observed in mudstone with higher loading rate.Under high loading rate,the failure mode of mudstone specimens under different temperatures is mainly conical damage.展开更多
基金supported by the China Petroleum Science and Technology Major Project(No.2023ZZ18-03).
文摘The coal-bearing source rocks in the Jurassic Shuixigou Group have received widespread attention as the primary source rocks in the Turpan-Hami Basin of China,but the hydrocarbon generation potential and process of the mudstone in the Shuixigou Group,especially the mudstone at the top of the Sangonghe Formation,are unclear.Taking the source rocks of the Xishanyao Formation and the Sangonghe Formation as objectives,this study conducted rock pyrolysis and gold tube simulation experiment to investigate their hydrocarbon generation characteristics and differences.Our results indicate that the source rocks of the Xishanyao Formation include mudstone,carbonaceous mudstone and coal,and the quality of the source rocks is highly heterogeneous;the source rocks of the Sangonghe Formation are mainly composed of mudstone,and it is a good gas source rock.Simulation experiments found that the activation energy required for the generation of gaseous hydrocarbons by the mudstone of the Sangonghe Formation is lower than that by the mudstone of the Xishanyao Formation.The hydrocarbon generation process can be divided into three stages for both formations,but the gas generation potential of the Xishanyao Formation mudstone is higher than that of the Sangonghe Formation mudstone.A large amount of hydrocarbon was generated by the mudstone of the Xishanyao Formation when entering late thermal evolution,of which methane is dominant,mainly from the demethylation reaction of mature kerogen.On the other hand,a large amount of hydrocarbon was generated by the mudstone of the Sangonghe Formation in the early stage of thermal evolution,of which light hydrocarbon and wet gas are dominant,mainly from the early cracking stage of kerogen.This difference may be attributed to the structure of kerogen.The mudstone of the Xishanyao Formation is conducive to the formation of highly mature dry gas reservoirs,while the mudstone of the Sangonghe Formation is conducive to the formation of low maturity condensate gas and volatile oil reservoirs.The research result provides a scientific basis for the comparison of oil and gas sources and the evaluation of oil and gas resources in the Turpan-Hami Basin.
基金financed by the Key Technology R&D Plan of Yunnan Provincial Department of Science and Technology(Grant No.202303AA080003)the Shanghai Rising-Star Program(Grant No.23QB1404800).
文摘Rock is exposed to the combined effects of the confining pressure and strain rate during the dynamic excavation process in deeply buried high-stress tunnels.Therefore,a constitutive model that considers both the strain rate and the confining pressure effect plays a crucial role in evaluating the disturbance and stability of deeply buried tunnels.Taking mudstone as an example,a series of tests were performed to reveal the combined effect of the strain rate and confining pressure on the mechanical behavior of soft rock,and a novel statistical damage constitutive model was proposed.The confining pressures of 0 MPa,10 MPa,20 MPa,and 30 MPa and strain rates of 10^(-5)s^(-1),10^(-4)s^(-1),10^(-3)s^(-1),and 10^(-2)s^(-1)were investigated.The results show that the rock strength increases with increasing confining pressure and strain rate,and that the contributions of these two factors can be considered independent of each other.However,an increase in the confining pressure reduces the degree of rock damage and increases the ductility of the sample at failure,whereas the strain rate has the opposite effect.Finally,a full deformation process damage model considering strain rate effect is established based on a modified Hoek‒Brown strength criterion considering the strain rate.The model can capture the nonlinear increase in strength and elastic modulus with increasing confining pressure and strain rate,reproducing the brittle‒ductile transition characteristics and the full deformation process.
基金Projects(52278439,51838001)supported by the National Natural Science Foundation of ChinaProject(2023RC3138)supported by the Science and Technology Innovation Plan Project of Hunan Province,China+2 种基金Project(21B0317)supported by the Natural Science Youth Project of Education Department of Hunan Province,ChinaProject(2022JJ40500)supported by the Natural Science Foundation of Hunan Province,ChinaProject(21KB13)supported by the Open Fund of Key Laboratory of Safety Control of Bridge Engineering,Ministry of Education(Changsha University of Science&Technology),China。
文摘In the corrosive environment of carbonaceous mudstone,the mechanical properties of grouting materials in the anchorage section of anchor bolts continue to deteriorate.In response,a cement-based modified anchoring grouting material(MAGM)with high corrosion resistance was developed.The results reveal that compared with those of ordinary Portland cement(OPC)grouting material,the compressive strength,tensile strength,and shear stress peak of the MAGM increased by 85.9%,44.4%and 45.4%,respectively,after 28 d of corrosion in a carbonaceous mudstone solution.Waterborne epoxy resin and curing agent create a network membrane structure under the action of nano-Al_(2)O_(3)to protect the cement hydration products.In the corrosive environment of carbonaceous mudstone,corrosion products formed on the surface of the stone body have adsorbed onto the reticular membrane structure,filling the pores of the stone body and slowing the erosion rate of ions.After 365 d of application of MAGM and OPC in the corrosive environment of a carbonaceous mudstone slope,the peak shear stress of MAGM is,on average,55.3%greater than that of OPC.
基金support of the National Natural Science Foundation of China(Grant Nos.42377179,U22A20595,12202463).
文摘Accurately characterizing the pore structure of Tamusu mudstone and simulating fluid flow within it are crucial for assessing underground disposal of high-level radioactive waste(HLW)in this formation.Modeling mudstone presents challenges due to its multiscale pore structure and the necessity that accounts for the effects of high clay content.A method for constructing a dual-scale pore network model(PNM)for the Tamusu mudstone,which considers the hydrological expansion of clays,was proposed.This model integrates N2 adsorption data with focused ion beam/scanning electron microscopy(FIB/SEM)images and labels pores based on clay content.Simulations of single-phase flow were conducted to validate the proposed model.Additionally,the influences of cell number,connectivity,slip effects,and clay minerals on permeability were examined.The findings indicate that a configuration of 45×45×45 cells adequately represents the model.The permeability of the Tamusu mudstone,about 1020 m^(2),aligns with the experimental values.During the simulation,Knudsen diffusion is considered.Factors such as increased roughness,tortuosity,clay content,and water film thickness decrease the permeability,whereas increased connectivity enhances permeability.In the model,numerical coordination numbers 2 and 3 are deemed suitable for the Tamusu mudstone.The proposed model is effective as a tool for constructing and simulating fluid flow in the Tamusu mudstone.
基金The work described in this paper is partially supported by the Second Tibetan Plateau Scientific Expedition and Research Grant(2019QZKK0708)ARC Discovery Project grants(DP210100437,DP230100126),for which the authors are very grateful.
文摘The creep-slip behavior of creeping landslides is closely related to the creep characteristics of slope rock.This study analyzed the creep behavior of ultra-soft mudstone from the Gaomiao landslide in Haidong City,Qinghai Province,China.Uniaxial creep tests were carried out on ultra-soft mudstone with various moisture contents.The test results indicated that the creep duration of the rock sample with a natural moisture content of 9%is 2400 times longer than that of the sample with a natural moisture content of 13%,while its accumulated strain is 70%of the latter.For the rock sample with a natural moisture content of 9.80%,the creep duration under 0.5 MPa load is 80%of that under 0.25 MPa load,yet the accumulated strain is 1.4 times greater.Additionally,porosity significantly influences the creep behavior of mudstone.Analysis of the cause of the Gaomiao landslide and field monitoring data indicates that the instability of the Gaomiao landslide is related to the moisture content of the landslip mass and external forces.The creep-slip curves of landslides and the creep deformation curves of rocks share a common trend.Precisely identifying the moment when the shift occurs from steady state creep to accelerated creep is critical for comprehending slope instability and rock failure.Moreover,this study delves deeper into the issue of the consistency between landslide creep and rock deformation.
基金financial support by the National Natural Science Foundation of China(52378440,42201149)the Key Science and Technology Program in the Transportation Industry(2022-MS1-032)the Natural Science Foundation of Hunan Province of China(2023JJ10045,2024JJ6023)。
文摘With carbonaceous mudstone increasingly employed as fill material for road embankments in areas of China such as Guangxi and Hunan,its longterm stability has become a significant engineering concern.This study adopted a test method combining direct shear and resistivity measurements.The dynamic coupling mechanism of the mechanical properties and resistivity response of carbonaceous mudstone soil-rock mixed fillers during the shear process was systematically investigated by controlling the influencing factors of rock content and normal stress.The study indicates that the filler's shear failure mode gradually shifts from strain softening to plastic flow as the rock content increases,with shear strength and strength parameters exhibiting an initial increase followed by a subsequent decrease.When the rock content exceeds 60%,particle breakage is markedly intensified,and an increase in normal stress further facilitates the breakdown of coarse particles.The resistivity of the specimen demonstrates a strong positive correlation with shear displacement.The initial resistivity exhibits a rising trend with increasing rock content,and variations in rock content notably impact the resistivity's extreme differenceΔρ(Ω·m).60%rock content is the key critical point of the shear strength,Br,andΔρof the packing.At this point,the shear strength reaches the maximum value,the Br value undergoes a transition,andΔρis the lowest.In this study,the variation of resistivity is utilized to characterize the evolution law of internal structural damage during the shear process,with the aim of providing a theoretical basis for the long-term stability analysis of carbonaceous mudstone soil-rock mixed fill embankments.
基金the financial support by the National Natural Science Foundation of China(Grant No.52108397)“Xiaohe”Science and Technology Talent Special Project(Grant No.2024 TJ-X06)Water Resources Science and Technology Project of Hunan Province(Grant No.XSKJ2023059-41).
文摘Cracking affected by wetting-drying cycles is a major cause of shallow failure of soft rock slopes.Knowledge of rock tensile properties and cracking behaviors helps better assess the stability of soft rock slopes.This study aims to examine the cracking behaviors and tensile strength of silty mudstone under wetting-drying cycles.The wetting-drying cycle and Brazilian splitting tests were performed on silty mudstone considering various cycle number and amplitude.The cracking behaviors of wetting-drying cycles were analyzed by digital image correlation,three-dimensional(3D)scanning technology,and scanning electron microscopy.The results reveal a spiral-like pattern of crack ratio escalation in silty mudstone,with a higher crack ratio observed during drying than wetting.Tensile strength and fracture energy correlate negatively with cycle number or amplitude,with cycle number exerting a more pronounced effect.The variance of the maximum principal strain reflects stages of initial deformation,linear deformation,strain localization,and stable deformation.The formation of strain localization zones reveals the physical process of crack propagation.Crack tip opening displacement progresses through stages of slow growth,exponential growth,and linear growth,delineating the process from crack initiation to stable extension.Failure modes of silty mudstone primarily involve tensile and tensile-shear failure,influenced by the geometric parameters of cracks induced by wetting-drying cycles.Fracture surface roughness and fractal dimension increase with cycle number due to mineral dissolution,physical erosion,and nondirectional crack propagation.Hydration-swelling and dehydration-shrinkage of clay minerals,along with absorption-drying cracking,initiate and merge cracks,leading to degradation of the rock mechanical properties.The findings could provide insights for mitigating shallow cracking of soft rock slopes under wetting-drying cycles.
基金the financial support by the National Natural Science Foundation of China(52378440,42477143)the Key Science and Technology Program in the Transportation Industry(2022-MS1-032,2022-MS5-125)+2 种基金the Postgraduate Scientific Research Innovation Project of Hunan Province(CX20251302)the Science and Technology Innovation Program of Hunan Province(2024RC3166)the Guangxi Key Research and Development Program(AB23075184)。
文摘Carbonaceous mudstone is a potential embankment filler in mountainous regions with limited high-quality materials;however,its engineering performance in highway embankments under complex environmental conditions remains poorly understood.This study aimed to investigate the mechanical properties and failure mechanisms of carbonaceous mudstone filler under different temperature-moisture coupled conditions.Triaxial shear tests were conducted under four temperaturemoisture coupled conditions:dry-heat to dry-cold(DHDC),wet-cold to wet-heat(WCWH),dry-cold to wet-heat(DCWH),and dry-heat to wet-cold(DHWC).The effects of these conditions on the strength characteristics,relative breakage ratio,failure mode,and microscopic morphology were examined.A segmented prediction model based on the DuncanChang model was applied to validate the experimental results under the DHWC condition.The failure mechanisms under different conditions were also analyzed.The results indicate that the degradation of carbonaceous mudstone increases in the following order:DHDC,WCWH,DCWH,and DHWC.Under the DHDC condition,the stress-strain curves exhibit strain-softening behavior,while other conditions show strain-hardening behavior,with peak deviatoric stress occurring at 2%and 4%axial strains,respectively.The shear strength decreases by up to 40%under the DHWC condition but remains nearly unchanged under the DHDC condition,showing a positive correlation with particle breakage.As the number of cycles increases,the failure surfaces gradually move downward.Higher confining pressure shifts failure mode from shear failure to shear slip or localized compression,and eventually to overall compression or expansion failure.The modified Duncan-Chang model accurately predicts the experimental results.These findings provide important guidance for the application of carbonaceous mudstone filler in highway embankment construction in humid mountainous regions.
基金The financial support from Project(Grant Nos.52278432,and 52168066)of National Natural Science Foundation of China and Project(Grant No.K2023G033)of the Science and Technology Research and Development Plan of China National Railway Group Co.,Ltd.were greatly appreciated.
文摘This paper presents a multi-scale experimental investigation of the weathering degradation of red mudstone.Natural rocks were extracted from the surface ground to 120 m,inwhich three sets of samples were selected to consider the different initial rock fabrics.The long-term relative humidity(RH)cycles under two amplitudes were imposed on red mudstone to simulate the weathering process.After RH cycles,a series of uniaxial compression tests,Brazilian splitting tests and bender-extender element tests were carried out to examine the reduction in strength and stiffness.The objective of this study is to develop an extended stress-volume framework characterizing the degradation of natural red mudstone both at microscale and macroscale.Accompanied by the irreversible swelling of the rock specimen is the progressive degradation of strength,stiffness and Poisson's ratio.A unified exponential degradation model in terms of the irreversible volumetric strain was thus proposed to capture such a degradation pattern.The effect of the initial rock fabric was evident.The highest degradation rate and potential were identified in slightly weathered specimens.Significant slaking of aggregates and crack propagation were confirmed by scanning electron microscope(SEM)micrographs,which were considered as the main consequence of structure damage leading to degradation of mechanical properties.The structure damage during RH cycles denoted the hysteresis nature in the response to the cycling hydraulic reaction,in turn causing the increase in volumetric strain.Thus,the stress-volume relation rather than the suction relation was found in more reasonable agreement with the experimental results.
基金Project(41877240)supported by the National Natural Science Foundation of China。
文摘As a typical sedimentary soft rock,mudstone has the characteristics of being easily softened and disintegrated under the effect of wetting and drying(WD).The first cycle of WD plays an important role in the entire WD cycles.X-ray micro-computed tomography(micro-CT)was used as a non-destructive tool to quantitatively analyze microstructural changes of the mudstone due to the first cycle of WD.The test results show that WD leads to an increase of pore volume and pore connectivity in the mudstone.The porosity and fractal dimension of each slice of mudstone not only increase in value,but also in fluctuation amplitude.The pattern of variation in the frequency distribution of the equivalent radii of connected,isolated pores and pore throats in mudstone under WD effect satisfies the Gaussian distribution.Under the effect of WD,pores and pore throats with relatively small sizes increase the most.The sphericity of the pores in mudstones is positively correlated with the pore radius.The WD effect transforms the originally angular and flat pores into round and regular pores.This paper can provide a reference for the study of the deterioration and catastrophic mechanisms of mudstone under wetting and drying cycles.
基金funded by the National Science Foundation of China(CN)(Nos.42090054,41922055,41931295)the Key Research and Development Program of Hubei Province of China(No.2020BCB079)。
文摘Landslides frequently occurred in Jurassic red strata in the Three Gorges Reservoir(TGR)region in China.The Jurassic strata consist of low mechanical strength and poor permeability of weak silty mudstone layer,which may cause slope instability during rainfall.In order to understand the strength behavior of Jurassic silty mudstone shear zone,the so-called Shizibao landslide located in Guojiaba Town,Zigui County,Three Gorges Reservoir(TGR)in China is selected as a case study.The shear strength of the silty mudstone shear zone is strongly influenced by both the water content and the normal stress.Therefore,a series of drained ring shear tests were carried out by varying the water contents(7%,12%,17%,and 20%,respectively)and normal stresses(200,300,400,and 500 kPa,respectively).The result revealed that the residual friction coefficient and residual friction angle were power function relationships with water content and normal stress.The peak cohesion of the silty mudstone slip zone increased with water content to a certain limit,above which the cohesion decreased.In contrast,the residual cohesion showed the opposite trend,indicating the cohesion recovery above a certain limit of water content.However,both the peak and residual friction angle of the silty mudstone slip zone were observed to decrease steadily with increased water content.Furthermore,the macroscopic morphological features of the shear surface showed that the sliding failure was developed under high normal stress at low water content,while discontinuous sliding surface and soil extrusion were occurred when the water content increased to a saturated degree.The localized liquefaction developed by excess pore water pressure reduced the frictional force within the shear zone.Finally,the combined effects of the slope excavation and precipitation ultimately lead to the failure of the silty mudstone slope;however,continuous rainfall is the main factor triggering sliding.
基金supported by the Central Young College Teachers Fund Project of China(Grant No.3142020002)the Fundamental Research Funds for the Central Universities(Grant No.3142021004)+1 种基金the National Natural Science Foundation of China(Grant No.41673066 and No.42202291)the Construction of the Water Damage Model in the Xishan Coal Power Mining Area(Grant No.20230767).
文摘Gas derived from the primary cracking of kerogen and the secondary cracking of oil has historically been the focus of petroleum geologists,given its importance as a gas source.The Wenchang A Depression within the Zhu Ⅲ Sub-basin is the largest gaseous hydrocarbon-rich depression in the Pearl River Mouth Basin(PRMB),and the sources of gaseous hydrocarbons in this depression are a research focus.Mudstones from the Eocene Wenchang Formation contain type Ⅰ and type Ⅱ organic matter and are oilprone,with TOC,S1+S2,and HI values mostly ranging from 1.42%to 3.12%,9.71 mg/g to 20.61 mg/g,and 410.71 mg/g TOC to 736.17 mg/g TOC,respectively.Data of gaseous hydrocarbon yields and carbon isotopic compositions show that the gaseous hydrocarbons generated from oil-prone mudstones are mainly derived from the secondary cracking of oil,and the plot of δ^(13)C_(2)-δ^(13)C_(3) versus ln(C_(2)/C_(3))effectively identified the gas source.To further assess the gas generation processes and the ratio of oil-cracking gas under geological conditions,we reconstructed the history of gaseous hydrocarbon generation in mudstones from the Wenchang Formation in the Wenchang A Depression.Results showed that gaseous hydrocarbon generation began at approximately 33 Ma,a maximum of 69%of total gaseous hydrocarbons(C_(1)-C_(5))was generated by oil cracking,and total heavy hydrocarbon gases(C_(2)-C_(5))were mainly generated from oil cracking(65%-81%).This study provides a deeper understanding of the characteristics of gas generated from oil-prone mudstones and is important for gas exploration in the Wenchang Depression.
基金supported by the National Science and Technology Major Project of China (NO: 2011ZX05007-001-01)
文摘Petroleum geologists have debated whether the hydrocarbons from Jurassic coal measures are derived from the coals, carbonaceous mudstones or coal-measure mudstones in the Turpan Basin. Based on the geochemistry analysis of the 20 crude oils and 40 source rocks from the Turpan Basin, some data have been obtained as follows: carbon preference index and methylphenanthrene index of the Jurassic oils are 1.16-1.45 and 0.28-0.80, and the ααα C29 sterane 20S/(20S+20R) and C29 sterane ββ/(ββ+αα) are 0.44-0.51 and 0.4-0.54 respectively, which show the normal maturity of oils; the vitrinite reflectance of the source rocks from the Xishanyao to Badaowan Formations range from 0.47% to 0.97%, which indicate immature to mature thermal evolutionary stage and sufficient conditions for generating mass mature oil. The effect of hydrocarbon expulsion should be considered when studying the source of coal-derived oil by using Biomarkers. Biomarkers in the Jurassic oils from the basin are similar to those in the coals and carbonaceous mudstones, with a strong predominant content of pristane, relatively high ratio of C15 /C16 sesquiterpenoids (1), a relatively high content of low carbon number tricyclic terpanes and C 24 tetracyclic terpane, little gammacerane and C 29 Ts detected, an absolute predominant content of C29 sterane and a relatively high content of diasterane. However, the opposite characteristics are shown in mudstones, with an approximately equal content of pristane and phytane, relatively low ratio of C15 /C16 sesquiterpenoids (1), a relatively high content of high carbon number tricyclic terpanes and a low content of C 24 tetracyclic terpane, peaks of gammacerane and C29 Ts detected obviously and an increasing C27 sterane content. All of these characteristics identify the coals and carbonaceous mudstones as the possible major oil source rocks in this area, and they were formed in the stronger oxidizing environment with shallower water than mudstones.
基金the China Postdoctoral Science Foundation (Project No.2004035349).
文摘The loess landslide along the contact between loess and Neogene red mudstone (NRM) is one of those that have occurred extensively and frequently in loess areas of China. To better understand the mechanism of this type of landslides, a distressed loess slope being subjected to deformation along the loess-NRM contact was comprehensively investigated through approaches of field monitoring and laboratory physical modeling. Field observation and physical modeling shows that the slope deformation will experience two distinct processes: 1) laterally retrogressive and vertically progressive propagation, which was initiated by falling of the slope head; and 2) retrogressively separate mass sliding along the weak basal zone of the loess-NRM contact with minor sliding along the paleosols within the loess. Shear failure of the loess-NRM contact may initiate in the middle section, followed by a progressive propagation towards the slope toe and inner slope. Analysis reveals that the deformation characteristics of the distressed slope are largely constrained by slope topography, the unique structure, physical and mechanical properties of loess and paleosols, and occurrence and nature of the loess-NRM contact. Rainfall has significantly influence on the deformation characteristics of the slope through its interaction with the loess and soil of the loess-NRM contact. Additionally, improper style and intensity of cutting on the slope greatly enhance and accelerate the deformation course of the slope.
基金Supported by the German Federal Ministry of Economics and Technology(BMWi)(02E10377)
文摘This paper studies the swelling of highly consolidated mudstones by theoretical considerations and laboratory experiments. A key assumption was made that saturated and uncemented clays behave as heavily dense colloid without direct contacts among solid particles. It leads to an important conclusion that the swelling pressure acting on adsorbed interparticle water-films is equivalent to the effective stress, This so-called clay-colloid concept is validated by various swelling experiments on two kinds of mudstones, the Callovo-Oxfordian argillite in France and the Opalinus clay in Switzerland. In the tests, water adsorption-desorption, swelling pressure and strain were measured on the samples at various suctions and load-controlled conditions. Results suggest that: (1) the mudstones can take up great amounts of water from the humid environment, much more than the water content in the natural and saturated states; (2) the swelling pressure increases with water uptake to high levels of the overburden stresses at the sampling depths of 230 to 500 m, indicating that the adsorbed water-films are capable of carrying the lithostatic stress; and (3) the large amount of water uptake causes a significant expansion of mudstones even under the lithostatic stresses.
基金Projects(51838001, 51878070, 51908073, 51908069) supported by the National Natural Science Foundation of ChinaProject(2019SK2171) supported by the Key Research and Development Program of Hunan Province, China+2 种基金Project(kq1905043) supported by the Training Program for Excellent Young Innovators of Changsha, ChinaProject(2019IC04) supported by Double First-class Scientific Research International Cooperation Expansion Project of Changsha University of Science & Technology, ChinaProject(CX20200811) supported by Postgraduate Research and Innovation Key Project of Hunan Province, China。
文摘To investigate the influence of confining pressures and temperatures on the seepage characteristics of fractured rocks, seepage tests were conducted on a fractured silty mudstone using a self-developed experimental system, and the effects of different factors on coefficient of permeability were discussed. The results showed that the increasing confining pressure will gradually decrease the coefficient of permeability, and this process is divided into two stages: 1) the fast decrease stage, which corresponds to a confining pressure less than 30 kPa, and 2) the slow decrease stage, which corresponds to a confining pressure larger than 30 kPa. Unlike confining pressure, an increase in temperature will increase the coefficient of permeability. It is noted that fracture surface roughness will also affect the variation of coefficient of permeability to a certain extent. Among the three examined factors, the effect of confining pressure increases is dominant on fracture permeability coefficient. The relationship between the confining pressure and coefficient of permeability can be quantified by an exponential function.
基金financially supported by the National Natural Science Foundation of China (Nos. U1562214, 41702156, 41272151)the National Science and Technology Major Project (No. 2016ZX05003-002)
文摘The petrophysical property of mudstone often transforms from ductile to brittle in the process of burial-uplift. The deformation mechanism of fault in brittle and ductile mudstone caprock is different, which leads to the formation of different types of fault zone structure. Different methods are required to evaluate the sealing mechanism of those fault zones. Based on the caprock deformation mechanism, fault sealing mechanism, quantitative evaluation method of vertical fault sealing capacity is put forward in this study. Clay smear is formed in the process of plastic deformation and its continuity controls the sealing capacity of fault. The outcrop and oil field data have confirmed that when sealing parameter SSF is less than 4–7, the clay smear becomes discontinuous and then oil and gas go through the caprock and migrate vertically. Quantities of fractures are formed in mudstone in the process of brittle deformation. The fracture density increases with the increase of the fault displacement. When the fractures are connected, oil and gas go through the caprock and migrate vertically. The connectivity of fault depends on the displacement and the thickness of caprock. On the basis of the above, a method is put forward to quantify the connectivity of fault with the juxtaposition thickness of caprock after faulting. The research on the juxtaposition thickness of caprock after faulting of the member II of Dongying Formation in Nanpu depression and the distribution of oil and gas indicates when the juxtaposition thickness of caprock is less than 96.2 m, the fault becomes leaking vertically. In the lifting stage, with the releasing and unloading of the stress, the caprock becomes brittle generally and then forms through going fault which will lead to a large quantity of oil and gas migrate vertically.
基金Projects(51908069, 51908073, 51838001, 51878070) supported by the National Natural Science Foundation of ChinaProject(2019SK2171) supported by the Key Research and Development Program of Hunan Province, China+3 种基金Project(2019IC04) supported by the Double First-Class Scientific Research International Cooperation Expansion Project of Changsha University of Science & Technology,ChinaProject(kfj190605) supported by the Open Fund of Engineering Laboratory of Spatial Information Technology of Highway Geological Disaster Early Warning in Hunan Province (Changsha University of Science & Technology), ChinaProject(kq1905043) supported by the Training Program for Excellent Young Innovators of Changsha, ChinaProject(SJCX202017) supported by the Practical Innovation Program for Graduates of Changsha University of Science & Technology, China。
文摘This study aims to improve the mechanical behavior of disintegrated carbonaceous mudstone, which is used as road embankment filler in southwestern China. Triaxial tests were performed on disintegrated carbonaceous mudstone modified by fly ash, cement, and red clay. Then the stress-strain relationships and shear strength parameters were analyzed. The microstructure and mineral composition of the materials were identified via scanning electron microscopy and X-ray diffraction. The results show that the stress-strain relationships changed from strain-hardening to strain-softening when disintegrated carbonaceous mudstone was modified with cement. By contrast, the addition of fly ash and red clay did not change the type of stress-strain relationships. The order of these three additives is cement, red clay and fly ash according to their influences on the cohesion. Disintegrated carbonaceous mudstone without cement all showed bulging failures, and that modified with cement exhibited shear failures or bulging-shear failures. The soil particles of the improved soil were well bonded by cementitious substances, so the microstructure was denser and more stable, which highly enhanced the mechanical behavior of disintegrated carbonaceous mudstone. The findings could offer references for the use of carbonaceous mudstone in embankment engineering.
基金supported by the Science and Technology Support Program of Sichuan Province(No.15ZC1390)National Natural Science Foundation of China(No.41102064)
文摘The Upper Ordovician–Lower Silurian mudstones(including the Wufeng, Guanyinqiao and Longmaxi Formations) in the Sichuan Basin are some of the most important shale gas plays in China. In order to enhance our understanding of the process of formation of organic carbon up to 10%, optical, microscopy and geochemical methods have been used to investigate the petrographic and geochemical characteristics of the formation. Firstly, three mudstone lithofacies were identified based on a wide variety of mudstone laminations. These are:(a) indistinctly laminated mudstone;(b) parallellaminated mudstone; and(c) nonparallel-laminated mudstone. Then, combining with the evidence from depocenter migration, Th/U ratios and total organic carbon, the abundant organo-minerallic fabrics suggest that organic carbon was preferentially deposited and preserved in anoxic, low energy and stagnant water conditions during deposition of the Wufeng and Longmaxi Formations. On the contrary, the Guanyinqiao Formation with poor organic carbon was deposited in oxic and high-energy water conditions.
基金supported by the National Natural Science Foundation of China(Nos.51104128,51322401,51304201 and 51204159)Jiangsu Province Prospective industry-UniversityResearch Cooperation Research Program of China(No.BY2012085)+2 种基金Doctor Station Fund of China(No.20120095110013)333 Project Program of Jiangsu Province of China"Blue Project" Program of Jiangsu Province of China
文摘The uniaxial compression tests for mudstone specimens are carried out with four different loading rates from room temperature to 400℃ by using the Rock Mechanics Servo-controlled Testing System MTS810 and high temperature furnace MTS652.02.The mechanical properties of mudstone with various loading rates are studied under different temperature conditions.The results show that when temperature increases from room temperature to 400℃ and loading rate is less than 0.03 mm/s,the peak strength of mudstone specimen decreases as loading rate increases,while the various peak strengths show significant differences when loading rate exceeds 0.03 mm/s.At room temperature,the elastic modulus decreases at the first time and then increases with loading rate rising.When the temperature is between200 and 400℃,the elastic modulus presents a decreasing trend with increasing loading rate.With increasing the loading rate,the number of fragments in mudstone becomes larger and even the powder is observed in mudstone with higher loading rate.Under high loading rate,the failure mode of mudstone specimens under different temperatures is mainly conical damage.