Although there have been many observational and modeling studies of gravity waves excited by topograpghy, the detailed structure and its changes in real world are still poorly understood. The interaction of topography...Although there have been many observational and modeling studies of gravity waves excited by topograpghy, the detailed structure and its changes in real world are still poorly understood. The interaction of topography and background flow are described in details for a better understanding of the gravity waves observed by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery over Nanling Mountains. The evolutionary process and spatial structure of gravity waves were investigated by using almost all available observational data, including MODIS satellite imagery, the Final Analyses (FNL) data issued by National Centers for Environmental Prediction (NCEP), the aerosol backscattering signal data from Lidar, the surface observational data and the sounding data of Nanling mountain regions. In order to study its development mechanism, choosing the initial sounding of Jiangxi Gaizhou station located in the upstream of Nanling regions, and using the Advanced Regional Prediction System (ARPS), the numerical simulation was performed. It is shown that the ARPS model reproduced the main features of gravity waves reasonably well, where the gravity waves and turbulent mixed layer are consistent with the satellite image and the aerosol backscattering signal from Lidar observation. It is well-known that gravity wave-induced turbulence and thus turbulent mixing could affect the local composition of chemical species, which plays a significant role in the formation of low visibility and precipitation associated with local orography.展开更多
The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated ...The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated from seismograms by numerical filtering and spectral analyzing. The results show that: a) Both explosion and earthquake sources can excite fault-zone trapped waves, as long as they locate in or near the fault zone; b) Most energy of the fault-zone trapped waves concentrates in the fault zone and the amplitudes strongly decay with the distance from observation point to the fault zone; c) Dominant frequencies of the fault-zone trapped waves are related to the width of the fault zone and the velocity of the media in it. The wider the fault zone or the lower the velocity is, the lower the dominant frequencies are; d) For fault zone trapped waves, there exist dispersions; e) Based on the fault zone trapped waves observed in Kunlun Mountain Pass region, the width of the rupture plane is deduced to be about 300 m and is greater than that on the surface.展开更多
The Gravity waves activities in the Tibetan Plateau are very complex with different effects and natures that are not clear due to the lack of high resolution data from space and also from ground. In this paper,using C...The Gravity waves activities in the Tibetan Plateau are very complex with different effects and natures that are not clear due to the lack of high resolution data from space and also from ground. In this paper,using COSMICGPS radio occultation data from 2006 to 2014, the atmospheric gravity waves activities and climatologic behaviors in Tibetan stratosphere are studied and analyzed, which show different characteristics. Most of the gravity waves with potential energy(Ep) at altitude of 17-24 km are associated with mountain waves. A good correlation between gravity wave activities and zonal wind flow is found. The distribution of gravity wave(GW) activities in Tibet is strongly connected with zonal wind variation and topography. GW activities are enhanced in winter seasons and decreased in summer seasons since strong western winds persist at all heights of the Tibetan troposphere. The gravity waves generated in the Tibetan area are mostly related to the orography of the area. The vertical wavelengths of GWS are shorter.Gravity waves in the Northwest have different vertical wavelengths in the Southeastern part of Tibetan Plateau, and dominant wavelengths are 3-5 km in the Northwest and 2-3 km in the Southeast,respectively. In the summer, the Northwestern part is the main source of wave generation while in the winter the GW is generated almost from all peaks of the Tibetan Plateau. Gravity waves in the region are clearly related to deep convection, which can also be proved by the inverse relation of Outgoing long wave radiation(OLR) and potential energy(Ep).展开更多
The parameterization of gravity wave drag induced by sub-grid scale orography(GWDO), which has been used in the regional model based on the Global/Regional Assimilation and Prediction System for Tropical Mesoscale Mod...The parameterization of gravity wave drag induced by sub-grid scale orography(GWDO), which has been used in the regional model based on the Global/Regional Assimilation and Prediction System for Tropical Mesoscale Model(GRAPES_TMM), is extended to include the effect of mountain flow blocking drag(MBD). The extended scheme is evaluated against non-GWDO parameterization, including a cold air outbreak over southern China and a monthly verification in February 2012. The experiment results show that the GWDO and MBD parameterization both improves the forecasting of the cold air outbreaks over southern China, as well as alleviations of system bias of GRAPES_TMM.(1) The extended scheme alleviates the strong southerly wind and high surface temperature simulation during the cold air outbreak, especially over northern Guangxi and Guangdong(NGG) province, where local high surface temperature simulation reduces nearly 5 degree.(2) The MBD parameterization improves southerly wind simulations over NGG, as well as surface temperature forecasts improvement over Guangxi, Guizhou province and southern Yunnan-Guizhou plateau(YUP), and low level southerly wind simulation improvement over intertidal zone over south China.(3) The formation of MBD is mainly in the mountain area(Wuyi, Daba mountain, east of YUP) and coastal area. The MBD over plateau, which is mainly formed at the west of 105°E, is stronger and thicker than that over Nanling mountain.(4) The improvement of GWDO and MBD parameterization is stable in model physics. MBD parameterization demonstrates more overall improvements in the forecasts than GWDO, and the larger of the model forecast error is, the greater improvements of MBD contribute to. Overall, the extended GWDO scheme successfully improves the simulations of meteorological elements forecasting during cold air outbreaks.展开更多
The Mushroom Stone Forest, which consists of granite boulders looking like mushrooms with flared sidewalls, is located in eastern Guangdong China, and is a famous scenic spot that draws many tourists each year. The Mu...The Mushroom Stone Forest, which consists of granite boulders looking like mushrooms with flared sidewalls, is located in eastern Guangdong China, and is a famous scenic spot that draws many tourists each year. The Mushroom Stone Forest has been traditionally recognized as a collection of wave erosion landforms and used for the reconstruction of palaeo-sea-level changes along the coastal areas of eastern Guangdong in previous coastal researches. By combining in situ measurements of the aspect,vertical profile and height of boulder sidewalls,palaeo-coastal wave direction estimation, rock density determination, major elemental analysis, and petrographic thin section analysis, this paper presents an alternative origin for the Mushroom Stone Forest.Our results suggest that wave or wind erosion cannot offer a satisfactory explanation for the formation of the Mushroom Stone Forest; The boulders that make up the Mushroom Stone Forest originated from the corestones in the granite weathering crusts of the Little Sangpu Mountain; When the debris of the weathering crust was removed, the corestones are perched on rocky outcrops or half-buried by weathering debris beneath the natural land surface;The flared sidewall (concave vertical profile) of the boulders is a particular form developed in the foot zone of a half-buried boulder through increased chemical weathering beneath the land surface. A recent exposed half-buried boulder found in the study area provides convincing evidence to support this argument. Sea water reached the foot of the Sangpu Mountain during the Holocene transgression, but it merely provided a mechanism to erode the weathering debris from the bottom of the mushroom rocks and enhanced salt weathering that created tafoni on the boulders. These findings demonstrate that the boulders of the Mushroom Stone Forest are not sea stacks and cannot be served as a palaeo-sea-level indicator.展开更多
On studying traveling waves on a nonlinearly suspended bridge,the following partial differential equation has been considered:\$\$u\-\{tt\}+u\-\{xxxx\}+f(u)=0,\$\$where f(u)=u\++-1 .Here the bridge is seen as a vib...On studying traveling waves on a nonlinearly suspended bridge,the following partial differential equation has been considered:\$\$u\-\{tt\}+u\-\{xxxx\}+f(u)=0,\$\$where f(u)=u\++-1 .Here the bridge is seen as a vibrating beam supported by cables,which are treated as a spring with a one\|sided restoring force.The existence of a traveling wave solution to the above piece\|wise linear equation has been proved by solving the equation explicitly (McKenna & Walter in 1990).Recently the result has been extended to a group of equations with more general nonlinearities such as f(u)=u\++-1+g(u) (Chen & McKenna,1997).However,the restrictions on g(u) do not allow the resulting restoring force function to increase faster than the linear function u-1 for u >1.Since an interesting “multiton” behavior,that is ,two traveling waves appear to emerge intact after interacting nonlinearly with each other,has been observed in numerical experiments for a fast\|increasing nonlinearity f(u)=e u-1 -1 ,it hints that the conclusion of the existence of a traveling wave solution with fast\|increasing nonlinearities shall be valid as well.\;In this paper,the restoring force function of the form f(u)=u·h(u)-1 is considered.It is shown that a traveling wave solution exists when h(u)≥1 for u≥1 (with other assumptions which will be detailed in the paper),and hence allows f to grow faster than u-1 .It is shown that a solution can be obtained as a saddle point in a variational formulation.It is also easy to construct such fast\|increasing f(u) 's for more numerical tests.展开更多
文摘Although there have been many observational and modeling studies of gravity waves excited by topograpghy, the detailed structure and its changes in real world are still poorly understood. The interaction of topography and background flow are described in details for a better understanding of the gravity waves observed by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery over Nanling Mountains. The evolutionary process and spatial structure of gravity waves were investigated by using almost all available observational data, including MODIS satellite imagery, the Final Analyses (FNL) data issued by National Centers for Environmental Prediction (NCEP), the aerosol backscattering signal data from Lidar, the surface observational data and the sounding data of Nanling mountain regions. In order to study its development mechanism, choosing the initial sounding of Jiangxi Gaizhou station located in the upstream of Nanling regions, and using the Advanced Regional Prediction System (ARPS), the numerical simulation was performed. It is shown that the ARPS model reproduced the main features of gravity waves reasonably well, where the gravity waves and turbulent mixed layer are consistent with the satellite image and the aerosol backscattering signal from Lidar observation. It is well-known that gravity wave-induced turbulence and thus turbulent mixing could affect the local composition of chemical species, which plays a significant role in the formation of low visibility and precipitation associated with local orography.
基金Joint Earthquake Science Foundation of China (201001).
文摘The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated from seismograms by numerical filtering and spectral analyzing. The results show that: a) Both explosion and earthquake sources can excite fault-zone trapped waves, as long as they locate in or near the fault zone; b) Most energy of the fault-zone trapped waves concentrates in the fault zone and the amplitudes strongly decay with the distance from observation point to the fault zone; c) Dominant frequencies of the fault-zone trapped waves are related to the width of the fault zone and the velocity of the media in it. The wider the fault zone or the lower the velocity is, the lower the dominant frequencies are; d) For fault zone trapped waves, there exist dispersions; e) Based on the fault zone trapped waves observed in Kunlun Mountain Pass region, the width of the rupture plane is deduced to be about 300 m and is greater than that on the surface.
基金supported by the National Natural Science Foundation of China Project(Grant No.11573052)
文摘The Gravity waves activities in the Tibetan Plateau are very complex with different effects and natures that are not clear due to the lack of high resolution data from space and also from ground. In this paper,using COSMICGPS radio occultation data from 2006 to 2014, the atmospheric gravity waves activities and climatologic behaviors in Tibetan stratosphere are studied and analyzed, which show different characteristics. Most of the gravity waves with potential energy(Ep) at altitude of 17-24 km are associated with mountain waves. A good correlation between gravity wave activities and zonal wind flow is found. The distribution of gravity wave(GW) activities in Tibet is strongly connected with zonal wind variation and topography. GW activities are enhanced in winter seasons and decreased in summer seasons since strong western winds persist at all heights of the Tibetan troposphere. The gravity waves generated in the Tibetan area are mostly related to the orography of the area. The vertical wavelengths of GWS are shorter.Gravity waves in the Northwest have different vertical wavelengths in the Southeastern part of Tibetan Plateau, and dominant wavelengths are 3-5 km in the Northwest and 2-3 km in the Southeast,respectively. In the summer, the Northwestern part is the main source of wave generation while in the winter the GW is generated almost from all peaks of the Tibetan Plateau. Gravity waves in the region are clearly related to deep convection, which can also be proved by the inverse relation of Outgoing long wave radiation(OLR) and potential energy(Ep).
基金National Natural Science Foundation of China(41505084,41075083,41075040)China Meteorological Administration Special Public Welfare Research Fund(GYHY201406003,GYHY201406013)Guangdong meteorological service project(2015B01)
文摘The parameterization of gravity wave drag induced by sub-grid scale orography(GWDO), which has been used in the regional model based on the Global/Regional Assimilation and Prediction System for Tropical Mesoscale Model(GRAPES_TMM), is extended to include the effect of mountain flow blocking drag(MBD). The extended scheme is evaluated against non-GWDO parameterization, including a cold air outbreak over southern China and a monthly verification in February 2012. The experiment results show that the GWDO and MBD parameterization both improves the forecasting of the cold air outbreaks over southern China, as well as alleviations of system bias of GRAPES_TMM.(1) The extended scheme alleviates the strong southerly wind and high surface temperature simulation during the cold air outbreak, especially over northern Guangxi and Guangdong(NGG) province, where local high surface temperature simulation reduces nearly 5 degree.(2) The MBD parameterization improves southerly wind simulations over NGG, as well as surface temperature forecasts improvement over Guangxi, Guizhou province and southern Yunnan-Guizhou plateau(YUP), and low level southerly wind simulation improvement over intertidal zone over south China.(3) The formation of MBD is mainly in the mountain area(Wuyi, Daba mountain, east of YUP) and coastal area. The MBD over plateau, which is mainly formed at the west of 105°E, is stronger and thicker than that over Nanling mountain.(4) The improvement of GWDO and MBD parameterization is stable in model physics. MBD parameterization demonstrates more overall improvements in the forecasts than GWDO, and the larger of the model forecast error is, the greater improvements of MBD contribute to. Overall, the extended GWDO scheme successfully improves the simulations of meteorological elements forecasting during cold air outbreaks.
基金jointly funded by National Natural Science Foundation of China (41571002)Natural Science Foundation of Guangdong, China (2015A030313385)Foundation for the Young Creative Talent Foundation in Higher Education of Guangdong, China (2014KQNCX193)
文摘The Mushroom Stone Forest, which consists of granite boulders looking like mushrooms with flared sidewalls, is located in eastern Guangdong China, and is a famous scenic spot that draws many tourists each year. The Mushroom Stone Forest has been traditionally recognized as a collection of wave erosion landforms and used for the reconstruction of palaeo-sea-level changes along the coastal areas of eastern Guangdong in previous coastal researches. By combining in situ measurements of the aspect,vertical profile and height of boulder sidewalls,palaeo-coastal wave direction estimation, rock density determination, major elemental analysis, and petrographic thin section analysis, this paper presents an alternative origin for the Mushroom Stone Forest.Our results suggest that wave or wind erosion cannot offer a satisfactory explanation for the formation of the Mushroom Stone Forest; The boulders that make up the Mushroom Stone Forest originated from the corestones in the granite weathering crusts of the Little Sangpu Mountain; When the debris of the weathering crust was removed, the corestones are perched on rocky outcrops or half-buried by weathering debris beneath the natural land surface;The flared sidewall (concave vertical profile) of the boulders is a particular form developed in the foot zone of a half-buried boulder through increased chemical weathering beneath the land surface. A recent exposed half-buried boulder found in the study area provides convincing evidence to support this argument. Sea water reached the foot of the Sangpu Mountain during the Holocene transgression, but it merely provided a mechanism to erode the weathering debris from the bottom of the mushroom rocks and enhanced salt weathering that created tafoni on the boulders. These findings demonstrate that the boulders of the Mushroom Stone Forest are not sea stacks and cannot be served as a palaeo-sea-level indicator.
基金Project supported by National Natural Science Foundation of China! (19701029) by Outstanding Young Teacher Foundation of Chi
文摘On studying traveling waves on a nonlinearly suspended bridge,the following partial differential equation has been considered:\$\$u\-\{tt\}+u\-\{xxxx\}+f(u)=0,\$\$where f(u)=u\++-1 .Here the bridge is seen as a vibrating beam supported by cables,which are treated as a spring with a one\|sided restoring force.The existence of a traveling wave solution to the above piece\|wise linear equation has been proved by solving the equation explicitly (McKenna & Walter in 1990).Recently the result has been extended to a group of equations with more general nonlinearities such as f(u)=u\++-1+g(u) (Chen & McKenna,1997).However,the restrictions on g(u) do not allow the resulting restoring force function to increase faster than the linear function u-1 for u >1.Since an interesting “multiton” behavior,that is ,two traveling waves appear to emerge intact after interacting nonlinearly with each other,has been observed in numerical experiments for a fast\|increasing nonlinearity f(u)=e u-1 -1 ,it hints that the conclusion of the existence of a traveling wave solution with fast\|increasing nonlinearities shall be valid as well.\;In this paper,the restoring force function of the form f(u)=u·h(u)-1 is considered.It is shown that a traveling wave solution exists when h(u)≥1 for u≥1 (with other assumptions which will be detailed in the paper),and hence allows f to grow faster than u-1 .It is shown that a solution can be obtained as a saddle point in a variational formulation.It is also easy to construct such fast\|increasing f(u) 's for more numerical tests.