By use of the two-layer adiabatic globe spectral model and the zonally averaged climatic data of winter season as initial values, 10-day integrations are carried out based on three kinds of model topography (i.e., (1)...By use of the two-layer adiabatic globe spectral model and the zonally averaged climatic data of winter season as initial values, 10-day integrations are carried out based on three kinds of model topography (i.e., (1) the averaged topography; (2) the envelope topography; (3) the modified envelope topography). The results show that the orography of the Northern Hemisphere plays an important role in the simulation of large-scale weather patterns in winter season. The simulation based on the envelope topography developed by Wallace et al. has some improvements in the Rocky Mountains area. But this scheme causes very serious horizontal expansion around the Tibetan Plateau (hereafter referred to as the TV). A modified envelope topography scheme has been worked out that increases the slope of the TP by decreasing the horizontal expansion while keeping the maximum altitude. The results show some improvements of the scheme around the TP. By analysis of the mechanical effects of the large-scale orography on the currents, the different forcings of the air flow over and around the TP and the Rocky Mountain (the RM) are investigated.展开更多
The flow over mountain is quite complicated. There are a lot of papers on this problem and a lot of progresses have been made. However, in the most of these papers, just the dynamics contributions of mountain have bee...The flow over mountain is quite complicated. There are a lot of papers on this problem and a lot of progresses have been made. However, in the most of these papers, just the dynamics contributions of mountain have been analysed; the effect of the friction is often neglected. Since the frictional effect is always associated with flow, especially when it flows over the mountain. The study shows that the friction is small in the magnitude but it is not a negligible effect because it changes the features of the flow. In the case of super-or sub-critical flow, there are two extremes: one maximum, one minimum of the fluid surface on the lee-side of the mountain, while in the inviscid fluid, there is just one extreme. The frictional effect should neither be too strong nor too weak to make the situation happened according to the investigation of this paper.展开更多
Debris flow is one of the major secondary mountain hazards following the earthquake. This study explores the dynamic initiation mechanism of debris flows based on the strength reduction of soils through static and dyn...Debris flow is one of the major secondary mountain hazards following the earthquake. This study explores the dynamic initiation mechanism of debris flows based on the strength reduction of soils through static and dynamic triaxial tests. A series of static and dynamic triaxial tests were conducted on samples in the lab. The samples were prepared according to different grain size distribution, degree of saturation and earthquake magnitudes. The relations of dynamic shear strength, degree of saturation, and number of cycles are summarized through analyzing experimental results. The findings show that the gravelly soil with a wide and continuous gradation has a critical degree of saturation of approximately 87%, above which debris flows will be triggered by rainfall, while the debris flow will be triggered at a critical degree of saturation of about 73% under the effect of rainfall and earthquake(M>6.5). Debris flow initiation is developed in the humidification process, and the earthquake provides energy for triggering debris flows. Debris flows are more likely to be triggered at the relatively low saturation under dynamic loading than under static loading. The resistance of debris flow triggering relies more on internal frication angle than soil cohesion under the effect of rainfall and earthquake. The conclusions provide an experimental analysis method for dynamic initiation mechanism of debris flows.展开更多
Intense human activities have greatly changed the flood generation conditions in most areas of the world, and have destroyed the consistency in the annual flood peak and volume series. For design flood estimation, coa...Intense human activities have greatly changed the flood generation conditions in most areas of the world, and have destroyed the consistency in the annual flood peak and volume series. For design flood estimation, coaxial correlation diagram and conceptual hydrological model are two frequently used tools to adjust and reconstruct the flood series under human disturbance. This study took a typical mountain catchment of the Haihe River Basin as an example to investigate the effects of human activities on flood regime and to compare and assess the two adjustment methods. The main purpose is to construct a conceptual hydrological model which can incorporate the effects of human activities. The results show that the coaxial correlation diagram is simple and widely-used, but can only adjust the time series of total flood volumes. Therefore, it is only applicable under certain conditions(e.g. There is a strong link between the flood peaks and volumes and the link is not significantly affected by human activities). The conceptual model is a powerful tool to adjust the time series of both flood peak flows and flood volumes over different durations provided that it is closely related to the catchment hydrological characteristics, specifically accounting for the effects of human activities, and incorporating expert knowledge when estimating or calibrating parameters. It is suggested that the two methods should be used together to cross check each other.展开更多
Different levels of fluctuation occur when airflow passes over different terrain.It is important for weather and climate change,as well as aviation and glider safety,to study the motion of airflow.Based on conformal m...Different levels of fluctuation occur when airflow passes over different terrain.It is important for weather and climate change,as well as aviation and glider safety,to study the motion of airflow.Based on conformal mapping and the complex potential,the motion of airflow in two different cases is discussed under the premise that the atmosphere is an ideal fluid.Firstly,the parallel flow movement through an arc-shaped mountain is studied,and the influence of horizontal velocity and of the angle between the mountain and the negative direction of horizontal ground on the airflow movement is analyzed.The results indicate that the influence on the motion increases with an increase in flow velocity and a decrease in the angle.Then,the motion of a parallel flow superimposed onto a point vortex when passing a linear boundary is discussed.Since the vortex core is an extreme point,its location cannot be changed,no matter how fast the flow velocity.That is,although the motion of the surrounding particles is changed,the vortex core remains motionless.展开更多
In the paper,the turbulent dissipation is considered in the model for studying the flow over mountains.The governing equation is a first order ordinary differential equation derived from an algebraic equation without ...In the paper,the turbulent dissipation is considered in the model for studying the flow over mountains.The governing equation is a first order ordinary differential equation derived from an algebraic equation without dissipation case.The solution is sensitive to the upstream condition of dissipation.The dissipation not only reduces the strength of discontinuity but also changes the properties of the governing equation.In the paper,the qualitative characteristic features of the governing equation are discussed.The numerical results with super and sub-critical cases are also discussed in detail.The results show that the turbulent dissipation is an important factor and is not negligible.展开更多
文摘By use of the two-layer adiabatic globe spectral model and the zonally averaged climatic data of winter season as initial values, 10-day integrations are carried out based on three kinds of model topography (i.e., (1) the averaged topography; (2) the envelope topography; (3) the modified envelope topography). The results show that the orography of the Northern Hemisphere plays an important role in the simulation of large-scale weather patterns in winter season. The simulation based on the envelope topography developed by Wallace et al. has some improvements in the Rocky Mountains area. But this scheme causes very serious horizontal expansion around the Tibetan Plateau (hereafter referred to as the TV). A modified envelope topography scheme has been worked out that increases the slope of the TP by decreasing the horizontal expansion while keeping the maximum altitude. The results show some improvements of the scheme around the TP. By analysis of the mechanical effects of the large-scale orography on the currents, the different forcings of the air flow over and around the TP and the Rocky Mountain (the RM) are investigated.
基金This work was supported by the National Science Foundation of U.S.A.National Natural Science Foundation of China.
文摘The flow over mountain is quite complicated. There are a lot of papers on this problem and a lot of progresses have been made. However, in the most of these papers, just the dynamics contributions of mountain have been analysed; the effect of the friction is often neglected. Since the frictional effect is always associated with flow, especially when it flows over the mountain. The study shows that the friction is small in the magnitude but it is not a negligible effect because it changes the features of the flow. In the case of super-or sub-critical flow, there are two extremes: one maximum, one minimum of the fluid surface on the lee-side of the mountain, while in the inviscid fluid, there is just one extreme. The frictional effect should neither be too strong nor too weak to make the situation happened according to the investigation of this paper.
基金sponsored by Natural Science Foundation of China (Grant No. 51269012)Major Projects of Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No. ZD0602)+2 种基金part of National Project 973 "Wenchuan Earthquake Mountain Hazards Formation Mechanism and Risk Control" (Grant No. 2008CB425800)funded by "New Century Excellent Talents" of University of Ministry of Education of China (Grant No. NCET-11-1016)China Scholarship Council
文摘Debris flow is one of the major secondary mountain hazards following the earthquake. This study explores the dynamic initiation mechanism of debris flows based on the strength reduction of soils through static and dynamic triaxial tests. A series of static and dynamic triaxial tests were conducted on samples in the lab. The samples were prepared according to different grain size distribution, degree of saturation and earthquake magnitudes. The relations of dynamic shear strength, degree of saturation, and number of cycles are summarized through analyzing experimental results. The findings show that the gravelly soil with a wide and continuous gradation has a critical degree of saturation of approximately 87%, above which debris flows will be triggered by rainfall, while the debris flow will be triggered at a critical degree of saturation of about 73% under the effect of rainfall and earthquake(M>6.5). Debris flow initiation is developed in the humidification process, and the earthquake provides energy for triggering debris flows. Debris flows are more likely to be triggered at the relatively low saturation under dynamic loading than under static loading. The resistance of debris flow triggering relies more on internal frication angle than soil cohesion under the effect of rainfall and earthquake. The conclusions provide an experimental analysis method for dynamic initiation mechanism of debris flows.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41130639, 51179045, 41201028)the Nonprofit Industry Financial Program of MWR of China (201501022)
文摘Intense human activities have greatly changed the flood generation conditions in most areas of the world, and have destroyed the consistency in the annual flood peak and volume series. For design flood estimation, coaxial correlation diagram and conceptual hydrological model are two frequently used tools to adjust and reconstruct the flood series under human disturbance. This study took a typical mountain catchment of the Haihe River Basin as an example to investigate the effects of human activities on flood regime and to compare and assess the two adjustment methods. The main purpose is to construct a conceptual hydrological model which can incorporate the effects of human activities. The results show that the coaxial correlation diagram is simple and widely-used, but can only adjust the time series of total flood volumes. Therefore, it is only applicable under certain conditions(e.g. There is a strong link between the flood peaks and volumes and the link is not significantly affected by human activities). The conceptual model is a powerful tool to adjust the time series of both flood peak flows and flood volumes over different durations provided that it is closely related to the catchment hydrological characteristics, specifically accounting for the effects of human activities, and incorporating expert knowledge when estimating or calibrating parameters. It is suggested that the two methods should be used together to cross check each other.
基金supported by the National Natural Science Foundation of China [Grant No.41575026]
文摘Different levels of fluctuation occur when airflow passes over different terrain.It is important for weather and climate change,as well as aviation and glider safety,to study the motion of airflow.Based on conformal mapping and the complex potential,the motion of airflow in two different cases is discussed under the premise that the atmosphere is an ideal fluid.Firstly,the parallel flow movement through an arc-shaped mountain is studied,and the influence of horizontal velocity and of the angle between the mountain and the negative direction of horizontal ground on the airflow movement is analyzed.The results indicate that the influence on the motion increases with an increase in flow velocity and a decrease in the angle.Then,the motion of a parallel flow superimposed onto a point vortex when passing a linear boundary is discussed.Since the vortex core is an extreme point,its location cannot be changed,no matter how fast the flow velocity.That is,although the motion of the surrounding particles is changed,the vortex core remains motionless.
基金The work is supported by the National Natural Science Foundation of China.
文摘In the paper,the turbulent dissipation is considered in the model for studying the flow over mountains.The governing equation is a first order ordinary differential equation derived from an algebraic equation without dissipation case.The solution is sensitive to the upstream condition of dissipation.The dissipation not only reduces the strength of discontinuity but also changes the properties of the governing equation.In the paper,the qualitative characteristic features of the governing equation are discussed.The numerical results with super and sub-critical cases are also discussed in detail.The results show that the turbulent dissipation is an important factor and is not negligible.