Control model of ultrasonic motor is the foundation for high control performance.The frequency of driving voltage is commonly used as control variable in the speed control system of ultrasonic motor.Speed control mode...Control model of ultrasonic motor is the foundation for high control performance.The frequency of driving voltage is commonly used as control variable in the speed control system of ultrasonic motor.Speed control model with the input frequency can significantly improve speed control performance.Step response of rotating speed is tested.Then,the transfer function model is identified through characteristic point method.Considering time-varying characteristics of the model parameters,the variables are fitted with frequency and speed as the independent variables,and the variable model of ultrasonic motor system is obtained,with consideration of the nonlinearity of ultrasonic motor system.The proposed model can be used in the design and analysis of the speed control system in ultrasonic motor.展开更多
The mathematical model of ultrasonic motor(USM)is the foundation of the motor high performance control.Considering the motor speed control requirements,the USM control model identification is established with frequenc...The mathematical model of ultrasonic motor(USM)is the foundation of the motor high performance control.Considering the motor speed control requirements,the USM control model identification is established with frequency as the independent variable.The frequency-speed control model of USM system is developed,thus laying foundation for the motor high performance control.The least square method and the extended least square method are used to identify the model.By comparing the results of the identification and measurement,and fitting the time-varying parameters of the model,one can show that the model obtained by using the extended least square method is reasonable and possesses high accuracy.Finally,the frequency-speed control model of USM contains the nonlinear information.展开更多
To satisfy the requirement of developing a new generation of motorized treadmill for a famous domestic manufacturer, a brushless DC motor (BLDCM) driving and control system for motorized treadmill is developed. High...To satisfy the requirement of developing a new generation of motorized treadmill for a famous domestic manufacturer, a brushless DC motor (BLDCM) driving and control system for motorized treadmill is developed. High integration and reliability of this system are ensured under the condition that intelligent power module (IPM) is used and the protection module is included. Periodic current control method is applied to reduce the average current flowing through the armature winding of the motor when the treadmill is required to start with low speed while large load is added. Piecewise proportion-integration-differentiation (PID) control algorithm is applied to solve the problem of speed fluctuation when impulse load is added. The motorized treadmill of a new generation with the driving and control system has the advantages of high reliability, good speed stability, wide timing scope, low cost, and long life-span. And it is very promising for practical applications.展开更多
基金supported by the National Natural Science Foundation of China(No.U1304501)
文摘Control model of ultrasonic motor is the foundation for high control performance.The frequency of driving voltage is commonly used as control variable in the speed control system of ultrasonic motor.Speed control model with the input frequency can significantly improve speed control performance.Step response of rotating speed is tested.Then,the transfer function model is identified through characteristic point method.Considering time-varying characteristics of the model parameters,the variables are fitted with frequency and speed as the independent variables,and the variable model of ultrasonic motor system is obtained,with consideration of the nonlinearity of ultrasonic motor system.The proposed model can be used in the design and analysis of the speed control system in ultrasonic motor.
基金supported by the National Natural Science Foundation of China(No.U1304501)
文摘The mathematical model of ultrasonic motor(USM)is the foundation of the motor high performance control.Considering the motor speed control requirements,the USM control model identification is established with frequency as the independent variable.The frequency-speed control model of USM system is developed,thus laying foundation for the motor high performance control.The least square method and the extended least square method are used to identify the model.By comparing the results of the identification and measurement,and fitting the time-varying parameters of the model,one can show that the model obtained by using the extended least square method is reasonable and possesses high accuracy.Finally,the frequency-speed control model of USM contains the nonlinear information.
文摘To satisfy the requirement of developing a new generation of motorized treadmill for a famous domestic manufacturer, a brushless DC motor (BLDCM) driving and control system for motorized treadmill is developed. High integration and reliability of this system are ensured under the condition that intelligent power module (IPM) is used and the protection module is included. Periodic current control method is applied to reduce the average current flowing through the armature winding of the motor when the treadmill is required to start with low speed while large load is added. Piecewise proportion-integration-differentiation (PID) control algorithm is applied to solve the problem of speed fluctuation when impulse load is added. The motorized treadmill of a new generation with the driving and control system has the advantages of high reliability, good speed stability, wide timing scope, low cost, and long life-span. And it is very promising for practical applications.
文摘为了提高永磁同步电机(permanent magnet synchronous motor,PMSM)矢量控制系统的响应速度和抗干扰能力,提出一种分数阶模糊反步控制方法(fractional order fuzzy backstepping control,FOFB),以保证永磁同步电机更好的控制性能。首先,根据反步控制的原理,对系统分解,并在每一步中利用模糊逻辑系统来逼近系统的未知部分。其次,引入分数阶理论并选取符合系统规律的Lyapunov函数,得出合适的控制律和参数自适应律。最后,分别对比例积分微分调节(proportional integral derivative,PID)、模糊PID(fuzzy PID,F-PID)、整数阶模糊反步法(integer order fuzzy backstepping control,IOFB)、分数阶模糊反步法(fractional order fuzzy backstepping,FOFB)控制下的PMSM进行仿真。仿真和试验结果表明,FOFB控制在转速突变过程中能够实现转速的实时跟踪。相较于其他控制策略,加入负载转矩FOFB的下降转速为40 r/min、超调量为4.7%时的响应性能更好、抗干扰能力更优,这证明了FOFB控制方法的合理性和有效性。