Non-obstacle design is critical to tailor physically handicapped workers in manufacturing system. Simultaneous consideration of variability in physically disabled users, machines and environment of the manufacturing s...Non-obstacle design is critical to tailor physically handicapped workers in manufacturing system. Simultaneous consideration of variability in physically disabled users, machines and environment of the manufacturing system is extremely complex and generally requires modeling of physically handicapped interaction with the system. Most current modeling either concentrates on the task results or functional disability. The integration of physical constraints with task constraints is far more complex because of functional disability and its extended influence on adjacent body parts. A framework is proposed to integrate the two constraints and thus model the specific behavior of the physical handicapped in virtual environment generated by product specifications. Within the framework a simplified model of physical disabled body is constructed, and body motion is generated based on 3 levels of constraints(effecter constraints, kinematics constraints and physical constraints). The kinematics and dynamic calculations are made and optimized based on the weighting manipulated by the kinematics constraints and dynamic constraints. With object transferring task as example, the model is validated in Jack 6.0. Modelled task motion elements except for squatting and overreaching well matched with captured motion elements. The proposed modeling method can model the complex behavior of the physically handicapped by integrating both task and physical disability constraints.展开更多
This paper reports a case of cerebral stem infarction with quadriplegia and complete dependence on daily life.The course of the disease lasted more than 7 months.Frenchay's improved articulation Disorder Assessmen...This paper reports a case of cerebral stem infarction with quadriplegia and complete dependence on daily life.The course of the disease lasted more than 7 months.Frenchay's improved articulation Disorder Assessment Form has been assessed as severe articulation disorder.The patient has significantly improved his speech function and quality of life after systematic head control training,respiratory function training,articulation motor training,and articulation training.In the course of treatment,emphasis was placed on head postural control training and respiratory function training,and emphasis was placed on the strength and coordination training of articulatory organs,and the results were remarkable.After the patient was discharged from the hospital,the follow-up of basic daily life communication was not limited.展开更多
This study presents CGB-Net,a novel deep learning architecture specifically developed for classifying twelve distinct sleep positions using a single abdominal accelerometer,with direct applicability to gastroesophagea...This study presents CGB-Net,a novel deep learning architecture specifically developed for classifying twelve distinct sleep positions using a single abdominal accelerometer,with direct applicability to gastroesophageal reflux disease(GERD)monitoring.Unlike conventional approaches limited to four basic postures,CGB-Net enables fine-grained classification of twelve clinically relevant sleep positions,providing enhanced resolution for personalized health assessment.The architecture introduces a unique integration of three complementary components:1D Convolutional Neural Networks(1D-CNN)for efficient local spatial feature extraction,Gated Recurrent Units(GRU)to capture short-termtemporal dependencieswith reduced computational complexity,and Bidirectional Long Short-Term Memory(Bi-LSTM)networks for modeling long-term temporal context in both forward and backward directions.This complementary integration allows the model to better represent dynamic and contextual information inherent in the sensor data,surpassing the performance of simpler or previously published hybrid models.Experiments were conducted on a benchmark dataset consisting of 18 volunteers(age range:19–24 years,mean 20.56±1.1 years;height 164.78±8.18 cm;weight 55.39±8.30 kg;BMI 20.24±2.04),monitored via a single abdominal accelerometer.A subjectindependent evaluation protocol with multiple random splits was employed to ensure robustness and generalizability.The proposed model achieves an average Accuracy of 87.60% and F1-score of 83.38%,both reported with standard deviations over multiple runs,outperforming several baseline and state-of-the-art methods.By releasing the dataset publicly and detailing themodel design,this work aims to facilitate reproducibility and advance research in sleep posture classification for clinical applications.展开更多
On-machine inspection has a significant impact on improving high-precision and efficient machining of sculptured surfaces. Due to the lack of machining information and the inability to adapt the parameters to the dyna...On-machine inspection has a significant impact on improving high-precision and efficient machining of sculptured surfaces. Due to the lack of machining information and the inability to adapt the parameters to the dynamic cutting conditions, theoretical modeling of profile inspection usually leads to insufficient adaptation, which causes inaccuracy problems. To address the above issues, a novel coupled model for profile inspection is proposed by combining the theoretical model and the data-driven model. The key process is to first realize local feature extraction based on the acquired vibration signals. The hybrid sampling model, which fuses geometric feature terms and vibration feature terms, is modeled by the lever principle. Then, the weight of each feature term is adaptively assigned by a multi-objective multi-verse optimizer.Finally, an inspection error compensation model based on the attention mechanism considering different probe postures is proposed to reduce the impact of pre-travel and radius errors on inspection accuracy. The anisotropy of the probe system error and its influence mechanism on the inspection accuracy are analyzed quantitatively and qualitatively. Compared with the previous models, the proposed hybrid profile inspection model can significantly improve the accuracy and efficiency of on-machine sampling. The proposed compensation model is able to correct the inspection errors with better accuracy. Simulations and experiments demonstrate the feasibility and validity of the proposed methods. The proposed model and corresponding new findings contribute to high-precision and efficient on-machine inspection, and help to understand the coupling mechanism of inspection errors.展开更多
Technological development of motion and posture analyses is rapidly progressing,especially in rehabilitation settings and sport biomechanics.Consequently,clear discrimination among different measurement systems is req...Technological development of motion and posture analyses is rapidly progressing,especially in rehabilitation settings and sport biomechanics.Consequently,clear discrimination among different measurement systems is required to diversify their use as needed.This review aims to resume the currently used motion and posture analysis systems,clarify and suggest the appropriate approaches suitable for specific cases or contexts.The currently gold standard systems of motion analysis,widely used in clinical settings,present several limitations related to marker placement or long procedure time.Fully automated and markerless systems are overcoming these drawbacks for conducting biomechanical studies,especially outside laboratories.Similarly,new posture analysis techniques are emerging,often driven by the need for fast and non-invasive methods to obtain high-precision results.These new technologies have also become effective for children or adolescents with non-specific back pain and postural insufficiencies.The evolutions of these methods aim to standardize measurements and provide manageable tools in clinical practice for the early diagnosis of musculoskeletal pathologies and to monitor daily improvements of each patient.Herein,these devices and their uses are described,providing researchers,clinicians,orthopedics,physical therapists,and sports coaches an effective guide to use new technologies in their practice as instruments of diagnosis,therapy,and prevention.展开更多
This study proposes a pose estimation-convolutional neural network-bidirectional gated recurrent unit(PSECNN-BiGRU)fusion model for human posture recognition to address low accuracy issues in abnormal posture recognit...This study proposes a pose estimation-convolutional neural network-bidirectional gated recurrent unit(PSECNN-BiGRU)fusion model for human posture recognition to address low accuracy issues in abnormal posture recognition due to the loss of some feature information and the deterioration of comprehensive performance in model detection in complex home environments.Firstly,the deep convolutional network is integrated with the Mediapipe framework to extract high-precision,multi-dimensional information from the key points of the human skeleton,thereby obtaining a human posture feature set.Thereafter,a double-layer BiGRU algorithm is utilized to extract multi-layer,bidirectional temporal features from the human posture feature set,and a CNN network with an exponential linear unit(ELU)activation function is adopted to perform deep convolution of the feature map to extract the spatial feature of the human posture.Furthermore,a squeeze and excitation networks(SENet)module is introduced to adaptively learn the importance weights of each channel,enhancing the network’s focus on important features.Finally,comparative experiments are performed on available datasets,including the public human activity recognition using smartphone dataset(UCIHAR),the public human activity recognition 70 plus dataset(HAR70PLUS),and the independently developed home abnormal behavior recognition dataset(HABRD)created by the authors’team.The results show that the average accuracy of the proposed PSE-CNN-BiGRU fusion model for human posture recognition is 99.56%,89.42%,and 98.90%,respectively,which are 5.24%,5.83%,and 3.19%higher than the average accuracy of the five models proposed in the comparative literature,including CNN,GRU,and others.The F1-score for abnormal posture recognition reaches 98.84%(heartache),97.18%(fall),99.6%(bellyache),and 98.27%(climbing)on the self-builtHABRDdataset,thus verifying the effectiveness,generalization,and robustness of the proposed model in enhancing human posture recognition.展开更多
Sleep posture surveillance is crucial for patient comfort,yet current systems face difficulties in providing compre-hensive studies due to the obstruction caused by blankets.Precise posture assessment remains challeng...Sleep posture surveillance is crucial for patient comfort,yet current systems face difficulties in providing compre-hensive studies due to the obstruction caused by blankets.Precise posture assessment remains challenging because of the complex nature of the human body and variations in sleep patterns.Consequently,this study introduces an innovative method utilizing RGB and thermal cameras for comprehensive posture classification,thereby enhancing the analysis of body position and comfort.This method begins by capturing a dataset of sleep postures in the form of videos using RGB and thermal cameras,which depict six commonly adopted postures:supine,left log,right log,prone head,prone left,and prone right.The study involves 10 participants under two conditions:with and without blankets.Initially,the database is normalized into a video frame.The subsequent step entails training a fine-tuned,pretrained Visual Geometry Group(VGG16)and ResNet50 model.In the third phase,the extracted features are utilized for classification.The fourth step of the proposed approach employs a serial fusion technique based on the normal distribution to merge the vectors derived from both the RGB and thermal datasets.Finally,the fused vectors are passed to machine learning classifiers for final classification.The dataset,which includes human sleep postures used in this study’s experiments,achieved a 96.7%accuracy rate using the Quadratic Support Vector Machine(QSVM)without the blanket.Moreover,the Linear SVM,when utilized with a blanket,attained an accuracy of 96%.When normal distribution serial fusion was applied to the blanket features,it resulted in a remarkable average accuracy of 99%.展开更多
This paper presents a novel control approach for achieving robust posture control in legged locomotion,specifically for SLIP-like bipedal running and quadrupedal bounding with trunk stabilization.The approach is based...This paper presents a novel control approach for achieving robust posture control in legged locomotion,specifically for SLIP-like bipedal running and quadrupedal bounding with trunk stabilization.The approach is based on the virtual pendulum concept observed in human and animal locomotion experiments,which redirects ground reaction forces to a virtual support point called the Virtual Pivot Point(VPP)during the stance phase.Using the hybrid averaging theorem,we prove the upright posture stability of bipedal running with a fixed VPP position and propose a VPP angle feedback controller for online VPP adjustment to improve performance and convergence speed.Additionally,we present the first application of the VPP concept to quadrupedal posture control and design a VPP position feedback control law to enhance robustness in quadrupedal bounding.We evaluate the effectiveness of the proposed VPP-based controllers through various simulations,demonstrating their effectiveness in posture control of both bipedal running and quadrupedal bounding.The performance of the VPP-based control approach is further validated through experimental validation on a quadruped robot,SCIT Dog,for stable bounding motion generation at different forward speeds.展开更多
The human pose paradigm is estimated using a transformer-based multi-branch multidimensional directed the three-dimensional(3D)method that takes into account self-occlusion,badly posedness,and a lack of depth data in ...The human pose paradigm is estimated using a transformer-based multi-branch multidimensional directed the three-dimensional(3D)method that takes into account self-occlusion,badly posedness,and a lack of depth data in the per-frame 3D posture estimation from two-dimensional(2D)mapping to 3D mapping.Firstly,by examining the relationship between the movements of different bones in the human body,four virtual skeletons are proposed to enhance the cyclic constraints of limb joints.Then,multiple parameters describing the skeleton are fused and projected into a high-dimensional space.Utilizing a multi-branch network,motion features between bones and overall motion features are extracted to mitigate the drift error in the estimation results.Furthermore,the estimated relative depth is projected into 3D space,and the error is calculated against real 3D data,forming a loss function along with the relative depth error.This article adopts the average joint pixel error as the primary performance metric.Compared to the benchmark approach,the estimation findings indicate an increase in average precision of 1.8 mm within the Human3.6M sample.展开更多
Human posture estimation is a prominent research topic in the fields of human-com-puter interaction,motion recognition,and other intelligent applications.However,achieving highaccuracy in key point localization,which ...Human posture estimation is a prominent research topic in the fields of human-com-puter interaction,motion recognition,and other intelligent applications.However,achieving highaccuracy in key point localization,which is crucial for intelligent applications,contradicts the lowdetection accuracy of human posture detection models in practical scenarios.To address this issue,a human pose estimation network called AT-HRNet has been proposed,which combines convolu-tional self-attention and cross-dimensional feature transformation.AT-HRNet captures significantfeature information from various regions in an adaptive manner,aggregating them through convolu-tional operations within the local receptive domain.The residual structures TripNeck and Trip-Block of the high-resolution network are designed to further refine the key point locations,wherethe attention weight is adjusted by a cross-dimensional interaction to obtain more features.To vali-date the effectiveness of this network,AT-HRNet was evaluated using the COCO2017 dataset.Theresults show that AT-HRNet outperforms HRNet by improving 3.2%in mAP,4.0%in AP75,and3.9%in AP^(M).This suggests that AT-HRNet can offer more beneficial solutions for human posture estimation.展开更多
Cardiovascular disease is the leading cause of death globally.This disease causes loss of heart muscles and is also responsible for the death of heart cells,sometimes damaging their functionality.A person’s life may ...Cardiovascular disease is the leading cause of death globally.This disease causes loss of heart muscles and is also responsible for the death of heart cells,sometimes damaging their functionality.A person’s life may depend on receiving timely assistance as soon as possible.Thus,minimizing the death ratio can be achieved by early detection of heart attack(HA)symptoms.In the United States alone,an estimated 610,000 people die fromheart attacks each year,accounting for one in every four fatalities.However,by identifying and reporting heart attack symptoms early on,it is possible to reduce damage and save many lives significantly.Our objective is to devise an algorithm aimed at helping individuals,particularly elderly individuals living independently,to safeguard their lives.To address these challenges,we employ deep learning techniques.We have utilized a vision transformer(ViT)to address this problem.However,it has a significant overhead cost due to its memory consumption and computational complexity because of scaling dot-product attention.Also,since transformer performance typically relies on large-scale or adequate data,adapting ViT for smaller datasets is more challenging.In response,we propose a three-in-one steam model,theMulti-Head Attention Vision Hybrid(MHAVH).Thismodel integrates a real-time posture recognition framework to identify chest pain postures indicative of heart attacks using transfer learning techniques,such as ResNet-50 and VGG-16,renowned for their robust feature extraction capabilities.By incorporatingmultiple heads into the vision transformer to generate additional metrics and enhance heart-detection capabilities,we leverage a 2019 posture-based dataset comprising RGB images,a novel creation by the author that marks the first dataset tailored for posture-based heart attack detection.Given the limited online data availability,we segmented this dataset into gender categories(male and female)and conducted testing on both segmented and original datasets.The training accuracy of our model reached an impressive 99.77%.Upon testing,the accuracy for male and female datasets was recorded at 92.87%and 75.47%,respectively.The combined dataset accuracy is 93.96%,showcasing a commendable performance overall.Our proposed approach demonstrates versatility in accommodating small and large datasets,offering promising prospects for real-world applications.展开更多
In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):104...In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):1045-1049]and Monrad and Rootzén[Probab.Theory Related Fields,1995,101(2):173-192].展开更多
With the development of technology and the progress of life,more and more people,regardless of entertainment,learning,or work,cannot do without computer desks and cannot put down their mobile phones.Due to prolonged s...With the development of technology and the progress of life,more and more people,regardless of entertainment,learning,or work,cannot do without computer desks and cannot put down their mobile phones.Due to prolonged sitting and often neglecting the importance of posture,incorrect posture can often lead to health problems such as hunchback,lumbar muscle strain,and shoulder and neck pain over time.To address this issue,we designed a computer vision-based human body posture detection system.The system utilizes YOLOv8 technology to accurately locate key points of the human body skeleton,and then analyzes the coordinate positions and depth information of these key points to establish a criterion for distinguishing different postures.With the assistance of an SVM classifier,the system achieves an average recognition rate of 95%.Finally,we successfully deployed the posture detection system on Raspberry Pi hardware and conducted extensive testing.The test results demonstrate that the system can effectively detect various postures and provide real-time reminders to users to correct poor posture,demonstrating good practicality and stability.展开更多
The plastic deformation of semiconductors,a process critical to their mechanical and electronic properties,involves various mechanisms such as dislocation motion and phase transition.Here,we systematically examined th...The plastic deformation of semiconductors,a process critical to their mechanical and electronic properties,involves various mechanisms such as dislocation motion and phase transition.Here,we systematically examined the temperature-dependent Peierls stress for 30°and 90°partial dislocations in cadmium telluride(CdTe),using a combination of molecular statics and molecular dynamics simulations with a machine-learning force field,as well as density functional theory simulations.Our findings reveal that the 0 K Peierls stresses for these partial dislocations in CdTe are relatively low,ranging from 0.52 GPa to 1.46 GPa,due to its significant ionic bonding characteristics.Notably,in the CdTe system containing either a 30°Cd-core or 90°Te-core partial dislocation,a phase transition from the zinc-blende phase to theβ-Sn-like phase is favored over dislocation motion.This suggests a competitive relationship between these two mechanisms,driven by the bonding characteristics within the dislocation core and the relatively low phase transition stress of∼1.00 GPa.Furthermore,we observed a general trend wherein the Peierls stress for partial dislocations in CdTe exhibits a temperature dependence,which decreases with increasing temperature,becoming lower than the phase transition stress at elevated temperatures.Consequently,the dominant deformation mechanism in CdTe shifts from solid-state phase transition at low temperatures to dislocation motion at high temperatures.This investigation uncovers a compelling interplay between dislocation motion and phase transition in the plastic deformation of CdTe,offering profound insights into the mechanical behavior and electronic performance of CdTe and other II-VI semiconductors.展开更多
Internal learning-based video inpainting methods have shown promising results by exploiting the intrinsic properties of the video to fill in the missing region without external dataset supervision.However,existing int...Internal learning-based video inpainting methods have shown promising results by exploiting the intrinsic properties of the video to fill in the missing region without external dataset supervision.However,existing internal learning-based video inpainting methods would produce inconsistent structures or blurry textures due to the insufficient utilisation of motion priors within the video sequence.In this paper,the authors propose a new internal learning-based video inpainting model called appearance consistency and motion coherence network(ACMC-Net),which can not only learn the recurrence of appearance prior but can also capture motion coherence prior to improve the quality of the inpainting results.In ACMC-Net,a transformer-based appearance network is developed to capture global context information within the video frame for representing appearance consistency accurately.Additionally,a novel motion coherence learning scheme is proposed to learn the motion prior in a video sequence effectively.Finally,the learnt internal appearance consistency and motion coherence are implicitly propagated to the missing regions to achieve inpainting well.Extensive experiments conducted on the DAVIS dataset show that the proposed model obtains the superior performance in terms of quantitative measurements and produces more visually plausible results compared with the state-of-the-art methods.展开更多
With the rapid development of wearable electronic skin technology, flexible strain sensors have shown great application prospects in the fields of human motion and physiological signal detection, medical diagnostics, ...With the rapid development of wearable electronic skin technology, flexible strain sensors have shown great application prospects in the fields of human motion and physiological signal detection, medical diagnostics, and human-computer interaction owing to their outstanding sensing performance. This paper reports a strain sensor with synergistic conductive network, consisting of stable carbon nanotube dispersion (CNT) layer and brittle MXene layer by dip-coating and electrostatic self-assembly method, and breathable three-dimensional (3D) flexible substrate of thermoplastic polyurethane (TPU) fibrous membrane prepared through electrospinning technology. The MXene/CNT@PDA-TPU (MC@p-TPU) flexible strain sensor had excellent air permeability, wide operating range (0–450 %), high sensitivity (Gauge Factor, GFmax = 8089.7), ultra-low detection limit (0.05 %), rapid response and recovery times (40 ms/60 ms), and excellent cycle stability and durability (10,000 cycles). Given its superior strain sensing capabilities, this sensor can be applied in physiological signals detection, human motion pattern recognition, and driving exoskeleton robots. In addition, MC@p-TPU fibrous membrane also exhibited excellent photothermal conversion performance and can be used as a wearable photo-heater, which has far-reaching application potential in the photothermal therapy of human joint diseases.展开更多
Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frame...Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frames remains a fundamental yet unresolved challenge.Existing methods typically rely on dense keyframe inputs or complex prior structures,making it difficult to balance motion quality and plausibility under conditions such as sparse constraints,long-term dependencies,and diverse motion styles.To address this,we propose a motion generation framework based on a frequency-domain diffusion model,which aims to better model complex motion distributions and enhance generation stability under sparse conditions.Our method maps motion sequences to the frequency domain via the Discrete Cosine Transform(DCT),enabling more effective modeling of low-frequency motion structures while suppressing high-frequency noise.A denoising network based on self-attention is introduced to capture long-range temporal dependencies and improve global structural awareness.Additionally,a multi-objective loss function is employed to jointly optimize motion smoothness,pose diversity,and anatomical consistency,enhancing the realism and physical plausibility of the generated sequences.Comparative experiments on the Human3.6M and LaFAN1 datasets demonstrate that our method outperforms state-of-the-art approaches across multiple performance metrics,showing stronger capabilities in generating intermediate motion frames.This research offers a new perspective and methodology for human motion generation and holds promise for applications in character animation,game development,and virtual interaction.展开更多
In this study,we present a unified sparsity-driven framework that significantly enhances motion deblurring performance by integrating two key components:a custom-designed dataset and a low-rank module(LRM).This framew...In this study,we present a unified sparsity-driven framework that significantly enhances motion deblurring performance by integrating two key components:a custom-designed dataset and a low-rank module(LRM).This framework leverages the inherent sparsity of per-pixel blur kernels to bolster both deblurring accuracy and model interpretability.Firstly,we propose an adaptive-basis decomposition-based deblurring(ADD)approach,which constructs a tailored training dataset to enhance the generalization capacity of the deblurring network.The ADD framework adaptively decomposes motion blur into sparse basis elements,effectively addressing the intricacies associated with non-uniform blurs.Secondly,an LRM is proposed to improve the interpretability of deblurring models as a plug-and-play module,primarily designed to identify and harness the intrinsic sparse features in sharp images.A series of ablation studies have been conducted to substantiate the synergistic advantages of combining the proposed ADD with the LRM for overall improvement in deblurring efficacy.Subsequently,we empirically demonstrate through rigorous experimentation that incorporating the LRM into an existing Uformer network leads to substantial enhancement in reconstruction performance.This integration yields a sparsity-guided low-rank network(SGLRN).Operating under the overarching principle of sparsity,SGLRN consistently outperforms state-of-the-art methods across multiple standard deblurring benchmarks.Comprehensive experimental results,assessed through quantitative metrics and qualitative visual evaluations,provide compelling evidence of its effectiveness.The overall deblurring results are available at Google Drive.展开更多
基金supported by National Natural Science Foundation of China(Grant No. 60975058)
文摘Non-obstacle design is critical to tailor physically handicapped workers in manufacturing system. Simultaneous consideration of variability in physically disabled users, machines and environment of the manufacturing system is extremely complex and generally requires modeling of physically handicapped interaction with the system. Most current modeling either concentrates on the task results or functional disability. The integration of physical constraints with task constraints is far more complex because of functional disability and its extended influence on adjacent body parts. A framework is proposed to integrate the two constraints and thus model the specific behavior of the physical handicapped in virtual environment generated by product specifications. Within the framework a simplified model of physical disabled body is constructed, and body motion is generated based on 3 levels of constraints(effecter constraints, kinematics constraints and physical constraints). The kinematics and dynamic calculations are made and optimized based on the weighting manipulated by the kinematics constraints and dynamic constraints. With object transferring task as example, the model is validated in Jack 6.0. Modelled task motion elements except for squatting and overreaching well matched with captured motion elements. The proposed modeling method can model the complex behavior of the physically handicapped by integrating both task and physical disability constraints.
基金Teaching and Research Project of Anhui Urban Management Vocational College(Project No.:2024kfkc001)。
文摘This paper reports a case of cerebral stem infarction with quadriplegia and complete dependence on daily life.The course of the disease lasted more than 7 months.Frenchay's improved articulation Disorder Assessment Form has been assessed as severe articulation disorder.The patient has significantly improved his speech function and quality of life after systematic head control training,respiratory function training,articulation motor training,and articulation training.In the course of treatment,emphasis was placed on head postural control training and respiratory function training,and emphasis was placed on the strength and coordination training of articulatory organs,and the results were remarkable.After the patient was discharged from the hospital,the follow-up of basic daily life communication was not limited.
基金funded by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under grant number:NCUD.02-2024.11.
文摘This study presents CGB-Net,a novel deep learning architecture specifically developed for classifying twelve distinct sleep positions using a single abdominal accelerometer,with direct applicability to gastroesophageal reflux disease(GERD)monitoring.Unlike conventional approaches limited to four basic postures,CGB-Net enables fine-grained classification of twelve clinically relevant sleep positions,providing enhanced resolution for personalized health assessment.The architecture introduces a unique integration of three complementary components:1D Convolutional Neural Networks(1D-CNN)for efficient local spatial feature extraction,Gated Recurrent Units(GRU)to capture short-termtemporal dependencieswith reduced computational complexity,and Bidirectional Long Short-Term Memory(Bi-LSTM)networks for modeling long-term temporal context in both forward and backward directions.This complementary integration allows the model to better represent dynamic and contextual information inherent in the sensor data,surpassing the performance of simpler or previously published hybrid models.Experiments were conducted on a benchmark dataset consisting of 18 volunteers(age range:19–24 years,mean 20.56±1.1 years;height 164.78±8.18 cm;weight 55.39±8.30 kg;BMI 20.24±2.04),monitored via a single abdominal accelerometer.A subjectindependent evaluation protocol with multiple random splits was employed to ensure robustness and generalizability.The proposed model achieves an average Accuracy of 87.60% and F1-score of 83.38%,both reported with standard deviations over multiple runs,outperforming several baseline and state-of-the-art methods.By releasing the dataset publicly and detailing themodel design,this work aims to facilitate reproducibility and advance research in sleep posture classification for clinical applications.
基金National Natural Science Foundation of China (52375412)Fundamental Research Funds for Central Universities (N2203011)China Scholarship Council Program (202306080057)。
文摘On-machine inspection has a significant impact on improving high-precision and efficient machining of sculptured surfaces. Due to the lack of machining information and the inability to adapt the parameters to the dynamic cutting conditions, theoretical modeling of profile inspection usually leads to insufficient adaptation, which causes inaccuracy problems. To address the above issues, a novel coupled model for profile inspection is proposed by combining the theoretical model and the data-driven model. The key process is to first realize local feature extraction based on the acquired vibration signals. The hybrid sampling model, which fuses geometric feature terms and vibration feature terms, is modeled by the lever principle. Then, the weight of each feature term is adaptively assigned by a multi-objective multi-verse optimizer.Finally, an inspection error compensation model based on the attention mechanism considering different probe postures is proposed to reduce the impact of pre-travel and radius errors on inspection accuracy. The anisotropy of the probe system error and its influence mechanism on the inspection accuracy are analyzed quantitatively and qualitatively. Compared with the previous models, the proposed hybrid profile inspection model can significantly improve the accuracy and efficiency of on-machine sampling. The proposed compensation model is able to correct the inspection errors with better accuracy. Simulations and experiments demonstrate the feasibility and validity of the proposed methods. The proposed model and corresponding new findings contribute to high-precision and efficient on-machine inspection, and help to understand the coupling mechanism of inspection errors.
基金Supported by University Research Project GrantNo. PIACERI Found–NATURE-OA-2020-2022。
文摘Technological development of motion and posture analyses is rapidly progressing,especially in rehabilitation settings and sport biomechanics.Consequently,clear discrimination among different measurement systems is required to diversify their use as needed.This review aims to resume the currently used motion and posture analysis systems,clarify and suggest the appropriate approaches suitable for specific cases or contexts.The currently gold standard systems of motion analysis,widely used in clinical settings,present several limitations related to marker placement or long procedure time.Fully automated and markerless systems are overcoming these drawbacks for conducting biomechanical studies,especially outside laboratories.Similarly,new posture analysis techniques are emerging,often driven by the need for fast and non-invasive methods to obtain high-precision results.These new technologies have also become effective for children or adolescents with non-specific back pain and postural insufficiencies.The evolutions of these methods aim to standardize measurements and provide manageable tools in clinical practice for the early diagnosis of musculoskeletal pathologies and to monitor daily improvements of each patient.Herein,these devices and their uses are described,providing researchers,clinicians,orthopedics,physical therapists,and sports coaches an effective guide to use new technologies in their practice as instruments of diagnosis,therapy,and prevention.
基金funded by the Henan Provincial Science and Technology Research Project(222102210086)the Starry Sky Creative Space Innovation Space Innovation Incubation Project of Zhengzhou University of Light Industry(2023ZCKJ211).
文摘This study proposes a pose estimation-convolutional neural network-bidirectional gated recurrent unit(PSECNN-BiGRU)fusion model for human posture recognition to address low accuracy issues in abnormal posture recognition due to the loss of some feature information and the deterioration of comprehensive performance in model detection in complex home environments.Firstly,the deep convolutional network is integrated with the Mediapipe framework to extract high-precision,multi-dimensional information from the key points of the human skeleton,thereby obtaining a human posture feature set.Thereafter,a double-layer BiGRU algorithm is utilized to extract multi-layer,bidirectional temporal features from the human posture feature set,and a CNN network with an exponential linear unit(ELU)activation function is adopted to perform deep convolution of the feature map to extract the spatial feature of the human posture.Furthermore,a squeeze and excitation networks(SENet)module is introduced to adaptively learn the importance weights of each channel,enhancing the network’s focus on important features.Finally,comparative experiments are performed on available datasets,including the public human activity recognition using smartphone dataset(UCIHAR),the public human activity recognition 70 plus dataset(HAR70PLUS),and the independently developed home abnormal behavior recognition dataset(HABRD)created by the authors’team.The results show that the average accuracy of the proposed PSE-CNN-BiGRU fusion model for human posture recognition is 99.56%,89.42%,and 98.90%,respectively,which are 5.24%,5.83%,and 3.19%higher than the average accuracy of the five models proposed in the comparative literature,including CNN,GRU,and others.The F1-score for abnormal posture recognition reaches 98.84%(heartache),97.18%(fall),99.6%(bellyache),and 98.27%(climbing)on the self-builtHABRDdataset,thus verifying the effectiveness,generalization,and robustness of the proposed model in enhancing human posture recognition.
基金supported by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI)funded by the Ministry of Health&Welfare,Republic of Korea(Grant Number:H12C1831)+2 种基金Korea Institute for Advancement of Technology(KIAT)Grant funded by the Korea Government(MOTIE)(P0012724,HRD Program for Industrial Innovation)the National Research Foundation of Korea(NRF)Grant funded by the Korea Government(MSIT)(No.RS-2023-00218176)the Soonchunhyang University Research Fund.
文摘Sleep posture surveillance is crucial for patient comfort,yet current systems face difficulties in providing compre-hensive studies due to the obstruction caused by blankets.Precise posture assessment remains challenging because of the complex nature of the human body and variations in sleep patterns.Consequently,this study introduces an innovative method utilizing RGB and thermal cameras for comprehensive posture classification,thereby enhancing the analysis of body position and comfort.This method begins by capturing a dataset of sleep postures in the form of videos using RGB and thermal cameras,which depict six commonly adopted postures:supine,left log,right log,prone head,prone left,and prone right.The study involves 10 participants under two conditions:with and without blankets.Initially,the database is normalized into a video frame.The subsequent step entails training a fine-tuned,pretrained Visual Geometry Group(VGG16)and ResNet50 model.In the third phase,the extracted features are utilized for classification.The fourth step of the proposed approach employs a serial fusion technique based on the normal distribution to merge the vectors derived from both the RGB and thermal datasets.Finally,the fused vectors are passed to machine learning classifiers for final classification.The dataset,which includes human sleep postures used in this study’s experiments,achieved a 96.7%accuracy rate using the Quadratic Support Vector Machine(QSVM)without the blanket.Moreover,the Linear SVM,when utilized with a blanket,attained an accuracy of 96%.When normal distribution serial fusion was applied to the blanket features,it resulted in a remarkable average accuracy of 99%.
基金This work was supported by the Touyan Innovation Program of Heilongjiang Province.
文摘This paper presents a novel control approach for achieving robust posture control in legged locomotion,specifically for SLIP-like bipedal running and quadrupedal bounding with trunk stabilization.The approach is based on the virtual pendulum concept observed in human and animal locomotion experiments,which redirects ground reaction forces to a virtual support point called the Virtual Pivot Point(VPP)during the stance phase.Using the hybrid averaging theorem,we prove the upright posture stability of bipedal running with a fixed VPP position and propose a VPP angle feedback controller for online VPP adjustment to improve performance and convergence speed.Additionally,we present the first application of the VPP concept to quadrupedal posture control and design a VPP position feedback control law to enhance robustness in quadrupedal bounding.We evaluate the effectiveness of the proposed VPP-based controllers through various simulations,demonstrating their effectiveness in posture control of both bipedal running and quadrupedal bounding.The performance of the VPP-based control approach is further validated through experimental validation on a quadruped robot,SCIT Dog,for stable bounding motion generation at different forward speeds.
基金supported by the Medical Special Cultivation Project of Anhui University of Science and Technology(Grant No.YZ2023H2B013)the Anhui Provincial Key Research and Development Project(Grant No.2022i01020015)the Open Project of Key Laboratory of Conveyance Equipment(East China Jiaotong University),Ministry of Education(KLCE2022-01).
文摘The human pose paradigm is estimated using a transformer-based multi-branch multidimensional directed the three-dimensional(3D)method that takes into account self-occlusion,badly posedness,and a lack of depth data in the per-frame 3D posture estimation from two-dimensional(2D)mapping to 3D mapping.Firstly,by examining the relationship between the movements of different bones in the human body,four virtual skeletons are proposed to enhance the cyclic constraints of limb joints.Then,multiple parameters describing the skeleton are fused and projected into a high-dimensional space.Utilizing a multi-branch network,motion features between bones and overall motion features are extracted to mitigate the drift error in the estimation results.Furthermore,the estimated relative depth is projected into 3D space,and the error is calculated against real 3D data,forming a loss function along with the relative depth error.This article adopts the average joint pixel error as the primary performance metric.Compared to the benchmark approach,the estimation findings indicate an increase in average precision of 1.8 mm within the Human3.6M sample.
基金the National Natural Science Foundation of China(No.61975015)the Research and Innovation Project for Graduate Students at Zhongyuan University of Technology(No.YKY2024ZK14).
文摘Human posture estimation is a prominent research topic in the fields of human-com-puter interaction,motion recognition,and other intelligent applications.However,achieving highaccuracy in key point localization,which is crucial for intelligent applications,contradicts the lowdetection accuracy of human posture detection models in practical scenarios.To address this issue,a human pose estimation network called AT-HRNet has been proposed,which combines convolu-tional self-attention and cross-dimensional feature transformation.AT-HRNet captures significantfeature information from various regions in an adaptive manner,aggregating them through convolu-tional operations within the local receptive domain.The residual structures TripNeck and Trip-Block of the high-resolution network are designed to further refine the key point locations,wherethe attention weight is adjusted by a cross-dimensional interaction to obtain more features.To vali-date the effectiveness of this network,AT-HRNet was evaluated using the COCO2017 dataset.Theresults show that AT-HRNet outperforms HRNet by improving 3.2%in mAP,4.0%in AP75,and3.9%in AP^(M).This suggests that AT-HRNet can offer more beneficial solutions for human posture estimation.
基金Researchers Supporting Project Number(RSPD2024R576),King Saud University,Riyadh,Saudi Arabia。
文摘Cardiovascular disease is the leading cause of death globally.This disease causes loss of heart muscles and is also responsible for the death of heart cells,sometimes damaging their functionality.A person’s life may depend on receiving timely assistance as soon as possible.Thus,minimizing the death ratio can be achieved by early detection of heart attack(HA)symptoms.In the United States alone,an estimated 610,000 people die fromheart attacks each year,accounting for one in every four fatalities.However,by identifying and reporting heart attack symptoms early on,it is possible to reduce damage and save many lives significantly.Our objective is to devise an algorithm aimed at helping individuals,particularly elderly individuals living independently,to safeguard their lives.To address these challenges,we employ deep learning techniques.We have utilized a vision transformer(ViT)to address this problem.However,it has a significant overhead cost due to its memory consumption and computational complexity because of scaling dot-product attention.Also,since transformer performance typically relies on large-scale or adequate data,adapting ViT for smaller datasets is more challenging.In response,we propose a three-in-one steam model,theMulti-Head Attention Vision Hybrid(MHAVH).Thismodel integrates a real-time posture recognition framework to identify chest pain postures indicative of heart attacks using transfer learning techniques,such as ResNet-50 and VGG-16,renowned for their robust feature extraction capabilities.By incorporatingmultiple heads into the vision transformer to generate additional metrics and enhance heart-detection capabilities,we leverage a 2019 posture-based dataset comprising RGB images,a novel creation by the author that marks the first dataset tailored for posture-based heart attack detection.Given the limited online data availability,we segmented this dataset into gender categories(male and female)and conducted testing on both segmented and original datasets.The training accuracy of our model reached an impressive 99.77%.Upon testing,the accuracy for male and female datasets was recorded at 92.87%and 75.47%,respectively.The combined dataset accuracy is 93.96%,showcasing a commendable performance overall.Our proposed approach demonstrates versatility in accommodating small and large datasets,offering promising prospects for real-world applications.
基金Supported by NSFC(Nos.11661025,12161024)Natural Science Foundation of Guangxi(Nos.2020GXNSFAA159118,2021GXNSFAA196045)+2 种基金Guangxi Science and Technology Project(No.Guike AD20297006)Training Program for 1000 Young and Middle-aged Cadre Teachers in Universities of GuangxiNational College Student's Innovation and Entrepreneurship Training Program(No.202110595049)。
文摘In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):1045-1049]and Monrad and Rootzén[Probab.Theory Related Fields,1995,101(2):173-192].
基金funded by the Science and Technology Project of Hebei Education Department (No.ZD2022100).
文摘With the development of technology and the progress of life,more and more people,regardless of entertainment,learning,or work,cannot do without computer desks and cannot put down their mobile phones.Due to prolonged sitting and often neglecting the importance of posture,incorrect posture can often lead to health problems such as hunchback,lumbar muscle strain,and shoulder and neck pain over time.To address this issue,we designed a computer vision-based human body posture detection system.The system utilizes YOLOv8 technology to accurately locate key points of the human body skeleton,and then analyzes the coordinate positions and depth information of these key points to establish a criterion for distinguishing different postures.With the assistance of an SVM classifier,the system achieves an average recognition rate of 95%.Finally,we successfully deployed the posture detection system on Raspberry Pi hardware and conducted extensive testing.The test results demonstrate that the system can effectively detect various postures and provide real-time reminders to users to correct poor posture,demonstrating good practicality and stability.
基金supported by the National Science Foundation(No.CMMI-2019459).
文摘The plastic deformation of semiconductors,a process critical to their mechanical and electronic properties,involves various mechanisms such as dislocation motion and phase transition.Here,we systematically examined the temperature-dependent Peierls stress for 30°and 90°partial dislocations in cadmium telluride(CdTe),using a combination of molecular statics and molecular dynamics simulations with a machine-learning force field,as well as density functional theory simulations.Our findings reveal that the 0 K Peierls stresses for these partial dislocations in CdTe are relatively low,ranging from 0.52 GPa to 1.46 GPa,due to its significant ionic bonding characteristics.Notably,in the CdTe system containing either a 30°Cd-core or 90°Te-core partial dislocation,a phase transition from the zinc-blende phase to theβ-Sn-like phase is favored over dislocation motion.This suggests a competitive relationship between these two mechanisms,driven by the bonding characteristics within the dislocation core and the relatively low phase transition stress of∼1.00 GPa.Furthermore,we observed a general trend wherein the Peierls stress for partial dislocations in CdTe exhibits a temperature dependence,which decreases with increasing temperature,becoming lower than the phase transition stress at elevated temperatures.Consequently,the dominant deformation mechanism in CdTe shifts from solid-state phase transition at low temperatures to dislocation motion at high temperatures.This investigation uncovers a compelling interplay between dislocation motion and phase transition in the plastic deformation of CdTe,offering profound insights into the mechanical behavior and electronic performance of CdTe and other II-VI semiconductors.
基金Shenzhen Science and Technology Programme,Grant/Award Number:JCYJ202308071208000012023 Shenzhen sustainable supporting funds for colleges and universities,Grant/Award Number:20231121165240001Guangdong Provincial Key Laboratory of Ultra High Definition Immersive Media Technology,Grant/Award Number:2024B1212010006。
文摘Internal learning-based video inpainting methods have shown promising results by exploiting the intrinsic properties of the video to fill in the missing region without external dataset supervision.However,existing internal learning-based video inpainting methods would produce inconsistent structures or blurry textures due to the insufficient utilisation of motion priors within the video sequence.In this paper,the authors propose a new internal learning-based video inpainting model called appearance consistency and motion coherence network(ACMC-Net),which can not only learn the recurrence of appearance prior but can also capture motion coherence prior to improve the quality of the inpainting results.In ACMC-Net,a transformer-based appearance network is developed to capture global context information within the video frame for representing appearance consistency accurately.Additionally,a novel motion coherence learning scheme is proposed to learn the motion prior in a video sequence effectively.Finally,the learnt internal appearance consistency and motion coherence are implicitly propagated to the missing regions to achieve inpainting well.Extensive experiments conducted on the DAVIS dataset show that the proposed model obtains the superior performance in terms of quantitative measurements and produces more visually plausible results compared with the state-of-the-art methods.
基金supported by the National Natural Science Foundation of China(Nos.52373093 and 12072325)the Outstanding Youth Fund of Henan Province(No.242300421062)+1 种基金National Key R&D Program of China(No.2019YFA0706802)the 111 project(No.D18023).
文摘With the rapid development of wearable electronic skin technology, flexible strain sensors have shown great application prospects in the fields of human motion and physiological signal detection, medical diagnostics, and human-computer interaction owing to their outstanding sensing performance. This paper reports a strain sensor with synergistic conductive network, consisting of stable carbon nanotube dispersion (CNT) layer and brittle MXene layer by dip-coating and electrostatic self-assembly method, and breathable three-dimensional (3D) flexible substrate of thermoplastic polyurethane (TPU) fibrous membrane prepared through electrospinning technology. The MXene/CNT@PDA-TPU (MC@p-TPU) flexible strain sensor had excellent air permeability, wide operating range (0–450 %), high sensitivity (Gauge Factor, GFmax = 8089.7), ultra-low detection limit (0.05 %), rapid response and recovery times (40 ms/60 ms), and excellent cycle stability and durability (10,000 cycles). Given its superior strain sensing capabilities, this sensor can be applied in physiological signals detection, human motion pattern recognition, and driving exoskeleton robots. In addition, MC@p-TPU fibrous membrane also exhibited excellent photothermal conversion performance and can be used as a wearable photo-heater, which has far-reaching application potential in the photothermal therapy of human joint diseases.
基金supported by the National Natural Science Foundation of China(Grant No.72161034).
文摘Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frames remains a fundamental yet unresolved challenge.Existing methods typically rely on dense keyframe inputs or complex prior structures,making it difficult to balance motion quality and plausibility under conditions such as sparse constraints,long-term dependencies,and diverse motion styles.To address this,we propose a motion generation framework based on a frequency-domain diffusion model,which aims to better model complex motion distributions and enhance generation stability under sparse conditions.Our method maps motion sequences to the frequency domain via the Discrete Cosine Transform(DCT),enabling more effective modeling of low-frequency motion structures while suppressing high-frequency noise.A denoising network based on self-attention is introduced to capture long-range temporal dependencies and improve global structural awareness.Additionally,a multi-objective loss function is employed to jointly optimize motion smoothness,pose diversity,and anatomical consistency,enhancing the realism and physical plausibility of the generated sequences.Comparative experiments on the Human3.6M and LaFAN1 datasets demonstrate that our method outperforms state-of-the-art approaches across multiple performance metrics,showing stronger capabilities in generating intermediate motion frames.This research offers a new perspective and methodology for human motion generation and holds promise for applications in character animation,game development,and virtual interaction.
基金supported by the National Natural Science Foundation of China(No.62206143)the Key Research and Development and Promotion Special Project in Henan Province(Nos.222102210141 and 232102211015)。
文摘In this study,we present a unified sparsity-driven framework that significantly enhances motion deblurring performance by integrating two key components:a custom-designed dataset and a low-rank module(LRM).This framework leverages the inherent sparsity of per-pixel blur kernels to bolster both deblurring accuracy and model interpretability.Firstly,we propose an adaptive-basis decomposition-based deblurring(ADD)approach,which constructs a tailored training dataset to enhance the generalization capacity of the deblurring network.The ADD framework adaptively decomposes motion blur into sparse basis elements,effectively addressing the intricacies associated with non-uniform blurs.Secondly,an LRM is proposed to improve the interpretability of deblurring models as a plug-and-play module,primarily designed to identify and harness the intrinsic sparse features in sharp images.A series of ablation studies have been conducted to substantiate the synergistic advantages of combining the proposed ADD with the LRM for overall improvement in deblurring efficacy.Subsequently,we empirically demonstrate through rigorous experimentation that incorporating the LRM into an existing Uformer network leads to substantial enhancement in reconstruction performance.This integration yields a sparsity-guided low-rank network(SGLRN).Operating under the overarching principle of sparsity,SGLRN consistently outperforms state-of-the-art methods across multiple standard deblurring benchmarks.Comprehensive experimental results,assessed through quantitative metrics and qualitative visual evaluations,provide compelling evidence of its effectiveness.The overall deblurring results are available at Google Drive.