This paper carries out a comprehensive and systematic comparison study on the kinematic performance of four six degrees of freedom(6-DOF)parallel mechanisms with different topologies,i.e.,6-UPS,3-(2-UPR)U,3-(2-UCR)U,a...This paper carries out a comprehensive and systematic comparison study on the kinematic performance of four six degrees of freedom(6-DOF)parallel mechanisms with different topologies,i.e.,6-UPS,3-(2-UPR)U,3-(2-UCR)U,and 3-R(2-RPR)U.The research begins by elaborating in detail the similarities and differences among these four parallel mechanisms.By standardizing the definition of the coordinate system for each mechanism,the inverse kinematics and the Jacobian matrix of these four mechanisms are systematically derived.Employing a set of motion/force transmission indices,which are directly obtained from the Jacobian matrix,the kinematic performances of the four mechanisms are thoroughly analyzed and compared within the given workspaces while maintaining the same dimensional parameters for all cases.The comparison study of these four parallel mechanisms extends beyond local transmission indices to also include global transmission indices,covering both position and orientation workspaces,as well as assessments at both the local and global workspace levels.This comprehensive approach ensures a detailed and fair evaluation of their respective kinematic capabilities.The results indicate that the comprehensive kinematic performances of the four parallel mechanisms are similar,and providing a solid theoretical foundation for innovative design and practical guidance for selecting optimal architectures based on specific application requirements.展开更多
A compliant landing strategy for a trotting quadruped robot on unknown rough terrains based on contact force control is presented. Firstly, in order to lower the disturbance caused by the landing impact force, a landi...A compliant landing strategy for a trotting quadruped robot on unknown rough terrains based on contact force control is presented. Firstly, in order to lower the disturbance caused by the landing impact force, a landing phase is added between the swing phase and the stance phase, where the desired contact force is set as a small positive constant. Secondly, the joint torque optimization of the stance legs is formulated as a quadratic programming(QP) problem subject to equality and inequality/bound constraints. And a primal-dual dynamical system solver based on linear variational inequalities(LVI) is applied to solve this QP problem. Furthermore, based on the optimization results, a hybrid motion/force robust controller is designed to realize the tracking of the contact force, while the constraints of the stance feet landing angles are fulfilled simultaneously. Finally, the experiments are performed to validate the proposed methods.展开更多
Bentonite is a necessary binder in producing pellets.Its excessive use reduces the iron grade of pellets and increases production costs.Minimizing bentonite dosage is essential for producing high-quality iron ore pell...Bentonite is a necessary binder in producing pellets.Its excessive use reduces the iron grade of pellets and increases production costs.Minimizing bentonite dosage is essential for producing high-quality iron ore pellets.Addressing the gap in the application of organically-intercalated modified bentonite in the pelletizing field,this study introduces an innovative modification process for bentonite that employs the synergistic effect of mechanical force and dimethyl sulfoxide to enhance the intercalation of organic compounds within bentonite,thus significantly enhancing its binding performance.The colloid value and swell capacity of modified bentonite(98.5 m L/3g and 55.0 m L/g)were much higher than the original bentonite(90.5 m L/3g and 17.5 m L/g).With the decrease of bentonite dosage from1.5wt%to 1.0wt%,the drop number of green pellets from a height of 0.5 m and the compressive strengths of roasted pellets using the modified bentonite(6.0 times and 2916 N per pellet)were significantly higher than those of the original bentonite(4.0 times and 2739 N per pellet).This study provides a comprehensive analysis of the intercalation modification mechanism of bentonite,offering crucial technical insights for the development of high-performance modified bentonite as iron ore pellet binders.展开更多
This study experimentally investigates the oscillatory dynamics of wind-driven droplets using high-speed imaging to capture droplet profiles within the symmetry plane and to characterize their natural oscillation freq...This study experimentally investigates the oscillatory dynamics of wind-driven droplets using high-speed imaging to capture droplet profiles within the symmetry plane and to characterize their natural oscillation frequencies.Results reveal that the eigenfrequencies vary spatially due to distinct oscillation modes occurring at different droplet locations.Notably,the fundamental eigenfrequency decreases with reducing droplet volume,while droplet viscosity exerts minimal influence on this frequency.Prior to the onset of motion,the dynamic contact angle consistently remains between the advancing and receding angles.The inertial forces generated by droplet oscillation are found to be significantly greater than the adhesion forces,indicating that classical static models are inadequate for capturing inertial contributions to droplet motion.These findings offer new insights into the role of oscillatory behavior in influencing the dynamics of droplet motion,and contribute to a more detailed understanding of wind-driven droplet transport phenomena.展开更多
Microrobots powered by an external magnetic field could be used for sophisticated medical applications such as cell treatment,micromanipulation,and noninvasive surgery inside the body.Untethered microrobot application...Microrobots powered by an external magnetic field could be used for sophisticated medical applications such as cell treatment,micromanipulation,and noninvasive surgery inside the body.Untethered microrobot applications can benefit from haptic technology and telecommunication,enabling telemedical micro-manipulation.Users can manipulate the microrobots with haptic feedback by interacting with the robot operating system remotely in such applications.Artificially created haptic forces based on wirelessly transmitted data and model-based guidance can aid human operators with haptic sensations while manipulating microrobots.The system presented here includes a haptic device and a magnetic tweezer system linked together using a network-based teleoperation method with motion models in fluids.The magnetic microrobots can be controlled remotely,and the haptic interactions with the remote environment can be felt in real time.A time-domain passivity controller is applied to overcome network delay and ensure stability of communication.This study develops and tests a motion model for microrobots and evaluates two image-based 3D tracking algorithms to improve tracking accuracy in various Newtonian fluids.Additionally,it demonstrates that microrobots can group together to transport multiple larger objects,move through microfluidic channels for detailed tasks,and use a novel method for disassembly,greatly expanding their range of use in microscale operations.Remote medical treatment in multiple locations,remote delivery of medication without the need for physical penetration of the skin,and remotely controlled cell manipulations are some of the possible uses of the proposed technology.展开更多
The flocculation behavior of carbon black (CB)-filled isoprene rubber (IR) nanocomposites was systematically investigated under both dynamic and static conditions to unravel the distinct mechanisms governing filler ne...The flocculation behavior of carbon black (CB)-filled isoprene rubber (IR) nanocomposites was systematically investigated under both dynamic and static conditions to unravel the distinct mechanisms governing filler network evolution.Under dynamic conditions,small oscillatory shear strains (0.1%) significantly enhanced filler particle motion,leading to pronounced agglomeration and a flocculation degree of about 4.3MPa at 145℃.In contrast,static flocculation exhibited a fundamentally different mechanism dominated by polymer chain dynamics,which is driven mainly by thermal activation.Radial distribution function (RDF) analysis of transmission electron microscopy (TEM) images revealed a slight decrease (2 nm) in the interparticle distance peak after static annealing at 100℃ for 7 h,indicating localized motion of CB particles.However,the overall filler network remained stable,with no significant agglomeration observed.The increase in bound rubber content from about 23% to 28% with rising temperature further confirmed the dominant role of polymer chain adsorption and interfacial reinforcement in static flocculation.These findings highlight the critical influence of external strain on filler network formation and provide new insights into the polymer-dominated mechanism of static flocculation.The results offer practical guidance for optimizing the storage and processing of rubber nanocomposites,particularly in applications where static flocculation during prolonged storage is a concern.展开更多
In recent years,significant research attention has been directed towards swarm intelligence.The Milling behavior of fish schools,a prime example of swarm intelligence,shows how simple rules followed by individual agen...In recent years,significant research attention has been directed towards swarm intelligence.The Milling behavior of fish schools,a prime example of swarm intelligence,shows how simple rules followed by individual agents lead to complex collective behaviors.This paper studies Multi-Agent Reinforcement Learning to simulate fish schooling behavior,overcoming the challenges of tuning parameters in traditional models and addressing the limitations of single-agent methods in multi-agent environments.Based on this foundation,a novel Graph Convolutional Networks(GCN)-Critic MADDPG algorithm leveraging GCN is proposed to enhance cooperation among agents in a multi-agent system.Simulation experiments demonstrate that,compared to traditional single-agent algorithms,the proposed method not only exhibits significant advantages in terms of convergence speed and stability but also achieves tighter group formations and more naturally aligned Milling behavior.Additionally,a fish school self-organizing behavior research platform based on an event-triggered mechanism has been developed,providing a robust tool for exploring dynamic behavioral changes under various conditions.展开更多
This paper is devoted to the problem of modeling and adaptive motion/force tracking for a class of nonholonomic dynamic systems with affine constraints(NDSAC): a vertical wheel on a rotating table. Prior to the develo...This paper is devoted to the problem of modeling and adaptive motion/force tracking for a class of nonholonomic dynamic systems with affine constraints(NDSAC): a vertical wheel on a rotating table. Prior to the development of tracking controller,the dynamic model of the wheel in question is derived in a meticulous manner. A continuously differentiable friction model is also considered in the modeling. By exploiting the inherent cascade interconnected structure of the wheel dynamics, an adaptive motion/force tracking controller is presented guaranteeing that the trajectory tracking errors asymptotically converge to zero while the contact force tracking errors can be made small enough by tuning design parameters. Simulation results are provided to validate the effectiveness of the proposed tracking methodology.展开更多
This paper presents an efficient numerical scheme for calculating the periodic motion of a harmonically forced piecewise linear oscillator very accurately. The scheme is based on the shooting technique with the tradi...This paper presents an efficient numerical scheme for calculating the periodic motion of a harmonically forced piecewise linear oscillator very accurately. The scheme is based on the shooting technique with the traditional numerical Poincare mapping and its Jacobian replaced by the piecewise analytic ones. Thus, the scheme gets rid of the requirement of the current schemes for an assumed order of the oscillator trajectory passing through different linear regions. The numerical examples in the paper demonstrate that the new scheme, compared with the current schemes, enables one to cope with more complicated dynamics of harmonically forced piecewise linear oscillators.展开更多
This paper presents a study on the motion response of a tension-leg platform(TLP) under first-and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave fo...This paper presents a study on the motion response of a tension-leg platform(TLP) under first-and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave force is calculated using the full-field quadratic transfer function(QTF). The coupled effect of the horizontal motions, such as surge, sway and yaw motions, and the set-down motion are taken into consideration by the nonlinear restoring matrix. The time-domain analysis with 50-yr random sea state is performed. A comparison of the results of different case studies is made to assess the influence of second-order wave force on the motions of the platform. The analysis shows that the second-order wave force has a major impact on motions of the TLP. The second-order difference-frequency wave force has an obvious influence on the low-frequency motions of surge and sway, and also will induce a large set-down motion which is an important part of heave motion. Besides, the second-order sum-frequency force will induce a set of high-frequency motions of roll and pitch. However, little influence of second-order wave force is found on the yaw motion.展开更多
The existing research of the motion optimization of multi-axis machine tools is mainly based on geometric and kinematic constraints, which aim at obtaining minimum-time trajectories and finding obstacle-free paths. In...The existing research of the motion optimization of multi-axis machine tools is mainly based on geometric and kinematic constraints, which aim at obtaining minimum-time trajectories and finding obstacle-free paths. In motion optimization, the stiffness characteristics of the whole machining system, including machine tool and cutter, are not considered. The paper presents a new method to establish a general stiffness model of multi-axis machining system. An analytical stiffness model is established by Jacobi and point transformation matrix method. Based on the stiffness model, feed-direction stiffness index is calculated by the intersection of force ellipsoid and the cutting feed direction at the cutter tip. The stiffness index can help analyze the stiffness performance of the whole machining system in the available workspace. Based on the analysis of the stiffness performance, multi-axis motion optimization along tool paths is accomplished by mixed programming using Matlab and Visual C++. The effectiveness of the motion optimization method is verified by the experimental research about the machining performance of a 7-axis 5-linkage machine tool. The proposed research showed that machining stability and production efficiency can be improved by multi-axis motion optimization based on the anisotropic force ellipsoid of the whole machining system.展开更多
Aerodynamic force and flow structures of two airfoils in a tandem configuration in flapping motions axe studied, by solving the Navier-Stokes equations in moving overset grids. Three typical phase differences between ...Aerodynamic force and flow structures of two airfoils in a tandem configuration in flapping motions axe studied, by solving the Navier-Stokes equations in moving overset grids. Three typical phase differences between the fore- and aft-airfoil flapping cycles are considered. It is shown that: (1) in the case of no interaction (single airfoil), the time average of the vertical force coefficient over the downstroke is 2.74, which is about 3 times as large as the maximum steady-state lift coefficient of a dragonfly wing; the time average of the horizontal force coefficient is 1.97, which is also large. The reasons for the large force coefficients are the acceleration at the beginning of a stroke, the delayed stall and the 'pitching-up' motion near the end of the stroke. (2) In the cases of two-airfoils, the time-variations of the force and moment coefficients on each airfoil are broadly similar to that of the single airfoil in that the vertical force is mainly produced in downstroke and the horizontal force in upstroke, but very large differences exist due to the interaction. (3) For in-phase stroking, the major differences caused by the interaction are that the vertical force on FA in downstroke is increased and the horizontal force on FA in upstroke decreased. As a result, the magnitude of the resultant force is almost unchanged but it inclines less forward. (4) For counter stroking, the major differences are that the vertical force on AA in downstroke and the horizontal force on FA in upstroke are decreased. As a result, the magnitude of the resultant force is decreased by about 20 percent but its direction is almost unchanged. (5) For 90 degrees -phase-difference stroking, the major differences axe that the vertical force on AA in downstroke and the horizontal force on FA in upstroke axe decreased greatly and the horizontal force on AA in upstroke increased. As a result, the magnitude of the resultant force is decreased by about 28% and it inclines more forward. (6) Among the three cases of phase angles, inphase flapping produces the largest vertical force (also the largest resultant force); the 90 degrees -phase-difference flapping results in the largest horizontal force, but the smallest resultant force.展开更多
Wave forces on two side-by-side boxes in close proximity under wave actions were analyzed using the OpenFOAM package.The upstream box heaved freely under wave actions,whereas the downstream box remained fixed.For comp...Wave forces on two side-by-side boxes in close proximity under wave actions were analyzed using the OpenFOAM package.The upstream box heaved freely under wave actions,whereas the downstream box remained fixed.For comparison,a configuration in which both boxes were fixed was also considered.The effects of the heave motion of the upstream box on the wave loads,including the horizontal wave forces,vertical wave forces,and moments on the boxes,were the focus of this study.Numerical analyses showed that all frequencies at which the maximum horizontal wave forces,maximum vertical wave forces,and maximum moment appeared are dependent on the heave motion of the upstream box and that the effects of the heave motion on these frequencies are different.Furthermore,these frequencies were observed to deviate from the corresponding fluid resonant frequency.Moreover,the heave motion of the upstream box reduced the wave forces acting on both boxes and altered the variation trends of the wave forces with the incident wave frequency.展开更多
Magnetic force transmission of a reciprocating motion is studied by theoretical analysis and experiment. A mathematical model for calculating the magnetic force is derived using the theory of equivalent magnetic charg...Magnetic force transmission of a reciprocating motion is studied by theoretical analysis and experiment. A mathematical model for calculating the magnetic force is derived using the theory of equivalent magnetic charges. An experimental rig is constructed to test the transmission and the model is verified by experiment. Effect of the transmission parameters on the magnetic force is analyzed theoretically from the model, and characteristic of the transmission is studied experimentally. Since the transmission is without direct contact between two elements, it is suitable for application in an organism.展开更多
This paper reviews the development of forced motion apparatuses(FMAs) and their applications in wind engineering. A kind of FMA has been developed to investigate nonlinear and nonstationary aerodynamic forces consider...This paper reviews the development of forced motion apparatuses(FMAs) and their applications in wind engineering. A kind of FMA has been developed to investigate nonlinear and nonstationary aerodynamic forces considering the coupled effects of multiple degrees of freedom(DOFs). This apparatus can make section models to vibrate in a prescribed displacement defined by a numerical signal in time domain, including stationary and nonstationary movements with time-variant amplitudes and frequencies and even stochastic displacements. A series of validation tests show that the apparatus can re-illustrate various motions with enough precision in 3 D coupled states of two linear displacements and one torsional displacement. To meet the requirement of aerodynamic modeling, the flutter derivatives of a box girder section are identified, verifying its accuracy and feasibility by comparing with previously reported results. By simulating the nonstationary vibration with time-variant amplitude, the phenomena of frequency multiplication and memory effects are examined. In addition to studying the aerodynamics of a bluff body under large amplitudes and nonstationary vibrations, some potential applications of the proposed FMA are discussed in vehicle-bridge-wind dynamic analysis, pile-soil interaction, and line-tower coupled vibration aerodynamics in structural engineering.展开更多
The influences of the lateral motion of a single wheelset running on a tangent railway on the creepages and creep forces between wheel and rail are investigated with numerical methods. ...The influences of the lateral motion of a single wheelset running on a tangent railway on the creepages and creep forces between wheel and rail are investigated with numerical methods. The effect of the yaw motion of wheelset is neglected in the analysis, and Kalker’s theory of three dimensional elastic bodies in rolling contact is employed to analyze the creep forces in the wheel/rail rolling contact with Non Hertzian form.展开更多
Robot's dynamic motion error and on-line compensation based on multi-axis force sensor are dealt with.It is revealed that the reasons of the error are formed and the relations of the error are delivered.A motion equa...Robot's dynamic motion error and on-line compensation based on multi-axis force sensor are dealt with.It is revealed that the reasons of the error are formed and the relations of the error are delivered.A motion equation of robot's termination with the error is established,and then,an error matrix and an error compensation matrix of the motion equation are also defined.An on-line error's compensation method is put forward to decrease the displacement error,which is a degree of millimeter,shown by the result of simulation of PUMA562 robot.展开更多
A series of numerical sinmlations about a small scale (aspect ratio: 63.2) flexible pipe undergoing forced harmonious oscillation and vortex-induced vibration (VIV) have been taken into account. The wake hydrodyn...A series of numerical sinmlations about a small scale (aspect ratio: 63.2) flexible pipe undergoing forced harmonious oscillation and vortex-induced vibration (VIV) have been taken into account. The wake hydrodynamics and pipe deformation were accomplished by ANSYS MFX solution strat- egy designed for fluid-structure interaction (FSI) problem with well-performed LES model. The configuration of structured mesh, multi-domain design, different mesh stiffness admeasured by User Fortran ensured that the numerical task was competent to deal with large deformation related to this case. The introduction of instantaneous amplitude definition and modeless component decom- position method (Chen and Kim, 2008) was helpful to reveal much more information from modal analysis. Most results from numerical simulation are generally consistent with those from model test (Choi and Hong, 2000) via the comparison between them. As supplementary to model test, visualization of the vortex wake was also provided. It has been proved that the forced oscillation doesn't only excite a complicated dumbbell-like wake pattern around the outer thimble, but also results in inner flow inside the PVC pipe. The velocity of the inner flow increases with the frequency of forced oscillation.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.52325501,U24B2047).
文摘This paper carries out a comprehensive and systematic comparison study on the kinematic performance of four six degrees of freedom(6-DOF)parallel mechanisms with different topologies,i.e.,6-UPS,3-(2-UPR)U,3-(2-UCR)U,and 3-R(2-RPR)U.The research begins by elaborating in detail the similarities and differences among these four parallel mechanisms.By standardizing the definition of the coordinate system for each mechanism,the inverse kinematics and the Jacobian matrix of these four mechanisms are systematically derived.Employing a set of motion/force transmission indices,which are directly obtained from the Jacobian matrix,the kinematic performances of the four mechanisms are thoroughly analyzed and compared within the given workspaces while maintaining the same dimensional parameters for all cases.The comparison study of these four parallel mechanisms extends beyond local transmission indices to also include global transmission indices,covering both position and orientation workspaces,as well as assessments at both the local and global workspace levels.This comprehensive approach ensures a detailed and fair evaluation of their respective kinematic capabilities.The results indicate that the comprehensive kinematic performances of the four parallel mechanisms are similar,and providing a solid theoretical foundation for innovative design and practical guidance for selecting optimal architectures based on specific application requirements.
基金Project(61473304)supported by the National Natural Science Foundation of ChinaProject(2015AA042202)supported by Hi-tech Research and Development Program of China
文摘A compliant landing strategy for a trotting quadruped robot on unknown rough terrains based on contact force control is presented. Firstly, in order to lower the disturbance caused by the landing impact force, a landing phase is added between the swing phase and the stance phase, where the desired contact force is set as a small positive constant. Secondly, the joint torque optimization of the stance legs is formulated as a quadratic programming(QP) problem subject to equality and inequality/bound constraints. And a primal-dual dynamical system solver based on linear variational inequalities(LVI) is applied to solve this QP problem. Furthermore, based on the optimization results, a hybrid motion/force robust controller is designed to realize the tracking of the contact force, while the constraints of the stance feet landing angles are fulfilled simultaneously. Finally, the experiments are performed to validate the proposed methods.
基金financial support by the National Key Research and Development Program of China(No.2023YFC2907801)the Hunan Provincial Natural Science Foundation of China(No.2023JJ40760)the Scientific and Technological Project of Yunnan Precious Metals Laboratory,China(No.YPML-2023050276)。
文摘Bentonite is a necessary binder in producing pellets.Its excessive use reduces the iron grade of pellets and increases production costs.Minimizing bentonite dosage is essential for producing high-quality iron ore pellets.Addressing the gap in the application of organically-intercalated modified bentonite in the pelletizing field,this study introduces an innovative modification process for bentonite that employs the synergistic effect of mechanical force and dimethyl sulfoxide to enhance the intercalation of organic compounds within bentonite,thus significantly enhancing its binding performance.The colloid value and swell capacity of modified bentonite(98.5 m L/3g and 55.0 m L/g)were much higher than the original bentonite(90.5 m L/3g and 17.5 m L/g).With the decrease of bentonite dosage from1.5wt%to 1.0wt%,the drop number of green pellets from a height of 0.5 m and the compressive strengths of roasted pellets using the modified bentonite(6.0 times and 2916 N per pellet)were significantly higher than those of the original bentonite(4.0 times and 2739 N per pellet).This study provides a comprehensive analysis of the intercalation modification mechanism of bentonite,offering crucial technical insights for the development of high-performance modified bentonite as iron ore pellet binders.
基金supported by the National Natural Science Foundation ofChina(GrantNo.12402291)the Beijing Natural Science Foundation(No.3244043)the Research Start-up Funds of Hangzhou International Innovation Institute of Beihang University(Grant Nos.2024KQ008,2024KQ062).
文摘This study experimentally investigates the oscillatory dynamics of wind-driven droplets using high-speed imaging to capture droplet profiles within the symmetry plane and to characterize their natural oscillation frequencies.Results reveal that the eigenfrequencies vary spatially due to distinct oscillation modes occurring at different droplet locations.Notably,the fundamental eigenfrequency decreases with reducing droplet volume,while droplet viscosity exerts minimal influence on this frequency.Prior to the onset of motion,the dynamic contact angle consistently remains between the advancing and receding angles.The inertial forces generated by droplet oscillation are found to be significantly greater than the adhesion forces,indicating that classical static models are inadequate for capturing inertial contributions to droplet motion.These findings offer new insights into the role of oscillatory behavior in influencing the dynamics of droplet motion,and contribute to a more detailed understanding of wind-driven droplet transport phenomena.
基金supported by National Science Foundation Grant No.2123824.
文摘Microrobots powered by an external magnetic field could be used for sophisticated medical applications such as cell treatment,micromanipulation,and noninvasive surgery inside the body.Untethered microrobot applications can benefit from haptic technology and telecommunication,enabling telemedical micro-manipulation.Users can manipulate the microrobots with haptic feedback by interacting with the robot operating system remotely in such applications.Artificially created haptic forces based on wirelessly transmitted data and model-based guidance can aid human operators with haptic sensations while manipulating microrobots.The system presented here includes a haptic device and a magnetic tweezer system linked together using a network-based teleoperation method with motion models in fluids.The magnetic microrobots can be controlled remotely,and the haptic interactions with the remote environment can be felt in real time.A time-domain passivity controller is applied to overcome network delay and ensure stability of communication.This study develops and tests a motion model for microrobots and evaluates two image-based 3D tracking algorithms to improve tracking accuracy in various Newtonian fluids.Additionally,it demonstrates that microrobots can group together to transport multiple larger objects,move through microfluidic channels for detailed tasks,and use a novel method for disassembly,greatly expanding their range of use in microscale operations.Remote medical treatment in multiple locations,remote delivery of medication without the need for physical penetration of the skin,and remotely controlled cell manipulations are some of the possible uses of the proposed technology.
基金supported by the National Natural Science Foundation of China(No.52293471)National Key R&D Program of China(No.2022YFB3707303).
文摘The flocculation behavior of carbon black (CB)-filled isoprene rubber (IR) nanocomposites was systematically investigated under both dynamic and static conditions to unravel the distinct mechanisms governing filler network evolution.Under dynamic conditions,small oscillatory shear strains (0.1%) significantly enhanced filler particle motion,leading to pronounced agglomeration and a flocculation degree of about 4.3MPa at 145℃.In contrast,static flocculation exhibited a fundamentally different mechanism dominated by polymer chain dynamics,which is driven mainly by thermal activation.Radial distribution function (RDF) analysis of transmission electron microscopy (TEM) images revealed a slight decrease (2 nm) in the interparticle distance peak after static annealing at 100℃ for 7 h,indicating localized motion of CB particles.However,the overall filler network remained stable,with no significant agglomeration observed.The increase in bound rubber content from about 23% to 28% with rising temperature further confirmed the dominant role of polymer chain adsorption and interfacial reinforcement in static flocculation.These findings highlight the critical influence of external strain on filler network formation and provide new insights into the polymer-dominated mechanism of static flocculation.The results offer practical guidance for optimizing the storage and processing of rubber nanocomposites,particularly in applications where static flocculation during prolonged storage is a concern.
基金supported by the National Natural Science Foundation of China under Grant 62273351 and Grant 62303020.
文摘In recent years,significant research attention has been directed towards swarm intelligence.The Milling behavior of fish schools,a prime example of swarm intelligence,shows how simple rules followed by individual agents lead to complex collective behaviors.This paper studies Multi-Agent Reinforcement Learning to simulate fish schooling behavior,overcoming the challenges of tuning parameters in traditional models and addressing the limitations of single-agent methods in multi-agent environments.Based on this foundation,a novel Graph Convolutional Networks(GCN)-Critic MADDPG algorithm leveraging GCN is proposed to enhance cooperation among agents in a multi-agent system.Simulation experiments demonstrate that,compared to traditional single-agent algorithms,the proposed method not only exhibits significant advantages in terms of convergence speed and stability but also achieves tighter group formations and more naturally aligned Milling behavior.Additionally,a fish school self-organizing behavior research platform based on an event-triggered mechanism has been developed,providing a robust tool for exploring dynamic behavioral changes under various conditions.
基金supported by the National Natural Science Foundation of China(6127309161403227+3 种基金61403228)the Ph.D.Programs Foundation of Ministry of Education of Chinathe Fundamental Research Funds for the Central Universities(KYLX15 0116)the Project of Taishan Scholar of Shandong Province of China
文摘This paper is devoted to the problem of modeling and adaptive motion/force tracking for a class of nonholonomic dynamic systems with affine constraints(NDSAC): a vertical wheel on a rotating table. Prior to the development of tracking controller,the dynamic model of the wheel in question is derived in a meticulous manner. A continuously differentiable friction model is also considered in the modeling. By exploiting the inherent cascade interconnected structure of the wheel dynamics, an adaptive motion/force tracking controller is presented guaranteeing that the trajectory tracking errors asymptotically converge to zero while the contact force tracking errors can be made small enough by tuning design parameters. Simulation results are provided to validate the effectiveness of the proposed tracking methodology.
文摘This paper presents an efficient numerical scheme for calculating the periodic motion of a harmonically forced piecewise linear oscillator very accurately. The scheme is based on the shooting technique with the traditional numerical Poincare mapping and its Jacobian replaced by the piecewise analytic ones. Thus, the scheme gets rid of the requirement of the current schemes for an assumed order of the oscillator trajectory passing through different linear regions. The numerical examples in the paper demonstrate that the new scheme, compared with the current schemes, enables one to cope with more complicated dynamics of harmonically forced piecewise linear oscillators.
基金supported by the National Natural Science Foundation of China(Nos.51239008 and 51279130)
文摘This paper presents a study on the motion response of a tension-leg platform(TLP) under first-and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave force is calculated using the full-field quadratic transfer function(QTF). The coupled effect of the horizontal motions, such as surge, sway and yaw motions, and the set-down motion are taken into consideration by the nonlinear restoring matrix. The time-domain analysis with 50-yr random sea state is performed. A comparison of the results of different case studies is made to assess the influence of second-order wave force on the motions of the platform. The analysis shows that the second-order wave force has a major impact on motions of the TLP. The second-order difference-frequency wave force has an obvious influence on the low-frequency motions of surge and sway, and also will induce a large set-down motion which is an important part of heave motion. Besides, the second-order sum-frequency force will induce a set of high-frequency motions of roll and pitch. However, little influence of second-order wave force is found on the yaw motion.
基金supported by National Natural Science Foundation of China (Grant No. 51075168)National Basic Research Program of China (973 Program, Grant No. 2011CB706803)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2009AA04Z149)
文摘The existing research of the motion optimization of multi-axis machine tools is mainly based on geometric and kinematic constraints, which aim at obtaining minimum-time trajectories and finding obstacle-free paths. In motion optimization, the stiffness characteristics of the whole machining system, including machine tool and cutter, are not considered. The paper presents a new method to establish a general stiffness model of multi-axis machining system. An analytical stiffness model is established by Jacobi and point transformation matrix method. Based on the stiffness model, feed-direction stiffness index is calculated by the intersection of force ellipsoid and the cutting feed direction at the cutter tip. The stiffness index can help analyze the stiffness performance of the whole machining system in the available workspace. Based on the analysis of the stiffness performance, multi-axis motion optimization along tool paths is accomplished by mixed programming using Matlab and Visual C++. The effectiveness of the motion optimization method is verified by the experimental research about the machining performance of a 7-axis 5-linkage machine tool. The proposed research showed that machining stability and production efficiency can be improved by multi-axis motion optimization based on the anisotropic force ellipsoid of the whole machining system.
文摘Aerodynamic force and flow structures of two airfoils in a tandem configuration in flapping motions axe studied, by solving the Navier-Stokes equations in moving overset grids. Three typical phase differences between the fore- and aft-airfoil flapping cycles are considered. It is shown that: (1) in the case of no interaction (single airfoil), the time average of the vertical force coefficient over the downstroke is 2.74, which is about 3 times as large as the maximum steady-state lift coefficient of a dragonfly wing; the time average of the horizontal force coefficient is 1.97, which is also large. The reasons for the large force coefficients are the acceleration at the beginning of a stroke, the delayed stall and the 'pitching-up' motion near the end of the stroke. (2) In the cases of two-airfoils, the time-variations of the force and moment coefficients on each airfoil are broadly similar to that of the single airfoil in that the vertical force is mainly produced in downstroke and the horizontal force in upstroke, but very large differences exist due to the interaction. (3) For in-phase stroking, the major differences caused by the interaction are that the vertical force on FA in downstroke is increased and the horizontal force on FA in upstroke decreased. As a result, the magnitude of the resultant force is almost unchanged but it inclines less forward. (4) For counter stroking, the major differences are that the vertical force on AA in downstroke and the horizontal force on FA in upstroke are decreased. As a result, the magnitude of the resultant force is decreased by about 20 percent but its direction is almost unchanged. (5) For 90 degrees -phase-difference stroking, the major differences axe that the vertical force on AA in downstroke and the horizontal force on FA in upstroke axe decreased greatly and the horizontal force on AA in upstroke increased. As a result, the magnitude of the resultant force is decreased by about 28% and it inclines more forward. (6) Among the three cases of phase angles, inphase flapping produces the largest vertical force (also the largest resultant force); the 90 degrees -phase-difference flapping results in the largest horizontal force, but the smallest resultant force.
基金the National Key Research and Development Program(Grant No.2017YFC1404200)the National Natural Science Foundation of China(Grant Nos.51911530205 and 51809039)+4 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20201455)the Natural Science Foundation of the Jiangsu Higher Education Institutions(Grant No.20KJD170005)the Qing Lan Project of Jiangsu Universities.This work is also partially supported by UK EPSRC(Grant No.EP/T026782/1)the Royal Academy of Engineering(Grant No.UKCIAPP/73)the Royal Society(Grant No.IEC\NSFC\181321).
文摘Wave forces on two side-by-side boxes in close proximity under wave actions were analyzed using the OpenFOAM package.The upstream box heaved freely under wave actions,whereas the downstream box remained fixed.For comparison,a configuration in which both boxes were fixed was also considered.The effects of the heave motion of the upstream box on the wave loads,including the horizontal wave forces,vertical wave forces,and moments on the boxes,were the focus of this study.Numerical analyses showed that all frequencies at which the maximum horizontal wave forces,maximum vertical wave forces,and maximum moment appeared are dependent on the heave motion of the upstream box and that the effects of the heave motion on these frequencies are different.Furthermore,these frequencies were observed to deviate from the corresponding fluid resonant frequency.Moreover,the heave motion of the upstream box reduced the wave forces acting on both boxes and altered the variation trends of the wave forces with the incident wave frequency.
文摘Magnetic force transmission of a reciprocating motion is studied by theoretical analysis and experiment. A mathematical model for calculating the magnetic force is derived using the theory of equivalent magnetic charges. An experimental rig is constructed to test the transmission and the model is verified by experiment. Effect of the transmission parameters on the magnetic force is analyzed theoretically from the model, and characteristic of the transmission is studied experimentally. Since the transmission is without direct contact between two elements, it is suitable for application in an organism.
基金supported by the National Key Research and Development Program of China(Nos.2018YFC0809600 and 2018YFC0809604)the National Natural Science Foundation of China(No.51678451)the Independent Subject of State Key Laboratory of Disaster Reduction in Civil Engineering(No.SLDRCE19-B-11),Tongji University,China。
文摘This paper reviews the development of forced motion apparatuses(FMAs) and their applications in wind engineering. A kind of FMA has been developed to investigate nonlinear and nonstationary aerodynamic forces considering the coupled effects of multiple degrees of freedom(DOFs). This apparatus can make section models to vibrate in a prescribed displacement defined by a numerical signal in time domain, including stationary and nonstationary movements with time-variant amplitudes and frequencies and even stochastic displacements. A series of validation tests show that the apparatus can re-illustrate various motions with enough precision in 3 D coupled states of two linear displacements and one torsional displacement. To meet the requirement of aerodynamic modeling, the flutter derivatives of a box girder section are identified, verifying its accuracy and feasibility by comparing with previously reported results. By simulating the nonstationary vibration with time-variant amplitude, the phenomena of frequency multiplication and memory effects are examined. In addition to studying the aerodynamics of a bluff body under large amplitudes and nonstationary vibrations, some potential applications of the proposed FMA are discussed in vehicle-bridge-wind dynamic analysis, pile-soil interaction, and line-tower coupled vibration aerodynamics in structural engineering.
文摘The influences of the lateral motion of a single wheelset running on a tangent railway on the creepages and creep forces between wheel and rail are investigated with numerical methods. The effect of the yaw motion of wheelset is neglected in the analysis, and Kalker’s theory of three dimensional elastic bodies in rolling contact is employed to analyze the creep forces in the wheel/rail rolling contact with Non Hertzian form.
基金This project is supported by National Hi-tech Research and Development Program of China(863 Program,No.2001AAA423300)Provincial Natural Science Foundation of Anhui,China(No.00043310)
文摘Robot's dynamic motion error and on-line compensation based on multi-axis force sensor are dealt with.It is revealed that the reasons of the error are formed and the relations of the error are delivered.A motion equation of robot's termination with the error is established,and then,an error matrix and an error compensation matrix of the motion equation are also defined.An on-line error's compensation method is put forward to decrease the displacement error,which is a degree of millimeter,shown by the result of simulation of PUMA562 robot.
基金Korea Research Foundation Grant funded by the Korean Government (MOEHRD,Basic Research Promotion Fund) (KRF-2008-D00556)Mokpo National University RIC for Midisize Shipbuilding
文摘A series of numerical sinmlations about a small scale (aspect ratio: 63.2) flexible pipe undergoing forced harmonious oscillation and vortex-induced vibration (VIV) have been taken into account. The wake hydrodynamics and pipe deformation were accomplished by ANSYS MFX solution strat- egy designed for fluid-structure interaction (FSI) problem with well-performed LES model. The configuration of structured mesh, multi-domain design, different mesh stiffness admeasured by User Fortran ensured that the numerical task was competent to deal with large deformation related to this case. The introduction of instantaneous amplitude definition and modeless component decom- position method (Chen and Kim, 2008) was helpful to reveal much more information from modal analysis. Most results from numerical simulation are generally consistent with those from model test (Choi and Hong, 2000) via the comparison between them. As supplementary to model test, visualization of the vortex wake was also provided. It has been proved that the forced oscillation doesn't only excite a complicated dumbbell-like wake pattern around the outer thimble, but also results in inner flow inside the PVC pipe. The velocity of the inner flow increases with the frequency of forced oscillation.