We elaborate an error budget for the long-term accuracy of IGS(International Global Navigation Satellite System Service) polar motion estimates, concluding that it is probably about 25-30 μas(1-sigma)overall, alt...We elaborate an error budget for the long-term accuracy of IGS(International Global Navigation Satellite System Service) polar motion estimates, concluding that it is probably about 25-30 μas(1-sigma)overall, although it is not possible to quantify possible contributions(mainly annual) that might transfer directly from aliases of subdaily rotational tide errors. The leading sources are biases arising from the need to align daily, observed terrestrial frames, within which the pole coordinates are expressed and which are continuously deforming, to the secular, linear international reference frame. Such biases are largest over spans longer than about a year. Thanks to the very large number of IGS tracking stations, the formal covariance errors are much smaller,around 5 to 10 μas. Large networks also permit the systematic frame-related errors to be more effectively minimized but not eliminated. A number of periodic errors probably also influence polar motion results, mainly at annual, GPS(Global Positioning System) draconitic, and fortnightly periods, but their impact on the overall error budget is unlikely to be significant except possibly for annual tidal aliases. Nevertheless, caution should be exercised in interpreting geophysical excitations near any of the suspect periods.展开更多
To study the influence of head-neck ratio and implant position on the range of motion (ROM) after total hip arthroplasty (THA).Methods In this study the author established a three-dimensional computerized model of hip...To study the influence of head-neck ratio and implant position on the range of motion (ROM) after total hip arthroplasty (THA).Methods In this study the author established a three-dimensional computerized model of hip joint and tested the range of motion of three different head-neck ratio after total hip arthroplasty.Results Range of motion after total hip arthroplasty depended on design parameters such as head-neck ratio,but also on the implantation parameters such as the cup’s inclination and antevertion,the stem’s antevertion and their combination of each other.Optimal range of motion required compliant position of total hip components.The range of motion increased with the enlarging of head-hnck ratio.Conclusion Higher head-neck ratio leads to optimal range of motion and decreased the prevalence of prosthetic impingement within compliant,well-defined combination of cup’s inclination,cup’s antevertion and stem’s antevertion depending on the intended ROM.Domestic magnesium-silicon jade total hip prosthesis has too low head-neck ratio to result in enough range of motion that fulfilled daily living after total hip arthroplasty.14 refs,4 figs,3 tabs.展开更多
To control movement,the brain has to integrate proprioceptive information from a variety of mechanoreceptors.The role of proprioception in daily activities,exercise,and sports has been extensively investigated,using d...To control movement,the brain has to integrate proprioceptive information from a variety of mechanoreceptors.The role of proprioception in daily activities,exercise,and sports has been extensively investigated,using different techniques,yet the proprioceptive mechanisms underlying human movement control are still unclear.In the current work we have reviewed understanding of proprioception and the three testing methods:threshold to detection of passive motion,joint position reproduction,and active movement extent discrimination,all of which have been used for assessing proprioception.The origin of the methods,the different testing apparatus,and the procedures and protocols used in each approach are compared and discussed.Recommendations are made for choosing an appropriate technique when assessing proprioceptive mechanisms in different contexts.展开更多
Traditional methods for plan path prediction have low accuracy and stability. In this paper, we propose a novel approach for plan path prediction based on relative motion between positions(RMBP) by mining historical f...Traditional methods for plan path prediction have low accuracy and stability. In this paper, we propose a novel approach for plan path prediction based on relative motion between positions(RMBP) by mining historical flight trajectories. A probability statistical model is introduced to model the stochastic factors during the whole flight process. The model object is the sequence of velocity vectors in the three-dimensional Earth space. First, we model the moving trend of aircraft including the speed(constant, acceleration, or deceleration), yaw(left, right, or straight), and pitch(climb, descent, or cruise) using a hidden Markov model(HMM) under the restrictions of aircraft performance parameters. Then, several Gaussian mixture models(GMMs) are used to describe the conditional distribution of each moving trend. Once the models are built, machine learning algorithms are applied to obtain the optimal parameters of the model from the historical training data. After completing the learning process, the velocity vector sequence of the flight is predicted by the proposed model under the Bayesian framework, so that we can use kinematic equations, depending on the moving patterns, to calculate the flight position at every radar acquisition cycle. To obtain higher prediction accuracy, a uniform interpolation method is used to correct the predicted position each second. Finally, a plan trajectory is concatenated by the predicted discrete points. Results of simulations with collected data demonstrate that this approach not only fulfils the goals of traditional methods, such as the prediction of fly-over time and altitude of waypoints along the planned route, but also can be used to plan a complete path for an aircraft with high accuracy. Experiments are conducted to demonstrate the superiority of this approach to some existing methods.展开更多
文摘We elaborate an error budget for the long-term accuracy of IGS(International Global Navigation Satellite System Service) polar motion estimates, concluding that it is probably about 25-30 μas(1-sigma)overall, although it is not possible to quantify possible contributions(mainly annual) that might transfer directly from aliases of subdaily rotational tide errors. The leading sources are biases arising from the need to align daily, observed terrestrial frames, within which the pole coordinates are expressed and which are continuously deforming, to the secular, linear international reference frame. Such biases are largest over spans longer than about a year. Thanks to the very large number of IGS tracking stations, the formal covariance errors are much smaller,around 5 to 10 μas. Large networks also permit the systematic frame-related errors to be more effectively minimized but not eliminated. A number of periodic errors probably also influence polar motion results, mainly at annual, GPS(Global Positioning System) draconitic, and fortnightly periods, but their impact on the overall error budget is unlikely to be significant except possibly for annual tidal aliases. Nevertheless, caution should be exercised in interpreting geophysical excitations near any of the suspect periods.
文摘To study the influence of head-neck ratio and implant position on the range of motion (ROM) after total hip arthroplasty (THA).Methods In this study the author established a three-dimensional computerized model of hip joint and tested the range of motion of three different head-neck ratio after total hip arthroplasty.Results Range of motion after total hip arthroplasty depended on design parameters such as head-neck ratio,but also on the implantation parameters such as the cup’s inclination and antevertion,the stem’s antevertion and their combination of each other.Optimal range of motion required compliant position of total hip components.The range of motion increased with the enlarging of head-hnck ratio.Conclusion Higher head-neck ratio leads to optimal range of motion and decreased the prevalence of prosthetic impingement within compliant,well-defined combination of cup’s inclination,cup’s antevertion and stem’s antevertion depending on the intended ROM.Domestic magnesium-silicon jade total hip prosthesis has too low head-neck ratio to result in enough range of motion that fulfilled daily living after total hip arthroplasty.14 refs,4 figs,3 tabs.
基金the University of Canberra,Key Laboratory of Exercise and Health Sciences of Ministry of Education,Shanghai University of Sport and Shanghai Municipal Science and Technology Commission (No.13490503800)supported by Shanghai Pujiang Program (No.15PJ1407600)
文摘To control movement,the brain has to integrate proprioceptive information from a variety of mechanoreceptors.The role of proprioception in daily activities,exercise,and sports has been extensively investigated,using different techniques,yet the proprioceptive mechanisms underlying human movement control are still unclear.In the current work we have reviewed understanding of proprioception and the three testing methods:threshold to detection of passive motion,joint position reproduction,and active movement extent discrimination,all of which have been used for assessing proprioception.The origin of the methods,the different testing apparatus,and the procedures and protocols used in each approach are compared and discussed.Recommendations are made for choosing an appropriate technique when assessing proprioceptive mechanisms in different contexts.
基金Project supported by the National Natural Science Foundation of China(No.71573184)the National Key Scientific Instrument and Equipment Development Project(No.2013YQ490879)the Special Program of Office of China Air Traffic Control Commission(No.GKG201403004)
文摘Traditional methods for plan path prediction have low accuracy and stability. In this paper, we propose a novel approach for plan path prediction based on relative motion between positions(RMBP) by mining historical flight trajectories. A probability statistical model is introduced to model the stochastic factors during the whole flight process. The model object is the sequence of velocity vectors in the three-dimensional Earth space. First, we model the moving trend of aircraft including the speed(constant, acceleration, or deceleration), yaw(left, right, or straight), and pitch(climb, descent, or cruise) using a hidden Markov model(HMM) under the restrictions of aircraft performance parameters. Then, several Gaussian mixture models(GMMs) are used to describe the conditional distribution of each moving trend. Once the models are built, machine learning algorithms are applied to obtain the optimal parameters of the model from the historical training data. After completing the learning process, the velocity vector sequence of the flight is predicted by the proposed model under the Bayesian framework, so that we can use kinematic equations, depending on the moving patterns, to calculate the flight position at every radar acquisition cycle. To obtain higher prediction accuracy, a uniform interpolation method is used to correct the predicted position each second. Finally, a plan trajectory is concatenated by the predicted discrete points. Results of simulations with collected data demonstrate that this approach not only fulfils the goals of traditional methods, such as the prediction of fly-over time and altitude of waypoints along the planned route, but also can be used to plan a complete path for an aircraft with high accuracy. Experiments are conducted to demonstrate the superiority of this approach to some existing methods.