The present study introduced a new motion analysis method for total hip arthroplasty (THA). A motion simulation module of THA was designed and developed, which can simulate the THA’s implantation condition and motion...The present study introduced a new motion analysis method for total hip arthroplasty (THA). A motion simulation module of THA was designed and developed, which can simulate the THA’s implantation condition and motion and detect the theoretic range of motion (ROM) before the prosthetic component impingement happens.展开更多
Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerical...Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k-ε model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.展开更多
Underwater Gliders(UGs)have emerged as vital instruments in marine research,offering distinct advantages including low operational costs,extended range capabilities,and superior durability.Traditional UGs,however,face...Underwater Gliders(UGs)have emerged as vital instruments in marine research,offering distinct advantages including low operational costs,extended range capabilities,and superior durability.Traditional UGs,however,face limitations due to their substantial size,weight,cost,and deployment complexity.Moreover,the conventional oil pump method for buoyancy adjustment exhibits slow response times,resulting in increased unsteady gliding depth ratios.These constraints limit their application in shallow water environments such as ports,coastal waters,and inland water bodies.This paper presents the TL-200,a small-sized underwater glider that incorporates an integrated buoyancy-driven and attitude adjustment mechanism.Through the implementation of an innovative buoyancy drive unit,the TL-200 achieves enhanced buoyancy regulation response while maintaining a simplified structure compared to conventional gliders.A dynamic model for the TL-200 was developed and validated through comparative analysis of numerical results and experimental data.Utilizing this dynamic model,motion simulations were conducted to examine the influence of metacentric height on motion parameters.Additionally,the study evaluated the gliding efficiency and energy consumption of the TL-200 under varying buoyancy adjustments.The findings demonstrate the effectiveness of this small-sized underwater glider's integrated buoyancy-driven and attitude adjustment mechanism.展开更多
To provide a simulation system platform for designing and debugging a small autonomous underwater vehicle's (AUV) motion controller, a six-degree of freedom (6-DOF) dynamic model for AUV controlled by thruster an...To provide a simulation system platform for designing and debugging a small autonomous underwater vehicle's (AUV) motion controller, a six-degree of freedom (6-DOF) dynamic model for AUV controlled by thruster and fins with appendages is examined. Based on the dynamic model, a simulation system for the AUV's motion is established. The different kinds of typical motions are simulated to analyze the motion performance and the maneuverability of the AUV. In order to evaluate the influences of appendages on the motion performance of the AUV, simulations of the AUV with and without appendages are performed and compared. The results demonstrate the AUV has good maneuverability with and without appendages.展开更多
Aiming at scheduling problems of networked control system (NCS) used to fulfill motion synthesis and cooperation control of the distributed multi-mechatronic systems, the differences of network scheduling and task s...Aiming at scheduling problems of networked control system (NCS) used to fulfill motion synthesis and cooperation control of the distributed multi-mechatronic systems, the differences of network scheduling and task scheduling are compared, and the mathematic description of task scheduling is presented. A performance index function of task scheduling of NCS according to task balance and traffic load matching principles is defined. According to this index, a static scheduling method is designed and implemented to controlling task set simulation of the DCY100 transportation vehicle. The simulation results are applied successfully to practical engineering in this case so as to validate the effectiveness of the proposed performance index and scheduling algorithm.展开更多
FDPSO is a multifunction floating platform,which has the integral function of drilling,production,storage and offloading.A spread mooring system is adopted to position the FDPSO.The coupled analysis in time domain for...FDPSO is a multifunction floating platform,which has the integral function of drilling,production,storage and offloading.A spread mooring system is adopted to position the FDPSO.The coupled analysis in time domain for FDPSO system is conducted in the present paper,using the code DeepC.The effect of axial stiffness of the mooring line on the horizontal motion of FDPSO is studied by employing five types of different axial stiffness in the calculation of the motion response of FDPSO vessel.Furthermore,the results of a model test conducted in the State Key Laboratory of Ocean Engineering in Shanghai Jiao Tong University are used to investigate the feasibility of the numerical method.展开更多
基金supported by the National Natural Science Foundation of China(No. 30810103908)the Science Foundation of Shanghai(No.09441900300)the National Basic Research Program(973)of China(No.2011CB711000)
文摘The present study introduced a new motion analysis method for total hip arthroplasty (THA). A motion simulation module of THA was designed and developed, which can simulate the THA’s implantation condition and motion and detect the theoretic range of motion (ROM) before the prosthetic component impingement happens.
基金funded by by the National Science Fund for Distinguished Young Scholars(Grant No.51425901)the National Natural Science Foundation of China(Grant Nos.51479053 and 51137002)+4 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK2011026)the 111 Project(Grant No.B2012032)the Specialized Research Funding for the Doctoral Program of Higher Education(Grant No.20130094110014)the Marine Renewable Energy Research Project of State Oceanic Administration(Grant No.GHME2013GC03)the Fundamental Research Funds for the Central University(Hohai University,Grant Nos.2013B31614 and 2014B04114)
文摘Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k-ε model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.
基金financially supported by the National Key Research and Development Program of China(Grant No.2023YFC3008001)the National Natural Science Foundation of China(Grant No.52371357)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515240035)。
文摘Underwater Gliders(UGs)have emerged as vital instruments in marine research,offering distinct advantages including low operational costs,extended range capabilities,and superior durability.Traditional UGs,however,face limitations due to their substantial size,weight,cost,and deployment complexity.Moreover,the conventional oil pump method for buoyancy adjustment exhibits slow response times,resulting in increased unsteady gliding depth ratios.These constraints limit their application in shallow water environments such as ports,coastal waters,and inland water bodies.This paper presents the TL-200,a small-sized underwater glider that incorporates an integrated buoyancy-driven and attitude adjustment mechanism.Through the implementation of an innovative buoyancy drive unit,the TL-200 achieves enhanced buoyancy regulation response while maintaining a simplified structure compared to conventional gliders.A dynamic model for the TL-200 was developed and validated through comparative analysis of numerical results and experimental data.Utilizing this dynamic model,motion simulations were conducted to examine the influence of metacentric height on motion parameters.Additionally,the study evaluated the gliding efficiency and energy consumption of the TL-200 under varying buoyancy adjustments.The findings demonstrate the effectiveness of this small-sized underwater glider's integrated buoyancy-driven and attitude adjustment mechanism.
基金Supported by the National Natural Science Foundation of China under Grant No.50909025
文摘To provide a simulation system platform for designing and debugging a small autonomous underwater vehicle's (AUV) motion controller, a six-degree of freedom (6-DOF) dynamic model for AUV controlled by thruster and fins with appendages is examined. Based on the dynamic model, a simulation system for the AUV's motion is established. The different kinds of typical motions are simulated to analyze the motion performance and the maneuverability of the AUV. In order to evaluate the influences of appendages on the motion performance of the AUV, simulations of the AUV with and without appendages are performed and compared. The results demonstrate the AUV has good maneuverability with and without appendages.
基金This project is supported by National Natural Science Foundation of China (No. 50575013)
文摘Aiming at scheduling problems of networked control system (NCS) used to fulfill motion synthesis and cooperation control of the distributed multi-mechatronic systems, the differences of network scheduling and task scheduling are compared, and the mathematic description of task scheduling is presented. A performance index function of task scheduling of NCS according to task balance and traffic load matching principles is defined. According to this index, a static scheduling method is designed and implemented to controlling task set simulation of the DCY100 transportation vehicle. The simulation results are applied successfully to practical engineering in this case so as to validate the effectiveness of the proposed performance index and scheduling algorithm.
基金supported by the National Scientific and & Technology Major Project (Grant No.2008zx05026-006)
文摘FDPSO is a multifunction floating platform,which has the integral function of drilling,production,storage and offloading.A spread mooring system is adopted to position the FDPSO.The coupled analysis in time domain for FDPSO system is conducted in the present paper,using the code DeepC.The effect of axial stiffness of the mooring line on the horizontal motion of FDPSO is studied by employing five types of different axial stiffness in the calculation of the motion response of FDPSO vessel.Furthermore,the results of a model test conducted in the State Key Laboratory of Ocean Engineering in Shanghai Jiao Tong University are used to investigate the feasibility of the numerical method.