期刊文献+
共找到785篇文章
< 1 2 40 >
每页显示 20 50 100
Three-dimensional analysis of relationship between relative orientation and motion modes
1
作者 Fan Shijie Fan Hongqi +2 位作者 Xiao Huaitie Fan Jianpeng Fu Qiang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第6期1495-1504,共10页
Target motion modes have a close relationship with the relative orientation of missile-totarget in three-dimensional highly maneuvering target interception. From the perspective of relationship between the sensor coor... Target motion modes have a close relationship with the relative orientation of missile-totarget in three-dimensional highly maneuvering target interception. From the perspective of relationship between the sensor coordinate system and the target body coordinate system, a basic model of sensor is stated and the definition of relative angular velocity between the two coordinate systems is introduced firstly. Then, the three-dimensional analytic expressions of relative angular velocity for different motion modes are derived and simplified by analyzing the influences of target centroid motion, rotation around centroid and relative motion. Finally, the relationships of the relative angular velocity directions and values with motion modes are discussed. Simulation results validate the rationality of the theoretical analysis. It is demonstrated that there are significant differences of the relative orientation in different motion modes which include luxuriant information about motion modes. The conclusions are significant for the research of motion mode identification,maneuver detection, maneuvering target tracking and interception using target signatures. 展开更多
关键词 Attitude analysis Coordinate system motion mode Relative angular velocity Sensor Terminal guidance
原文传递
Experimental Study of the Motion Modes of a Planar Mechanical System with Multi-Clearance Revolute Joints
2
作者 Kifatsoa Kolani Mutuku Muvengei +1 位作者 Joshua Ngoret James Kimotho 《Open Journal of Applied Sciences》 2023年第11期2014-2031,共18页
Clearances in joints of a mechanical multibody system can induce impulsive forces, leading to vibrations that compromise the system’s reliability, stability, and lifespan. Through dynamic analysis, designers can inve... Clearances in joints of a mechanical multibody system can induce impulsive forces, leading to vibrations that compromise the system’s reliability, stability, and lifespan. Through dynamic analysis, designers can investigate the effects of the clearances on the dynamics of the multibody system. A revolute joint with clearance exhibits three motions which are;free-flight, impact and continuous contact motion modes. Therefore, a multibody system with n-number of revolute clearance joints will exhibit 3n motion modes which are a combination of the three motions in each joint. This study investigates experimentally the nine motion modes in a mechanical system with two revolute clearance joints. A slider crank mechanism has been used as the demonstrative example. We observed that the experimental curve exhibits a greater impact compared to the simulation curve. In conclusion, this experimental investigation offers valuable insights into the dynamics of planar mechanical systems with multiple clearance revolute joints. Utilizing a slider-crank mechanism for data acquisition, the study successfully confirmed seven out of nine motion modes previously identified in numerical research. The missing modes are attributed to inherent complexities in real-world systems, such as journal-bearing misalignment. 展开更多
关键词 Slider Crank Mechanism Dynamic Responses Revolute Clearance Joints motion modes
在线阅读 下载PDF
Scholte wave dispersion and particle motion mode in ocean and ocean crust 被引量:1
3
作者 Xu Xin Wan Yong-Ge +1 位作者 Li Zhen-Yue Sheng Shu-Zhong 《Applied Geophysics》 SCIE CSCD 2022年第1期132-142,146,共12页
The dispersion equation of the Scholte wave was reviewed using the homogeneous elastic half-space covered by a liquid layer,and the range of the Scholte wave propagation velocity was examined using the dispersion equa... The dispersion equation of the Scholte wave was reviewed using the homogeneous elastic half-space covered by a liquid layer,and the range of the Scholte wave propagation velocity was examined using the dispersion equation.The displacement expressions of the Scholte waves in liquid and solid were derived.Additionally,the mode of motion of Scholte waves in liquid and solid and their variation with depth was studied.The following results were obtained:The dispersion equation shows that the propagation velocity of the fundamental Scholte wave was greater than the P-wave in liquid and less than that of the Scholte wave in homogeneous elastic half-space.In contrast,the velocity of higher-order Scholte waves was greater than that of P waves in liquid and S-waves in solid.Only the fundamental Scholte wave has no cutoff frequency.The Scholte wave at the liquid surface moved only vertically,while the particles inside the liquid medium moved elliptically.The amplitude variation with depth in the solid medium caused the particle motion to change from a retrograde ellipse to a prograde ellipse.The above results imply the study of Scholte waves in the ocean and oceanic crust and help estimate ocean depths. 展开更多
关键词 Scholte waves in the ocean and oceanic crust dispersion equation propagation velocity amplitude mode of motion
在线阅读 下载PDF
High-Fidelity Two-Qubit Quantum Logic Gates in a Trapped-Ion Chain Using Axial Motional Modes
4
作者 Xingyu Zhao Ji Bian +3 位作者 Yi Li Yue Li Mengxiang Zhang Yiheng Lin 《Chinese Physics Letters》 2025年第11期139-149,共11页
Trapped-ion systems are one of the leading platforms for quantum information processing, where a key challenge is to scale up system size while maintaining high-fidelity two-qubit operations. A promising approach is t... Trapped-ion systems are one of the leading platforms for quantum information processing, where a key challenge is to scale up system size while maintaining high-fidelity two-qubit operations. A promising approach is to build high-performance modules interconnected via strong coupling. In particular, axial motional modes offer a practical mechanism to couple the ions in a chain, enabling the preparation of Greenberger–Horne–Zeilinger states with up to 24 ions using global operations, as well as high-fidelity two-qubit gates(96.6%–98.0%) in fully connected five-ion chains. Here, we demonstrate two-qubit quantum logic gates in a 5-ion^(40)Ca^(+)chain using axial modes, achieving fidelities exceeding 99% for adjacent pairs and over 98% for arbitrary pairs by carefully tackling dominant error sources. Our results are beneficial to the development of scalable ion-trap quantum processors,quantum simulation and quantum-enhanced metrology. 展开更多
关键词 global operations trapped ion systems axial motional modes preparation greenberger horne zeilinger states quantum information processing high fidelity gates strong coupling scale up system size
原文传递
Dynamic flight stability of a hovering model insect:lateral motion 被引量:17
5
作者 Yanlai Zhang Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第2期175-190,共16页
The lateral dynamic flight stability of a hovering model insect (dronefly) was studied using the method of computational fluid dynamics to compute the stability derivatives and the techniques of eigenvalue and eigen... The lateral dynamic flight stability of a hovering model insect (dronefly) was studied using the method of computational fluid dynamics to compute the stability derivatives and the techniques of eigenvalue and eigenvector analysis for solving the equations of motion. The main results are as following. (i) Three natural modes of motion were identified: one unstable slow divergence mode (mode 1), one stable slow oscillatory mode (mode 2), and one stable fast subsidence mode (mode 3). Modes 1 and 2 mainly consist of a rotation about the horizontal longitudinal axis (x-axis) and a side translation; mode 3 mainly consists of a rotation about the x-axis and a rotation about the vertical axis. (ii) Approximate analytical expressions of the eigenvalues are derived, which give physical insight into the genesis of the natural modes of motion. (iii) For the unstable divergence mode, td, the time for initial disturbances to double, is about 9 times the wingbeat period (the longitudinal motion of the model insect was shown to be also unstable and td of the longitudinal unstable mode is about 14 times the wingbeat period). Thus, although the flight is not dynamically stable, the instability does not grow very fast and the insect has enough time to control its wing motion to suppress the disturbances. 展开更多
关键词 INSECT Dynamic flight stability Hovering ·Lateral motion Natural modes of motion
在线阅读 下载PDF
An Integrated Dynamic Model of Ocean Mining System and Fast Simulation of Its Longitudinal Reciprocating Motion 被引量:3
6
作者 戴瑜 刘少军 《China Ocean Engineering》 SCIE EI CSCD 2013年第2期231-244,共14页
An integrated dynamic model of China's deep ocean mining system is developed and the fast simulation analysis of its longitudinal reciprocating motion operation processes is achieved. The seafloor tracked miner is bu... An integrated dynamic model of China's deep ocean mining system is developed and the fast simulation analysis of its longitudinal reciprocating motion operation processes is achieved. The seafloor tracked miner is built as a three-dimensional single-body model with six-degree-of-freedom. The track-terrain interaction is modeled by partitioning the track-terrain interface into a certain number of mesh elements with three mutually perpendicular forces, including the normal force, the longitudinal shear force and the lateral shear force, acting on the center point of each mesh element. The hydrodynamic force of the miner is considered and applied. By considering the operational safety and collection efficiency, two new mining paths for the miner on the seafloor are proposed, which can be simulated with the established single-body dynamic model of the miner. The pipeline subsystem is built as a three-dimensional multi-body discrete element model, which is divided into rigid elements linked by flexible connectors. The flexible connector without mass is represented by six spring-damper elements. The external hydrodynamic forces of the ocean current from the longitudinal and lateral directions are both considered and modeled based on the Morison formula and applied to the mass center of each corresponding discrete rigid element. The mining ship is simplified and represented by a general kinematic point, whose heave motion induced by the ocean waves and the longitudinal and lateral towing motions are considered and applied. By integrating the single-body dynamic model of the miner and the multi-body discrete element dynamic model of the pipeline, and defining the kinematic equations of the mining ship, the integrated dynamic model of the total deep ocean mining system is formed. The longitudinal reciprocating motion operation modes of the total mining system, which combine the active straight-line and turning motions of the miner and the ship, and the passive towed motions of the pipeline, are proposed and simulated with the developed 3D dynamic model. Some critical simulation results are obtained and analyzed, such as the motion trajectories of key subsystems, the velocities of the buoyancy modules and the interaction forces between subsystems, which in a way can provide important theoretical basis and useful technical reference for the practical deep ocean mining system analysis, operation and control. 展开更多
关键词 deep ocean mining system single-body model track-terrain interaction model discrete element model longitudinal reciprocating motion operation mode dynamic simulation analysis
在线阅读 下载PDF
Improvement of the prediction accuracy of polar motion using empirical mode decomposition 被引量:2
7
作者 Yu Lei Hongbing Cai Danning Zhao 《Geodesy and Geodynamics》 2017年第2期141-146,共6页
Previous studies revealed that the error of pole coordinate prediction will significantly increase for a prediction period longer than 100 days, and this is mainly caused by short period oscillations. Empirical mode d... Previous studies revealed that the error of pole coordinate prediction will significantly increase for a prediction period longer than 100 days, and this is mainly caused by short period oscillations. Empirical mode decomposition (EMD), which is increasingly popular and has advantages over classical wavelet decomposition, can be used to remove short period variations from observed time series of pole co- ordinates. A hybrid model combing EMD and extreme learning machine (ELM), where high frequency signals are removed and processed time series is then modeled and predicted, is summarized in this paper. The prediction performance of the hybrid model is compared with that of the ELM-only method created from original time series. The results show that the proposed hybrid model outperforms the pure ELM method for both short-term and long-term prediction of pole coordinates. The improvement of prediction accuracy up to 360 days in the future is found to be 24.91% and 26.79% on average in terms of mean absolute error (MAE) for the xp and yp components of pole coordinates, respectively. 展开更多
关键词 Polar motion Prediction model Empirical mode decomposition (EMD)Neural networks (NN)Extreme learning machine (ELM)
原文传递
Terminal sliding mode control for coordinated motion of a space rigid manipulator with external disturbance 被引量:3
8
作者 郭益深 陈力 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第5期583-590,共8页
The control problem of coordinated motion of a free-floating space rigid manipulator with external disturbance is discussed. By combining linear momentum conversion and the Lagrangian approach, the full-control dynami... The control problem of coordinated motion of a free-floating space rigid manipulator with external disturbance is discussed. By combining linear momentum conversion and the Lagrangian approach, the full-control dynamic equation and the Jacobian relation of a free-floating space rigid manipulator are established and then inverted to the state equation for control design. Based on the terminal sliding mode control (SMC) technique, a mathematical expression of the terminal sliding surface is proposed. The terminal SMC scheme is then developed for coordinated motion between the base's attitude and the end-effector of the free-floating space manipulator with external disturbance. This proposed control scheme not only guarantees the existence of the sliding phase of the closed-loop system, but also ensures that the output tracking error converges to zero in finite time. In addition, because the initial system state is always at the terminal sliding surface, the control scheme can eliminate reaching phase of the SMC and guarantee global robustness and stability of the closed-loop system. A planar free-floating space rigid manipulator is simulated to verify the feasibility of the proposed control scheme. 展开更多
关键词 free-floating space rigid manipulator external disturbance terminal slidingsurface coordinated motion terminal sliding mode control
在线阅读 下载PDF
Distinct Modes of Winter Arctic Sea Ice Motion and Their Associations with Surface Wind Variability 被引量:6
9
作者 武炳义 Mark A. JOHNSON 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第2期211-229,共19页
Using monthly mean sea ice velocity data obtained from the International Arctic Buoy Programme (IABP) for the period of 1979–1998 and the monthly mean NCEP/NCAR re-analysis dataset (1960–2002), we investigated t... Using monthly mean sea ice velocity data obtained from the International Arctic Buoy Programme (IABP) for the period of 1979–1998 and the monthly mean NCEP/NCAR re-analysis dataset (1960–2002), we investigated the spatiotemporal evolution of the leading sea ice motion mode (based on a complex correlation matrix constructed of normalized sea ice motion velocity) and their association with sea level pressure (SLP) and the predominant modes of surface wind field variability. The results indicate that the leading winter sea ice motion mode’s spatial evolution is characterized by two alternating and distinct sea ice modes, or their linear combination. One mode (M1) shows a nearly closed cyclonic or anti-cyclonic circulation anomaly in the Arctic Basin and its marginal seas, resembling to a large extent the response of sea ice motion to the Arctic Oscillation (AO), as many previous studies have revealed. The other mode (M2) displays a coherent cyclonic or anti-cyclonic circulation anomaly with its center close to the Laptev Sea, which has not been identified in previous observational studies. In fact, M1 and M2 respectively reflect the responses of sea ice motion to two predominant modes of winter surface wind variability north of 70 ? N, which well correspond, with slight differences, to the first two modes of EOF analysis of winter monthly mean SLP north of 70 ? N. These slight differences in SLP anomalies lead to a difference of M2 from the response of sea ice motion to the dipole anomaly. Although the AO significantly influences sea ice motion, it is not crucial for the existence of M1. The new sea ice motion mode (M2) has the largest variance and clearly differs from the response of winter monthly mean sea ice motion to the dipole anomaly in SLP fields, and corresponding SLP anomalies also show differences compared to the dipole anomaly. This study indicates that in the Arctic Basin and its marginal seas, slight differences in SLP anomaly patterns can force distinctly different sea ice motion anomalies. 展开更多
关键词 distinct mode Arctic sea ice motion Arctic surface wind forcing
在线阅读 下载PDF
Disturbance Observer Based Sliding Mode Controller Design for Heave Motion of Surface Effect Ships
10
作者 许大禹 孙玉清 +1 位作者 杜佳璐 胡鑫 《Journal of Donghua University(English Edition)》 EI CAS 2016年第5期759-763,共5页
In order to damp the heave motion of surface effect ships(SESs),a sliding mode controller with a disturbance observer was designed.At first,a disturbance observer was proposed to estimate the unknown time-varying dist... In order to damp the heave motion of surface effect ships(SESs),a sliding mode controller with a disturbance observer was designed.At first,a disturbance observer was proposed to estimate the unknown time-varying disturbance acting on SESs due to waves.Then,based on the disturbance,a slide mode controller was designed to minimize the magnitude of SES's heave motion position.It was theoretically proved that the designed sliding mode controller with the disturbance observer could guarantee the stability of the closed-loop heave motion control system of SESs.Simulations on a Norwegian Navy's SES were carried out and the simulation results illustrated the effectiveness of the proposed controller with the disturbance observer. 展开更多
关键词 disturbance observer sliding guarantee Observer illustrated slide backstepping globally ultimately
在线阅读 下载PDF
Research on parafoil stability using a rapid estimate model 被引量:6
11
作者 Hua YANG Lei SONG Weifang CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第5期1670-1680,共11页
With the consideration of rotation between canopy and payload of parafoil system, a four-degree-of-freedom(4-DOF) longitudinal static model was used to solve parafoil state variables in straight steady flight. The a... With the consideration of rotation between canopy and payload of parafoil system, a four-degree-of-freedom(4-DOF) longitudinal static model was used to solve parafoil state variables in straight steady flight. The aerodynamic solution of parafoil system was a combination of vortex lattice method(VLM) and engineering estimation method. Based on small disturbance assumption,a 6-DOF linear model that considers canopy additional mass was established with benchmark state calculated by 4-DOF static model. Modal analysis of a dynamic model was used to calculate the stability parameters. This method, which is based on a small disturbance linear model and modal analysis, is high-efficiency to the study of parafoil stability. It is well suited for rapid stability analysis in the preliminary stage of parafoil design. Using this method, this paper shows that longitudinal and lateral stability will both decrease when a steady climbing angle increases. This explains the wavy track of the parafoil observed during climbing. 展开更多
关键词 Dynamic model motion mode PARAFOIL Small-disturbance theory STABILITY
原文传递
Numerical Simulation on Oscillation-Sliding-Uplift Rock Coupled Motion of Caisson Breakwater Under Wave Excitation 被引量:6
12
作者 王元战 龚薇 迟丽华 《China Ocean Engineering》 SCIE EI 2010年第2期207-218,共12页
Corresponding to the sliding and the overturning failure,the elementary motion modes of caisson breakwater include the horizontal-rotational oscillation coupled motion,the horizontal sliding-rotational oscillation cou... Corresponding to the sliding and the overturning failure,the elementary motion modes of caisson breakwater include the horizontal-rotational oscillation coupled motion,the horizontal sliding-rotational oscillation coupled motion,the horizontal vibrating-uplift rocking coupled motion,and the horizontal sliding-uplift rocking coupled motion.The motion mode of a caisson will transform from one to another depending on the wave forces and the motion behaviors of the caisson.The numerical models of four motion modes of caisson are developed,and the numerical simulation procedure for joint motion process of various modes of caisson breakwater under wave excitation is presented and tested by a physical model experiment.It is concluded that the simulation procedure is reliable and can be applied to the dynamic stability analysis of caisson breakwaters. 展开更多
关键词 caisson breakwater four motion modes joint motion process numerical simulation
在线阅读 下载PDF
Dynamic flight stability of a model dronefly in vertical flight 被引量:1
13
作者 Chong Shen Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第6期828-838,共11页
The dynamic flight stability of a model dronefly in hovering and upward flight is studied.The method of computational fluid dynamics is used to compute the stability derivatives and the techniques of eigenvalue and ei... The dynamic flight stability of a model dronefly in hovering and upward flight is studied.The method of computational fluid dynamics is used to compute the stability derivatives and the techniques of eigenvalue and eigenvector used to solve the equations of motion.The major finding is as following.Hovering flight of the model dronefly is unstable because of the existence of an unstable longitudinal and an unstable lateral natural mode of motion.Upward flight of the insect is also unstable,and the instability increases as the upward flight speed increases.Inertial force generated by the upward flight velocity coupled with the disturbance in pitching angular velocity is responsible for the enhancement of the instability. 展开更多
关键词 Insect vertical flight Flight stability Natural modes of motion
在线阅读 下载PDF
基于Motion Skip模式的低时延随机访问多视点视频编码方法
14
作者 郑海棠 刘峰 《南京邮电大学学报(自然科学版)》 2010年第3期74-78,共5页
为了实现多视点视频编码的低时延随机访问,优化多视点视频随机访问性能,提出一种改进的多视点视频编码方法。该方法首先修改anchor帧图像视点间的预测关系,将视差补偿预测应用于anchor帧图像,而对non-anchor帧图像仅采用运动补偿预测;其... 为了实现多视点视频编码的低时延随机访问,优化多视点视频随机访问性能,提出一种改进的多视点视频编码方法。该方法首先修改anchor帧图像视点间的预测关系,将视差补偿预测应用于anchor帧图像,而对non-anchor帧图像仅采用运动补偿预测;其次,根据视点间图像的运动信息具有高度相关性原理,对non-anchor帧图像应用基于自适应运动矢量精细化的Motion skip模式来优化其运动补偿预测性能。实验结果表明,文中所提的多视点视频编码方法在保证高压缩效率的前提下,具有较低的计算复杂度,并提高了视点的随机访问性能。 展开更多
关键词 多视点视频编码 低时延随机访问 motion skip模式
在线阅读 下载PDF
Analysis of Motion in Longitudinal Plane of Negative Buoyancy Vehicle Flying Fish Ⅱ 被引量:1
15
作者 颜翚 葛彤 +2 位作者 应思斌 吴超 袁庆晴 《Journal of Shanghai Jiaotong university(Science)》 EI 2012年第1期20-24,共5页
This article describes an experimental prototype flying fish II and builds a dynamic model that is a novel type of autonomous underwater vehicle(AUV)under the condition of negative buoyancy vehicle(NBV) without large ... This article describes an experimental prototype flying fish II and builds a dynamic model that is a novel type of autonomous underwater vehicle(AUV)under the condition of negative buoyancy vehicle(NBV) without large buoyancy mechanism.Compared with the AUV Remus 100,the flying fish II can cruise with double speeds within the same range and dimensions.The static stability and motion modes of flying fish II in the longitudinal plane are analyzed through the linear system theory.The flying fish II has static stability in the longitudinal plane and the motion mode is related to metacentric height. 展开更多
关键词 negative buoyancy vehicle(NBV) MANEUVERABILITY linear system static stability modes of motion
原文传递
Identification of acceleration pulses in near-fault ground motion using the EMD method 被引量:4
16
作者 张郁山 胡聿贤 +2 位作者 赵凤新 梁建文 杨彩红 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2005年第2期201-212,共12页
In this paper, response spectral characteristics of one-, two-, and three-lobe sinusoidal acceleration pulses are investigated, and some of their basic properties are derived. Furthermore, the empirical mode decomposi... In this paper, response spectral characteristics of one-, two-, and three-lobe sinusoidal acceleration pulses are investigated, and some of their basic properties are derived. Furthermore, the empirical mode decomposition (EMD) method is utilized as an adaptive filter to decompose the near-fault pulse-like ground motions, which were recorded during the September 20, 1999, Chi-Chi earthquake. These ground motions contain distinct velocity pulses, and were decomposed into high-frequency (HF) and low-frequency (LF) components, from which the corresponding HF acceleration pulse (if existing) and LF acceleration pulse could be easily identified and detected. Finally, the identified acceleration pulses are modeled by simplified sinusoidal approximations, whose dynamic behaviors are compared to those of the original acceleration pulses as well as to those of the original HF and LF acceleration components in the context of elastic response spectra. It was demonstrated that it is just the acceleration pulses contained in the near-fault pulse-like ground motion that fundamentally dominate the special impulsive dynamic behaviors of such motion in an engineering sense. The motion thus has a greater potential to cause severe damage than the far-field ground motions, i.e. they impose high base shear demands on engineering structures as well as placing very high deformation demands on long-period structures. 展开更多
关键词 acceleration pulse velocity pulse near-fault pulse-like ground motion empirical mode decomposition(EMD) response spectrum
在线阅读 下载PDF
Fast mode decision algorithm for spatial resolutions down-scaling transcoding to H.264 被引量:1
17
作者 BU Jia-jun MO Lin-jian CHEN Chun YANG Zhi 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第z1期70-75,共6页
A fast mode decision algorithm is proposed in this paper to accelerate the process of transcoding videos into H.264with arbitrary rate spatial resolution down-scaling. The proposed algorithm consists of three steps. F... A fast mode decision algorithm is proposed in this paper to accelerate the process of transcoding videos into H.264with arbitrary rate spatial resolution down-scaling. The proposed algorithm consists of three steps. First, an early-stop technique is introduced to determine the 16× 16-mode blocks, which take up about 70% of all the macroblocks; then, a bottom-up merging process is performed to determine the mode of rest non-early-stopped blocks; and then, we adopt half-pixel motion estimation to further refine the acquired predictive motion vectors. In order to obtain the predictive motion vectors for early-stop and merging processes, we propose a motion vector composition scheme, which can reuse the information in the input pre-encoded videos to handle the spatial resolution down-scaling. Experimental results showed that our algorithm is about four times faster than the Cascaded-Decoder-Encoder method and has negligible PSNR drop and little bit rate increase. 展开更多
关键词 Transcoding H.264 mode decision motion composition
在线阅读 下载PDF
Dynamic modeling and simulation for the flexible spacecraft with dynamic stiffening 被引量:2
18
作者 李崔春 孟秀云 刘藻珍 《Journal of Beijing Institute of Technology》 EI CAS 2015年第3期305-312,共8页
A rigid flexible coupling physical model which can represent a flexible spacecraft is investigated in this paper. By applying the mechanics theory in a non-inertial coordinate system,the rigid flexible coupling dynami... A rigid flexible coupling physical model which can represent a flexible spacecraft is investigated in this paper. By applying the mechanics theory in a non-inertial coordinate system,the rigid flexible coupling dynamic model with dynamic stiffening is established via the subsystemmodeling framework. It is clearly elucidated for the first time that,dynamic stiffening is produced by the coupling effect of the centrifugal inertial load distributed on the beamand the transverse vibration deformation of the beam. The modeling approach in this paper successfully avoids problems which are caused by other popular modeling methods nowadays: the derivation process is too complex by using only one dynamic principle; a clearly theoretical explanation for dynamic stiffening can't be provided. First,the continuous dynamic models of the flexible beamand the central rigid body are established via structural dynamics and angular momentumtheory respectively. Then,based on the conclusions of orthogonalization about the normal constrained modes,the finite dimensional dynamic model suitable for controller design is obtained. The numerical simulation validations showthat: dynamic stiffening is successfully incorporated into the dynamic characteristics of the first-order model established in this paper,which can indicate the dynamic responses of the rigid flexible coupling system with large overall motion accurately,and has a clear modeling mechanism,concise expressions and a good convergence. 展开更多
关键词 non-inertial coordinate system large overall motion rigid flexible coupling dynamic stiffening normal constrained mode
在线阅读 下载PDF
Preparation and control of entangled states in the two-mode coherent fields interacting with a moving atom via two-photon process 被引量:1
19
作者 刘小娟 周并举 +1 位作者 刘明伟 李寿存 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第12期3685-3691,共7页
We investigate the preparation and the control of entangled states in a system with the two-mode coherent fields interacting with a moving two-level atom via the two-photon transition. We discuss entanglement properti... We investigate the preparation and the control of entangled states in a system with the two-mode coherent fields interacting with a moving two-level atom via the two-photon transition. We discuss entanglement properties between the two-mode coherent fields and a moving two-level atom by using the quantum reduced entropy, and those between the two-mode coherent fields by using the quantum relative entropy. In addition, we examine the influences of the atomic motion and field-mode structure parameter p on the quantum entanglement of the system. Our results show that the period and the duration of the prepared maximal atom-field entangled states and the frequency of maximal two-mode field entangled states can be controlled, and that a sustained entangled state of the two-mode field, which is independent of atomic motion and the evolution time, can be obtained, by choosing appropriately the parameters of atomic motion, field-mode structure, initial state and interaction time of the system. 展开更多
关键词 two-mode coherent fields entangled states reduced entropy relative entropy atomic motion and field-mode structure
原文传递
上一页 1 2 40 下一页 到第
使用帮助 返回顶部