Underwater spherical robots are good assistants for ocean exploration,where motion control algorithms play a vital role.Conventional motion control algorithms cannot eliminate the coupling relationship between various...Underwater spherical robots are good assistants for ocean exploration,where motion control algorithms play a vital role.Conventional motion control algorithms cannot eliminate the coupling relationship between various motion directions,which will cause the motion control of various directions to interfere with one other and significantly affect the control effect.This study proposes a new decoupling motion control algorithm based on the robot attitude calculation for an underwater spherical robot designed for offshore,shallow water,and narrow terrain.The proposed method uses four fuzzy proportional-integral-derivative(PID)controllers to independently control the robot’s movement in all directions.Experiments show that the motion control algorithm proposed in this study can significantly improve the flexibility and accuracy of the movement of underwater spherical robots.展开更多
Reaction wheel or reaction thruster is employed to maintain the attitude of the base of space robot fixed in attitude control of free flying space robot. However, in this method, a large amount of fuel will be consume...Reaction wheel or reaction thruster is employed to maintain the attitude of the base of space robot fixed in attitude control of free flying space robot. However, in this method, a large amount of fuel will be consumed, and it will shorten the on orbit life span of space robot, it also vibrate the system and make the system unsteady. The restricted minimum disturbance map (RMDM) based algorithm of attitude control is presented to keep the attitude of the base fixed during the movement of the manipulator. In this method it is realized by planning motion trajectory of the end effector of manipulator without using reaction wheel or reaction thruster. In order to verify the feasibility and effectiveness of the algorithm attitude control presented in this paper, computer simulation experiments have been made and the experimental results demonstrate that this algorithm is feasible.展开更多
绳驱式脊柱状连续体机构实际弯曲形态与标准圆弧形状存在偏差,建立精确的运动控制模型困难。针对双段式六软轴驱动的蛇形仿生柔性机器人结构,通过融合遗传算法与反向传播神经网络GABP,研究双段式柔性机器人末端位置精确控制问题。通过So...绳驱式脊柱状连续体机构实际弯曲形态与标准圆弧形状存在偏差,建立精确的运动控制模型困难。针对双段式六软轴驱动的蛇形仿生柔性机器人结构,通过融合遗传算法与反向传播神经网络GABP,研究双段式柔性机器人末端位置精确控制问题。通过SolidWorks和ADAMS联合仿真,建立柔性机器人末端的X、Y、Z坐标和6根软轴的拉伸长度的映射数据库,利用数据库分别训练了标准反向传播BP神经网络和GABP神经网络模型,并且优化模型参数。最后设计机器人末端运动轨迹,使用BP和GABP神经网络模型分别通过ADAMS仿真平台和模型机上验证柔性机器人末端位置精度。结果表明:标准BP和GABP模型都可以实现柔性机器人末端的位置控制,融合了遗传算法的神经网络模型(最大误差:ε_(x)=0.73 mm, ε_(y)=0.78 mm, ε_(z)=1.96 mm)相对于标准BP神经网络模型(最大误差:ε_(x)=3.13 mm, ε_(y)=1.78 mm, ε_(z)=1.96 mm)在控制柔性机器人末端运动的位置精度得到了显著提升。展开更多
基金This work was supported by National Natural Science Foundation of China(Grant Nos.61773064,61503028).
文摘Underwater spherical robots are good assistants for ocean exploration,where motion control algorithms play a vital role.Conventional motion control algorithms cannot eliminate the coupling relationship between various motion directions,which will cause the motion control of various directions to interfere with one other and significantly affect the control effect.This study proposes a new decoupling motion control algorithm based on the robot attitude calculation for an underwater spherical robot designed for offshore,shallow water,and narrow terrain.The proposed method uses four fuzzy proportional-integral-derivative(PID)controllers to independently control the robot’s movement in all directions.Experiments show that the motion control algorithm proposed in this study can significantly improve the flexibility and accuracy of the movement of underwater spherical robots.
文摘Reaction wheel or reaction thruster is employed to maintain the attitude of the base of space robot fixed in attitude control of free flying space robot. However, in this method, a large amount of fuel will be consumed, and it will shorten the on orbit life span of space robot, it also vibrate the system and make the system unsteady. The restricted minimum disturbance map (RMDM) based algorithm of attitude control is presented to keep the attitude of the base fixed during the movement of the manipulator. In this method it is realized by planning motion trajectory of the end effector of manipulator without using reaction wheel or reaction thruster. In order to verify the feasibility and effectiveness of the algorithm attitude control presented in this paper, computer simulation experiments have been made and the experimental results demonstrate that this algorithm is feasible.
文摘绳驱式脊柱状连续体机构实际弯曲形态与标准圆弧形状存在偏差,建立精确的运动控制模型困难。针对双段式六软轴驱动的蛇形仿生柔性机器人结构,通过融合遗传算法与反向传播神经网络GABP,研究双段式柔性机器人末端位置精确控制问题。通过SolidWorks和ADAMS联合仿真,建立柔性机器人末端的X、Y、Z坐标和6根软轴的拉伸长度的映射数据库,利用数据库分别训练了标准反向传播BP神经网络和GABP神经网络模型,并且优化模型参数。最后设计机器人末端运动轨迹,使用BP和GABP神经网络模型分别通过ADAMS仿真平台和模型机上验证柔性机器人末端位置精度。结果表明:标准BP和GABP模型都可以实现柔性机器人末端的位置控制,融合了遗传算法的神经网络模型(最大误差:ε_(x)=0.73 mm, ε_(y)=0.78 mm, ε_(z)=1.96 mm)相对于标准BP神经网络模型(最大误差:ε_(x)=3.13 mm, ε_(y)=1.78 mm, ε_(z)=1.96 mm)在控制柔性机器人末端运动的位置精度得到了显著提升。